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1 Introduction.

Berezin and Faddeev (see [1]) showed that the Hamiltonian with zero-range
potential of Fermi type is just an extension of a suitable defined symmetric
operator. Later it has been shown by Pavlov [2], that the structure of the
standard point interaction models can be enriched substantially when the
self-adjoint extensions are constructed in a more wide Hilbert space. This
idea yields various models of zero-range interaction with an additional inter-
nal structure (see [3] for a review). In joint papers of Prof. Pavlov and the
second author [4,5] this method has been used to construct and investigate
an explicitly solvable models of the scattering of the neutron on a point nu-
cleus, whose internal structure depends on a stochastic magnetic field, and of
the scattering of acoustic waves on a stochastic point defect with an internal
structure.

In the present paper an exactly solvable model of the neutron scattering
on the one-dimensional infinite chain embedded into the three dimensional
configurational space R3. We will suppose that the lattice is inserted into
the stochastic magnetic field. The nuclei in the chain are supposed to be
equivalent with the internal structure dependent in the magnetic field. This
model corresponds to the case, when the whole chain belongs to one mag-
netic domain. In the absence of the stochasticity such model was investi-
gated by Subramanian [10], Albeverio, Gesztesy, Hoegh-Krohn, Holden [1],
Karpeshina [3] and Pavlov and the first author [4]. It was shown that the
spectrum of the related operator is purely continuous and consists of two
branches:

1) Scattered waves branch σs; corresponding eigenfunctions are defined by
free waves reflected by the lattice. This branch coincides with the spectrum
of the free Laplacian −∆ in L2(R

3).
2) Waveguide branch σw; corresponding eigenfunctions are localized in a

neighbourhood of the lattice. In the discussing periodic case these functions
are of the Bloch type.

It will be shown that the spectral properties of the problem with the
stochastic filed are related to the properties of the problems without any
stochasticity.
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2 Model operator.

This section is devoted to the construction of the model operator describing
scattering in the stochastic magnetic field. Let L2(R

3) be an external space
and free Laplacian −∆ defined on W 2

2 (R3) be an unperturbed operator,
simulating the Hamiltonian of the free neutron. Let E int = ⊕∑

n En be an
orthogonal sum of unitary equivalent finite-dimensional Hilbert spaces. We
will restrict our consideration to the simplest case En = C2, n ∈ Z. Let An

be selfadjoint operators in En which are mutually unitary equivalent. We
will consider, as in the paper [8]:

An = A(H(τ)) ≡ diag{λ0, λ1}+ σ3H(τ), H(τ) = ±ez, (1)

where λ0, λ1 are the ”levels” of the nucleus, σ3 =

(
q 0
0 −q

)
is Pauli matrix

corresponding to the direction of the stochastic magnetic field H(τ) parallel
to the z-axis. Let Aint = ⊕∑

n An, then the nonperturbed operator is defined
as a direct sum L = (−∆) ⊕ Aint in the space L2(R

3) ⊕ E int of the kinetic
energy operator −∆ and the ”inner” operator Aint. The restriction −∆ ⇒
−∆0 on the linear set Dext

0 of all W 2
2 -smooth functions in R3\{xn}n∈Z, which

have the following asymptotic

u(x) ∼x→xn

un−

4π|x− xn| + un0 + o(1) (2)

creates the boundary form:

Jext(u, v) =< −∆∗
0u, v > − < u,−∆∗

0v >= − ∑

n∈Z

(un−vn0 − un0vn−. (3)

Here xn = n~e are the positions of nuclei of the lattice.
The restriction of the inner operator Aint → Aint

0 to the linear set Dint
0

described in [6, 8] also leads to nontrivial boundary boundary form

Jint(η, ξ) = − ∑

n∈Z

(ηn−ξn0 − ηn0ξn− (4)

where η, ξ ∈ E in. We consider here the infinite vectors {un−}, {un0}, {ξn−},
{ξn0}, etc., to be elements from `2. It is obvious that the restricted operators
∆0 and Aint

0 have infinite deficiency indices (∞,∞). The boundary form
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Jint +Jext vanishes on the Lagrange planes given by the translation-invariant
boundary conditions described in [4]:

(
un−

ηn−

)
=

∑

m∈Z

Γn−m

(
un0

ηn0

)
, Γ−n = Γ∗n, |n| > N → Γn = 0;

or(
un−

−ηn0

)
=

∑

m∈Z

Bn−m

(
un0

ηn−

)
, B−n = B∗

n, |n| > N → Bn = 0. (5)

