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FINITE RANK SINGULAR PERTURBATIONS AND
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Abstract. Point interactions for the n-th derivative operator in one dimen-
sion are investigated. Every such perturbed operator coincides with a selfad-
joint extension of the n-th derivative operator restricted to the set of functions
vanishing in a neighborhood of the singular point. It is proven that the selfad-
joint extensions can be described by the planes in the space of boundary values
which are Lagrangian with respect to the symplectic form determined by the
adjoint operator. A distribution theory with discontinuous test functions is
developed in order to determine the selfadjoint operator corresponding to the
formal expression

L =

(
i
d

dx

)n
+

n−1∑
l,m=0

clmδ(m)(·)δ(l), clm = cml,

representing a finite rank perturbation of the n-th derivative operator with the
support at the origin.

1. Introduction

Finite rank perturbations of the n-th derivative operator L0 = (i ddx)n in L2(R)
are studied in the present paper. Consider perturbations V that are bounded with
respect to the original operator L0 in the form sense, i.e.

|〈V ψ, ψ〉| ≤ a〈L0ψ, ψ〉+ b〈ψ, ψ〉(1.1)

for all ψ ∈ Dom(L0). Here 〈·, ·〉 denotes the scalar product in the Hilbert space
L2(R). According to the KLMN theorem ([ReSi]) a perturbation satisfying (1.1)
for some constant a < 1 determines the perturbed operator uniquely via the sum
of the corresponding quadratic forms (if L0 is positive). Our aim is to show that
perturbations which do not satisfy the latter condition can be defined using in
addition homogeneity properties of the original operator and the perturbation. Such
operators were studied for the first time by F. Berezin and L. Faddeev [BeFad].
The book by S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, and H. Holden [AGHKH]
contains numerous examples. Similar problems when the perturbation has rank
one have been studied recently by B. Simon, F. Gesztesy, A. Kiselev, S. Albeverio,
and P. Kurasov ([Si], [KiSi], [GeSi], [AlKu], [AlKu2], [AlKu3]).

We study the finite rank perturbations of L0 that are supported by one point,
i.e. perturbations V such that 〈V ψ, ϕ〉 = 0 when ψ or ϕ has support separated from
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the origin. Any such perturbed selfadjoint operator coincides with some selfadjoint
extension of the operator L0 restricted to the set of functions vanishing in a neigh-
bourhood of the origin. This operator has deficiency indices (n, n), and the set of
its selfadjoint extensions is described by unitary n× n matrices via von Neumann
formulas. We consider the symmetric perturbation at the origin of the operator L0

described by the formal expression

L = (i
d

dx
)n +

n−1∑
l,m=0

clmδ
(m)(·)δ(l),(1.2)

where the coefficients clm form an n × n Hermitian matrix. The latter formal
expression does not define a selfadjoint operator on the set of functions n − 1
times continuously differentiable at the origin, but the perturbation is defined on
such functions only. The quadratic form approach does not determine a selfadjoint
perturbed operator for arbitrary coefficients clm. To define a selfadjoint operator
corresponding to the formal expression (1.2) a distribution theory for discontinous
test functions is developed. Such theory is considered in Section 2. We discuss the
possibility of extending the definitions of the delta function and its derivatives to
test functions that are discontinuous at the origin. It is proven that homogeneous
extensions of those distributions exist and are unique. Then the selfadjoint operator
corresponding to the formal expression (1.2) is determined in Section 3. It is shown
that perturbed operators of the kind discussed here can be defined even for infinite
coefficients clm. It is proven that the considered set of finite rank perturbations of
the operator L0 coincides with the set of selfadjoint extensions of L0 restricted to
the set of functions with support outside the origin.

2. Distribution theory for discontinuous test functions

2.1. Test functions and distributions. We introduce the space K of test func-
tions as follows.

Definition 2.1. The set of test functions K is the set of all functions defined on
R \ {0} with support contained in some bounded interval and having bounded
derivatives of all orders.

Thus the functions in K can be discontinuous at the origin, but the limits of the
functions and all derivatives from the left and from the right of the point zero exist
and are finite. Convergence in this space is defined as follows.

Definition 2.2. A sequence {ϕn} of functions inK is said to converge to a function
ϕ ∈ K if and only if

1) there exists an interval outside which all the functions ϕn vanish;

2) for any k the sequence {ϕ(k)
n } of derivatives of order k converges uniformly to

ϕ(k).

Let R+ denote the closed positive half-axis, and let D(R+) denote the set of
restrictions to R+ of functions from D(R) = C∞0 (R). If ϕ ∈ K, let ϕ+ be the
function on R+ which is equal to ϕ on R+ \ {0} and is continuous on R+. Then
ϕ+ can be extended to a function ϕ̃+ ∈ D(R); hence ϕ+ ∈ D(R+). Defining
D(R−) and ϕ− similarly, we see that the map

K 3 ϕ 7→ (ϕ−, ϕ+) ∈ D(R−)×D(R+)(2.1)



FINITE RANK SINGULAR PERTURBATIONS 1675

is a bijection which preserves convergence of sequences.
The set of distributions K ′ is defined in the standard way (see [H]):

Definition 2.3. A distribution f in K ′ is a linear form on K which is continuous
in the sense that f(ϕn) → f(ϕ) whenever ϕn tends to ϕ in K. A sequence fn ∈ K ′

is said to converge to f ∈ K ′ as n → ∞, if fn(ϕ) → f(ϕ) as n → ∞ for every
ϕ ∈ K.

Denote the space of continuous linear forms on D(R+) by D′(R+). Let DR−(R)
denote the space of functions in D(R) that are supported in R−. Viewing D(R+)
as the factor space D(R)/DR−(R) we see that D′(R+) can be identified with the
set of distributions in D′(R) that annihilate all test functions in DR−(R); this is
of course the set D′

R+
(R) of distributions supported in R+. We introduce the

analogous notation with R+ replaced by R− and vice versa. The space K ′ of
generalized distributions can now be identified with the space D′(R−)×D′(R+) of
pairs (f−, f+) of elements f− ∈ D′(R−), f+ ∈ D′(R+). Indeed, the identification

D′(R−)×D′(R+) 3 (f−, f+) 7→ f ∈ K ′(2.2)

is defined by

f(ϕ) = f−(ϕ−) + f+(ϕ+), ϕ ∈ K.
Using the above observations, it is easy to verify that the identification (2.2) is a
vector space isomorphism preserving convergence of sequences.

Since the differentiation operator d/dx preserves the space DR−(R), it operates
in a natural way in the factor space D(R)/DR−(R) ∼ D(R+), and the same remark
applies of course to D(R−), hence to the product space D(R−)×D(R+) ∼ K. This
differentiation operator corresponds to pointwise differentiation of functions in K.
Later we shall sometimes view the elements of K as distributions in K ′ and apply
the distribution derivative to them. To distinguish those two operations we shall
denote the pointwise differentiation operator by d/dx and the distribution derivative
in K ′ by Dx. The distribution derivative in the space of Schwartz distributions
D′(R) will also be denoted Dx.

Definition 2.4. The generalized derivative Dxf of a distribution f ∈ K ′ is defined
by

(Dxf)(ϕ) = −f(
d

dx
ϕ) for all ϕ ∈ K.

Using (2.2) and the definition of derivative for standard (Schwartz) distributions,
we see immediately that

Dxf = (Dxf−, Dxf+),(2.3)

where the derivatives applied to f− and f+ are the distribution derivatives in the
sense of standard distribution theory.

To any function f ∈ L1
loc we can associate the linear form K 3 ϕ 7→ ∫

fϕdx,
which is an element of K ′. Thus we obtain an imbedding j : L1

loc → K ′, and
in particular the space of test functions K becomes imbedded in K ′. Using the
identification (2.2), we can represent j(f) as the pair (χ−f, χ+f), where χ− and
χ+ are the characteristic functions of R− and R+, respectively.