Interaction between the nearest neighbours is introduced by these boundary

conditions. We restrict our consideration to the case N = 0, Γ0 =

(
0 α
α 0

)
:

(
un−

ηn−

)
=

(
0 α
α 0

) (
un0

ηn0

)
, =α = 0 (6)

A self adjoint extension L( ~H(τ)) of the operator −∆0⊕Aint
0 specified by the

boundary conditions (6) simulates the Hamiltonian of the ”neutron-lattice”

system. Since ~H = ~H(τ), this Hamiltonian is time-dependent. We consider
~H(τ) to be a Markovian stochastic process with two stochastic states. The
corresponding evolution operator U(t) restricted to a fixed trajectory of the

process ~H(t) is the solution of the Cauchy problem:

1

ı

∂U

∂τ
= L( ~H(τ))U, U |τ=0 = Iq ≡ Ie ⊕ Ii, (7)

where Ie and Ii are the identity operators in the external and internal spaces
respectively.

Together with the stochastic evolution described by the equation (7) we
will consider the ”deterministic” evolutions corresponding to the Hamilto-
nians L(+H) and L(−H), in which the magnetic field is fixed in up-state
~H = H~ez or in the down state ~H = −H~ez. On the intervals where ~H(τ) is
constant the evolution equation (7) can be solved by the time-ordered ex-
ponentials corresponding to the operators L(+H) and L(−H) respectively.
On each trajectory of magnetic momentum the evolution operator (7) is the
T-product of the corresponding exponentials (see [8]).

4



Starting with the equation for the transition probabilities whose resolvent
matrix P represents a solution of the following equation

dP
dτ

= χ

(
−1 1
1 −1

)
P , P(0) =

(
1 0
0 1

)
, (8)

we introduce the measure on the space of trajectories according to the paper
[8]. The probability of the beam of trajectories which are in the states αs =
±H at the moments t = sδ, s = 0, 1, 2, ..., n can be defined by the following
formula

Pαn,αn−1,...,α0 =
n∏

s=1

{
exp

[
χ

(
−1 1
1 −1

)
δ

]}

αsαs−1

The averaged evolution operator can be calculated by the Trotter formula.
By the same method as in [8] the following theorem can be proven:

Theorem 1. The quantum evolution operator, averaged over the set of
trajectories of magnetic field starting in the stochastic state β at τ = 0 and
ending in the stochastic state α at τ = T coincides with the element Uαβ(T )
of the operator matrix, which satisfies the differential equation:

1

ı

∂

∂τ
U = L̂χU, U |τ=0 =

(
Iq 0
0 Iq

)
. (9)

Here the generator L̂χ of the averaged semigroup U(τ) is given by the follow-
ing expression:

L̂χ =

(
L(+H) 0

0 L(−H)

)
+ ıχ

(
Iq −Iq

−Iq Iq

)
. (10)

It acts in the quantum-stochastic space H = [L2(R
3)⊕ E int] ⊗R2, which is

the tensor product of the quantum space Hq = L2(R
3)⊕E int by the stochastic

space R2,H = Hq ⊕Hq.

3 Spectral analysis of the averaged operator.

We will consider the perturbed L̂χ and the unperturbed operator L̂0
χ together.

The unperturbed operator corresponds to the case when the quantum oper-
ator can be presented as the orthogonal sum of the operators in the external
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and internal spaces. It corresponds to the coupling constant α equal to zero.
The external and internal parts of the unperturbed operator are:

−∆̂ =

(
−∆ 0
0 −∆

)
+ ıχ

(
Ie −Ie

−Ie Ie

)

Âint =

(
Au

int 0
0 Ad

int

)
+ ıχ

(
Ii −Ii

−Ii Ii

)
, (11)

where Au,d
int = ⊕∑

n Au,d; Au = A(+H), Ad = A(−H).
The unperturbed operator L̂0

χ = −∆̂ ⊕ Âint is normal and its spectral
characteristics can be calculated explicitly. For example, the spectrum of this
operator is the sum of the spectrum of the operator −∆̂ (whose spectrum
is purely continuous and consists of the two branches λ = k2 and λ = k2 +
2ıχ,=k = 0 ) and the spectrum of the operator Âint, which consists of four
eigenvalues of infinite multiplicity:

λ1,2(Â
int) = λ0 + ıχ±

√
H2 − χ2,

λ3,4(Â
int) = λ1 + ıχ±

√
H2 − χ2. (12)

Calculating the resolvent of operator L̂χ, one can obtain, that the spectrum

of L̂χ is purely continuous and consists of the following branches:
1) R+ and R+ + 2ıχ, which coincide with the spectrum of the operator

L̂0
χ;