If f is absolutely continuous, the Schwartz distribution derivative and the clas-
sical pointwize derivative (defined a.e.) of f coincide and are in L1

loc, hence are
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elements of K ′, and can be compared to Dxf , the derivative of f considered as an
element of K ′. It turns out that those derivatives do not coincide unless f(0) = 0.

Example. The derivative of the constant distribution c ∈ K ′ is equal to the distri-
bution (−cδ, cδ) ∈ K ′, where δ ∈ D′(R±) denotes the Dirac measure at the origin.
In fact, using the identification c = (cχ−, cχ+) and formula (2.3) we obtain the
result.

On the other hand, if f is absolutely continuous and f(0) = 0, then Dxf (in the
sense ofK ′) is equal to the pointwize derivative df/dx. Indeed, f = (χ−f, χ+f), and
since χ−f and χ+f are absolutely continuous, the Schwartz distribution derivatives
of those functions coincide with the pointwize derivatives.

Lemma 2.1. Assume f ∈ K ′ and Dxf = 0. Then f = 0.

Proof. Let f = (f−, f+). The assumption that Dxf = 0 in K ′ implies that Dxf− =
Dxf+ = 0 in the sense of standard distribution theory; hence f− and f+ are constant
functions. But f− and f+ vanish on half-lines; hence f− = f+ = 0.

Corollary. If f ∈ L1
loc ⊂ K ′, there is a unique F ∈ K ′ such that DxF = f .

Proof. The function F (x) =
∫ x
0
f(t)dt is absolutely continuous and F (0) = 0; hence

DxF (in the sense of K ′) is equal to df/dx = F (x) (defined a.e.). This proves
existence, and the uniqueness follows from the lemma.

2.2. The map η : K ′ → D′(R). Considering an element f ∈ K ′ as a linear form
on K, we can construct an element in D′(R) by restricting the linear form to D(R),
which is a subset of K. Denote the map from K ′ to D′(R) obtained in this way by
η. If f = (f−, f+), it is easy to see that η(f) can be written η(f) = f− + f+. The
map η is obviously not injective, because the element (h,−h) ∈ K ′ is mapped to
zero by η for any element h ∈ D′(R) supported at the origin. That η is surjective
onto D′(R) can be seen as follows. Let g be arbitrary in D′(R). Write g = g0 + g1,
where g0 has compact support and g1 vanishes in some neighborhood of the origin.
Then η maps (χ−g1, χ+g1) to g1, so it remains only to consider g0. Choose a
continuous function G and an integer k such that Dk

xG = g0, and define F ∈ K ′ by
F = (F−, F+) = (χ−G,χ+G). Then η(F ) = F− + F+ = G and

η(Dk
xF ) = η

(
Dk
x(F−, F+)

)
= η

(
(Dk

xF−, D
k
xF+)

)
= Dk

xF− +Dk
xF+ = Dk

xG = g0,

which proves that g ∈ η(K ′).
The reflexion operator I is defined for test functions ϕ ∈ K by Iϕ(x) = ϕ(−x)

and for distributions in K ′ by

(If)(ϕ) = f(Iϕ), ϕ ∈ K.(2.4)

The definition of If for Schwartz distributions f is analogous to (2.4). If ϕ ∈ K
is equal to (ϕ−, ϕ+) ∈ DR−(R) × DR+(R) under the identification (2.1), then
clearly Iϕ = (Iϕ+, Iϕ−). From this we immediately obtain the similar formula for
distributions in K ′: if f = (f−, f+) ∈ K ′, then

If = (If+, If−).(2.5)

This shows that η commutes with I:

η(If) = η
(
(If+, If−)

)
= If+ + If− = I(f− + f+) = I(η(f)), f ∈ K ′.

We say that a distribution f ∈ K ′ is even if If = f , and that f is odd if If = −f .
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Examples. The distributions (δ, δ) and (δ′,−δ′) are even, and the distributions
(δ,−δ) and (δ′, δ′) are odd. Here δ′ denotes the first derivative of the Dirac measure
in the space of Schwartz distributions.