2) four branches, or bands, each corresponding to one of the eigenvalues
of operator L̂0

χ. These branches can be calculated by solving the following
equations

λ− λn(L̂0
χ) = ∓ α2ı

32π

Fn(λ, t)√
h2 − χ2

+ o(α2). (13)

This formula is valid for the small values of the coupling constant α only.
Sign ”-” in the rhs of (13) corresponds to n = 1, 3, ”+ ” to n = 2, 4. Function
Fn(λ, t) is defined by the following expression:

Fn(λ, t) = (B+
n B−

n )−1
{
B+

n (C−
n 4n

u +ıχ5n
u) + B−

n (C+
n 4n

d +ıχ5n
d)

}
, (14)

4n
u,d = R+(λ)D±

n B∓
n − ıχR−(λ)B±

n A∓
n , n = 0, 1; (15)
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5n
u,d = R−(λ)D∓

n B±
n − ıχR+(λ)B∓

n A±
n , n = 0, 1;

R±(λ) = B̂(
√

λ, t)± B̂(
√

λ− 2ıχ, t), (16)

where A±
n , B±

n , D±
n are defined as in [8]

A±
0 = λ0 ±H,A±

1 λ1 ∓H,

B±
n = A±

n − ı, D±
n = (ıχ− λ)A±

n − ı.

Parameter t in the formulas (13),(14),(15) is the quasimomentum and it
belongs to the interval [−π, π]. The function B̂(

√
λ, t) is the lattice sum for

the linear infinite chain:

B̂(
√

λ, t) = ık +
∑

n∈Z

exp(ı
√

λ|n|)
4π|n| exp(−ıtn) =

= ln

(
1

2(cos
√

λ− cos t)

)
, (17)

which was calculated first by Subramanian [10]. The branch of the logarithm
is fixed by the condition of analytical continuability of B̂(

√
λ, t) into the

complex spectral plane λ and vanishing of the imaginary part of the logarithm
on the negative semi-axis. The properties of the function B̂(

√
λ, t) were

described in [4].
Analysis of the equation (13) can be carried out for the small values of the

coupling constant α ¿ 1 and of the stochastic evolution parameter χ ¿ 1.
In this case the resonant bands correspond to the negative eigenvalues of

the operators Au =

(
λ0 + H 0

0 λ−H

)
and Ad =

(
λ0 −H 0

0 λ + H

)
.

For example, let λ0 be negative. Then the corresponding eigenvalue of the
operator L̂0

χ is given by the following asymptotic expression:

λ1(L̂0
χ) = λ0 + H + ıχ + o(χ) (18)

and corresponding band by the expression:

λ1(t) = λ1(L̂0
χ)− α2ı

8π
H[(λ0 + H)2 + 1] ln

1

2(cosh
√
−(λ0 + H)− cos t)

+

7



+o(α2, χ), (19)

where ln is defined as a function of the real variable. The right edge of the
band coincides with λ(π) and the left one with λ(0). The function B̂(

√
λ, t)

is an even function of the variable t, hence the multiplicity of the spectrum
is two (see Fig. 1).

Structure of the band spectrum corresponding to the positive eigenvalues
of the operators Au, Ad is more complicated. Analysis of the equation (13)
shows that the bands corresponding to each positive eigenvalue of L̂0

χ have a

gap (see Fig 2). Let, for example,
√

λ0 + H be from the interval [0, π]. Then
the band has a gap near λ1(L̂0

χ). The second band of solutions of the equation
(13) is situated exactly under this band, but it does not correspond to the
spectrum of the operator. The first band transforms into the stationary
(waveguide) band with the gap near λ0 + H when the parameter χ tends to
zero. The second band transforms into the resonant gap (see Fig. 2). The
first band corresponds to the values of λ, that are less than |t|2, the second
- to λ : |lambda| > |t|2. When

√
λ + H is greater then π no stationary band

appears.
Thus, the spectrum of the operator L̂χ consists of two scattered waves

branches R+ and R+ + 2ıχ and not more than four stationary bands (see
Fig. 3). The Bloch waves corresponding to the resonant bands are increasing
at infinity functions and are not eigenfunctions of the operator. We are
going to prove that the generator L̂χ is a dissipative operator with complex
branches of the continuous spectrum. The corresponding eigenfunctions can
be calculated following papers [8, 4]. The eigenfunctions corresponding to the
branches R+ and R+ +2ıχ have a form of scattered waves. The initial plane
wave is symmetric with respect to the stochastic variables for the branch R+

(or stable branch) of the spectrum:

Ψs(λ, ν) =

{
ψext

s (x, λ, ν)
ψint

s (λ, nu)
, λ = k2, k ≥ 0, ν ∈ S2, (20)

ψext
s (x, λ, ν) = exp

{
−ı
√

λ < ν, x >
} (

1
1

)
+

+


f00(λ, ν)

∑

n∈Z

exp(ık|x− xn|)
4π|x− xn|

(
1
1

)
+
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f10(λ, ν)
∑

n∈Z

exp(ı
√

λ− 2ıχ|x− xn|)
4π|x− xn|

(
1
−1

)
 exp(−ı

√
λ < ν, xn >), (21)

(
ψint

s (λ, ν)
)

n
=

(
η0

u

η0
d

)
(λ, ν) exp(−ı

√
λ < ν, xn >), xn = n~e(n ∈ Z).

The initial plane wave corresponding to the relaxation branch R+ + 2ıχ
is antisymmetric with respect to the stochastic variables:

Ψas(λ, ν) =

{
ψext

as (x, λ, ν)
ψint

as (λ, nu)
, λ = k2 + 2ıχ, k ≥ 0, ν ∈ S2, (22)

ψext
as (x, λ, ν) = exp

{
−ı

√
λ− 2ıχ < ν, x >

} (
1
−1

)
+

+


f01(λ, ν)

∑

n∈Z

exp(ık|x− xn|)
4π|x− xn|

(
1
1

)
+

f11(λ, ν)
∑

n∈Z

exp(ı
√

λ− 2ıχ|x− xn|)
4π|x− xn|

(
1
−1

)
 exp(−ı

√
λ− 2ıχ < ν, xn >),

(23)
(
ψint

as (λ, ν)
)

n
=

(
η0

u

η0
d

)
(λ, ν) exp(−ı

√
λ− 2ıχ < ν, xn >), xn = n~e(n ∈ Z).

One can see, that the functions ψext
s , ψext

as satisfy Bloch conditions. For
example:

ψext
s (x + m~e, λ, ν) = ψext

s (x, λ, nu) exp(−ı
√

λ < ν,m~e >), m ∈ Z. (24)

Explicit expressions for the amplitudes fnm(λ, ν) in (21,23) can be calculated
by substitution of the considering ansatz (21,23) for the scattered waves into
the boundary conditions (6). For example the amplitude f00 is :

f00(λ, ν) =
α2

4

1∑

n,m=0

(λn − (−1)n+mH − λ)(λn + (−1)n+mH − ı) + 2ıχ(λn − ı)

[(λn − ı)2 −H2]
[
(λn + ıχ− λ)2 − (H2 − χ2 − Fk(

√
λ, k‖))

]Zm
n +o(α2)

(25)
where the following notations were used:

k‖ = k < ν,~e >; k =
√

λ;
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Z0
m = Z+

m, Z1
m = Z−

m; Z±
m = ıχB±

mA∓
m −D±

mB∓
m. (26)

The eigenfunctions corresponding to the stationary band can be calculated
in the same way

Ψi(t) =

{
ψext

i (x, t)
ψint

i (t)
(27)

Let us denote by λi(t) the corresponding solution of the equation (13). Then
the components of the eigenfunction are

ψext
i (x, t) =

1

2

∑

n∈Z


C0

exp(ı
√

λi(t)|x− xn|)
4π|x− xn|

(
1
1

)
+

+Cχ

exp(ı
√

λi(t)− 2ıχ|x− xn|)
4π|x− xn|

(
1
−1

)
+


 exp(−ınt)

ψint
i (t) =

(
η0

u

η0
d

)
(i, t) exp(−ınt), (28)

where the following notations were used:

C0,χ = constα(C−
mB+

m ± ıχB−
m) + o(α2),

m = 0fori = 1, 2andm = 1fori = 3, 4

C±
m(λi(t)) = A±

m + ıχ− λi(t).

4 Eigenfunction-expansion theorem.

We will restrict our consideration to the case of the initial data with the
trivial ”internal” component, i.e. we will consider functions

f̂ =

(
fu ξu

fd ξd

)
, ξu = ξd = 0 (29)

The external part of the function can be defined as follows:

[f̂ ]ext(x) =

(
fu

fd

)
(x) ≡ f(x), fu, fd ∈ L2(R

3).
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The following assertion can be proven:
Theorem 2. Let the vector f̂ from the quantum-stochastic space H has

the form (29) , then the following representation holds almost everywhere in
the Lebesque measure sense:

f(x) =
4∑

i=1

Ki

∫

∆i

dt
∫

R3
dyψext

i (x, t)ϕext
i (y, t)f(y)+

+
1

16π3

∫

R+
k2dk

∫

S2
dν

∫

R3
dy

{
ψext

s (x, k, ν)ϕext
s (y, t) + ψext

as (x, k, ν)ϕext
as (y, t)