The scaling transformation Sc, c > 0, is defined for test functions ϕ ∈ K in the
usual way:

Scϕ(x) = ϕ(cx),

and for distributions f ∈ K ′ by

Scf(ϕ) =
1

c
f(S1/cϕ), ϕ ∈ K, c > 0.(2.6)

Since Scϕ = (Scϕ−,Scϕ+) if ϕ = (ϕ−, ϕ+), it is easily seen that

Scf = (Scf−,Scf+), f = (f−, f+) ∈ K ′,

where Sc operates on Schwartz distributions in analogy with (2.6). We shall say
that f ∈ K ′ is (positively) homogeneous of order r ∈ R, if Scf = crf for all c > 0.
It is clear then that f = (f−, f+) ∈ K ′ is homogeneous of degree r if and only
if f− and f+ are homogeneous distributions of degree r in the usual sense. Since
(δ, δ) ∈ K ′ is homogeneous of degree −1, we conclude that its n-th derivative (in
K ′) is homogeneous of degree −n− 1.

The map η is not invertible. It commutes with the reflection and scaling trans-
formations. If a distribution g ∈ D′(R) has special properties with respect to
the reflection and scaling transformations, then there exists a unique distribution
f ∈ K ′ possessing the same properties such that ηf = g.

The following lemma will be needed below.

Lemma 2.2. Assume that the distribution f ∈ K ′ satisfies the following condi-
tions: ηf = Dn

xδ for some n ≥ 0 (here Dn
xδ ∈ D′(R)); f is a homogeneous distri-

bution; and f is an even distribution if n is an even number and an odd distribution
if n is odd.

Then f = Dn
xδ as a distribution in K ′.

Proof. The first condition implies that f(ϕ) = 0 for all ϕ ∈ C∞0 (R \ {0}); hence f
must be supported at the origin. Then f must be a linear combination of derivatives
of δ and β, and since f is also homogeneous, we know that f = aDm

x δ + bDm
x β

for suitable constants a, b ∈ C and m ∈ N. But (Dm
x β)(ϕ) = 0 for all ϕ ∈ D(R),

whereas (Dm
x δ)(ϕ) = (−1)mϕ(m)(0) for such ϕ; hence a = 1 and m = n. The

distribution Dn
xδ ∈ K ′ is even if n is even and odd if n is odd, and f has the same

property by assumption, while β has the opposite parity; this implies that b = 0,
which completes the proof.

2.3. The classical and generalized derivatives. We introduce two elements in
K ′ by

δ(ψ) = (ψ(−0) + ψ(+0))/2,

β(ψ) = (−ψ(−0) + ψ(+0))/2,
(2.7)

or

δ = (δ/2, δ/2), β = (−δ/2, δ/2).

Every distribution f ∈ K ′ with support at the origin is equal to a linear combination
of the distributions δ and β and their derivatives. The K ′ derivative of δ will be
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denoted by δ′, and β′ will have the analogous meaning. Denote by 1 the function
with constant value 1 and by sg the function x/|x|. Considering those functions as
elements of K ′, we can compute their derivatives:

Dx1 = Dx(χ−, χ+) = (−δ, δ) = 2β,

Dxsg = Dx(−χ−, χ+) = (δ, δ) = 2δ.
(2.8)

For arbitrary ψ ∈ K we now look for constants A and B such that

ψ = A 1 +B sg + ψ1,(2.9)

where ψ1 ∈ K satisfies ψ1(−0) = ψ1(+0) = 0. It is clear that we must take

A = (ψ(−0) + ψ(+0))/2 = δ(ψ),

B = (−ψ(−0) + ψ(+0))/2 = β(ψ).

Since ψ1 is continuous at the origin we have Dxψ1 = (d/dx)ψ; hence we obtain, by
differentiating (2.9) in the sense of K ′,

Dxψ = Dxψ1 +ADx1 +BDxsg =
d

dx
ψ1 + δ(ψ) · 2β + β(ψ) · 2δ

=
d

dx
ψ + δ(ψ) · 2β + β(ψ) · 2δ.