}
f(y)

(30)
Vector-valued functions ϕi(y, t), ϕs,as(y, k, ν) are externals parts of the eigen-

functions of the adjoint operator L̂∗χ corresponding to the stationary bands
and branches of the continuous spectrum R+,R+− 2ıχ respectively. The in-
tervals ∆i = [−αi,−βi]∪[βi, αi] are introduced in such a way, that the spectral
parameter λi(t) covers the stationary band twice, when the quasimomentum
varies on the interval ∆i.

This theorem can be proved by integrating by parts the bilinear form of
the resolvent of the operator L̂χ around the spectrum. This theorem allows
us to calculate the averaged evolution operator U, which will be used to
derive the scattering operator:

[U(τ)f̂ ]ext(x) ≡ [exp
{
ıL̂χτ

}
f̂ ]ext(x) = (31)

=
4∑

i=1

Ki

∫

∆i

dt exp(ıλi(t)τ)
∫

R3
dyψext

i (x, t)ϕext
i (y, t)f(y)+

+
1

16π3

∫

R+
exp(ık2τ)k2dk

∫

S2
dν

∫

R3
dyψext

s (x, k, ν)ϕext
s (y, t)f(y)+

+
1

16π3

∫

R+
exp(ı(k2 + 2ıχ)τ)k2dk

∫

S2
dν

∫

R3
dyψext

as (x, k, ν)ϕext
as (y, t)f(y).

5 Scattering operator.

The averaging of the quantum evolution leads to the evolution operator semi-
group with the generator L̂χ:

U(τ) = exp
{
ıL̂χτ

}
, τ > 0,
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which acts in the quantum-stochastic space H. Formula (31) shows that
the contribution of the nonreal part of the spectrum tends to zero for large
τ →∞. As the result only real branch of spectrum R+ contributes into the
scattering process. We wil define the unperturbed operator for the scattering
problem as the restriction of the operator −∆̂ to the stable invariant sub-
space corresponding to the real branch of the continuous spectrum R+. The
corresponding operator will be denoted by L̂0. It is unitary equivalent to the
nonperturbed Laplacian defined on the domain W 2

2 (R3). The identification
operator J = J0 is the projector on the set Hs of the functions which are
symmetric with respect to the stochastic variables. In this way we eliminate
the relaxation branch and the scattering matrix can be defined as follows:

Sχ(α, L̂0) = s− lim
τ→+∞ exp

(
−ıL̂0τ

)
J0 exp

(
2ıL̂χτ

)
J∗0 exp

(
−ıL̂0τ

)
. (32)

Using the unitary operator Σ : Hs → L2(R
3)

Σ : f̂ =

(
f
f

)
→ 1

2
(f + f) = f,

the averaged scattering operator from L2(R
3) to L2(R

3) can be written in
the following form

Sχ(α) = s− lim
τ→∞ exp (ı∆τ) ΣJ0U(2τ)J∗0Σ∗ exp (ı∆τ) . (33)

Then the averaged scattering matrix can be calculated:

Sχ(p, p′) = δ(p− p′)− ı

4π2
δ(p2 − p′2)f00(|p|,−~p

p
)

∑

n∈Z

δ(2πn+ < p− p′, ~e >).

(34)
Thus the scattering amplitude f(ω, ν, k) has the following form:

f(ω, ν, k) = −f00(k, ν)
∑

n∈Z

δ(2πn + k < ν + ω,~e >), (35)

where f00(k, ν) depends on the direction of the initial plane wave trough the
projection of the vector kν on the lattice vector ~e:

k‖ = k < ν,~e > .

The scattering amplitude has Laue singularities.
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It is important to discuss the limit of the scattering amplitude when the
stochastic parameter tends to zero. We will denote by f±(ω, ν, k) the scat-
tering amplitudes corresponding to the operators with the fixed stochastic
states: L(+H) and L(−H). Then the following formula can be derived:

lim
χ→0

f(ω, ν, k) =
1

2

[
f+(ω, ν, k) + f−(ω, ν, k)

]
. (36)

This formula shows that the limit amplitude is equal to the arithmetic
average of the amplitudes corresponding to the deterministic processes.
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Figure captions.
Fig. 1
Spectral band formed by the negative eigenvalue.
Fig. 2
Spectral band formed by the positive eigenvalue.
Fig. 3
Spectrum of the averaged operator.
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