Iterating this formula, we obtain

D2
xψ = (

d

dx
)2ψ + 2δ(

dψ

dx
)β + 2β(

dψ

dx
)δ + 2δ(ψ)β′ + 2β(ψ)δ′.

Continuing in this way, we finally obtain

Dn
xψ = (

d

dx
)nψ + 2

n−1∑
j=0

(−1)j
(
δ(j)(ψ)β(n−j−1) + β(j)(ψ)δ(n−j−1)

)
.(2.10)

2.4. Multiplication by test functions. Let Kloc ⊂ L1
loc denote the set of func-

tions that are C∞ outside the origin and are equal to some element of K in a
neighborhood of the origin. Considering the elements of Kloc as distributions in
K ′, we want to define the product of f ∈ K ′ and ψ ∈ Kloc.

Definition 2.5. The product of f ∈ K ′ and ψ ∈ Kloc is the element fψ ∈ K ′

defined as

(fψ)(ϕ) = f(ψϕ), ϕ ∈ K.
It follows immediately from the definition that fψ = (f−ψ−, f+ψ+); here ψ± =

χ±ψ. Note that f+ ∈ D′R+
(R), and ψ+ ∈ D(R+) ∼ D(R)/DR−(R). Therefore the

product of f+ and ψ+ is well defined as a Schwartz distribution, and the result is
an element of D′

R+
(R).

As an example let us compute the product δψ, where δ = (δ/2, δ/2) ∈ K ′ and
ψ ∈ Kloc. It is clear that δψ = 0 if ψ(−0) = ψ(+0) = 0. Using the representation
(2.9) and observing that δ · 1 = δ and δ · sg = β, we therefore obtain

δψ = Aδ +Bβ = δ(ψ)δ + β(ψ)β.

In the same way we note that β · 1 = β and β · sg = δ, and hence

βψ = Aβ +Bδ = δ(ψ)β + β(ψ)δ.
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3. Finite rank perturbations of differential operators

3.1. Singular interactions. Let L0 be the selfadjoint operator (iDx)
n with do-

main equal to Wn
2 (R). We are going to consider additive perturbations of L0 cor-

responding to the formal expression L = L0 + V, where V is an operator from
Wn

2 (R) into W−n
2 (R). Such an operator is said to be supported at the origin if

its Schwartz distribution kernel is supported at the origin in R ×R, or, which is
the same, supp V f ⊂ {0} for all f ∈ Dom(V ), and V f = 0 whenever 0 /∈ supp f.
We shall confine ourselves to operators V that act continuously from Wn

2 (R) into
W−n

2 (R), or, equivalently, that satisfy the estimate

|(V f)(ϕ)| ≤ C ‖ f ‖Wn
2
‖ ϕ ‖Wn

2
(3.1)

for all f, ϕ ∈ Wn
2 (R). The Schwartz kernel of V must consist of a linear combination

of derivatives Dkδ ⊗ Dlδ at (0, 0) ∈ R2. Because of (3.1) the possible values of k
and l are 0 ≤ k ≤ n− 1, 0 ≤ l ≤ n− 1. Thus V must have the form

V ψ =

n−1∑
l,m=0

clmδ
(m)(ψ)δ(l).

We also want V to be symmetric in the sense that (V ψ)(ϕ̄) = (V ϕ)(ψ̄), that is,
the sesquilinear form V [ψ, ϕ] = (V ψ)(ϕ̄) is symmetric. This means that the matrix
{clm} must be Hermitian. Thus our perturbed operator will have the form

L = (iDx)
n +

n−1∑
l,m=0

clmδ
(m)(·)δ(l),(3.2)

where {clm} is an Hermitian matrix.
The linear operator defined by the formal differential expression (3.2) restricted

to C∞0 (R \ {0}) coincides with the operator L0
0 = L0|C∞0 (R\{0}). It follows that

any selfadjoint operator corresponding to the formal expression (3.2) must coincide
with some selfadjoint extension of L0

0.

3.2. Selfadjoint extensions of L0
0. We study in this section the family of selfad-

joint extensions of the symmetric operator L0
0. The domain of the adjoint operator

L0∗
0 is equal to Wn

2 (R \ {0}). The deficiency indices of the operator L0
0 are equal

to (n, n). For given z with =z 6= 0 the deficiency subspace Nz consists of the set of
solutions g ∈ Wn

2 (R \ {0}) of the equation

(i
d

dx
)ng(x) = zg(x).(3.3)

Any element of Nz can be written as a linear combination of functions of the form

g(x) = Θ(−=λx) exp(−iλx),(3.4)

where λ is some complex root of the equation λn = z.
For f ∈Wn

2 (R \ {0}) let J+
n f be the vector

J+
n f =

(
f(+0), f ′(+0), ..., f (n−1)(+0)

)
∈ Cn,

let J−n f be defined similarly, and set furthermore

Jnf = (J−n f, J
+
n f) ∈ C2n.

Lemma 3.1. For any z with =z 6= 0 the map Jn is a bijection from Nz ⊕Nz̄ onto
C2n.
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Proof. Since Jn is a mapping between spaces of the same dimension, it is enough
to prove that Jn is injective. Thus assume that u ∈ Nz, v ∈ Nz̄, and Jn(u+ v) = 0.
Then ∫ ∞

0

(i
d

dx
)n(u(x) + v(x))u(x)dx =

∫ ∞

0

(u(x) + v(x)) (iDx)nu(x)dx,

since the boundary terms vanish by assumption. Using (3.3), we obtain∫ ∞

0

(zu(x) + z̄v(x)) u(x)dx =

∫ ∞

0

(u(x) + v(x)) zu(x)dx,

or

(z − z̄)

∫ ∞

0

|u(x)|2dx = 0.

Since =z 6= 0, it follows that u(x) = 0 for x > 0. In the same way we can prove
that u and v both vanish on all of R.

Let us introduce the 2n-dimensional vectors

~δ(f) = I(J+
n f + J−n f)/2,

~β(f) = I(J+
n f − J−n f)/2,

where I is the n× n diagonal matrix with diagonal entries Ill = (−1)l, l = 0, 1, ...,
n− 1. It follows that

J±n f = I
(
~δ(f)± ~β(f)

)
.(3.5)

Lemma 3.2. The boundary form of the adjoint operator L0∗
0 is equal to

〈L0∗
0 u, v〉 − 〈u, L0∗

0 v〉 = in
{−〈IAJ+

n u, J
+
n v〉Cn + 〈IAJ−n u, J−n v〉Cn

}
(3.6)

= 2(−i)n
{
〈IA~δ(u), ~β(v)〉Cn + 〈IA~β(u), ~δ(v)〉Cn

}
,

where A is the n× n antidiagonal matrix with the coefficients

Alm = δn−1
l+m, l,m = 0, 1, ..., n− 1.

Proof. The first equality in (3.6) is obtained by partial integrations. Inserting the
expressions (3.5) for J±n gives

〈L0∗
0 u, v〉 − 〈u, L0∗

0 v〉 = −2in
{
〈AI~δ(u), ~β(v)〉Cn + 〈AI~β(u), ~δ(v)〉Cn

}
.

The second part of (3.6) now follows from the matrix identity AI = (−1)n−1IA.
To every selfadjoint extension L of L0

0 we can associate a subspace E ⊂ C2n

E = Jn(Dom(L)),(3.7)

consisting of all boundary values of elements in the domain of L.
Using the expression (3.6) for the boundary form of L0∗

0 , we can define a sesqui-
linear form on C2n as follows. For s = (s−, s+) and t = (t−, t+) ∈ C2n we set

Q[s, t] = 〈IAs+, t+〉Cn − 〈IAs−, t−〉Cn .

Then (3.6) can be written

〈L0∗
0 u, v〉 − 〈u, L0∗

0 v〉 = −inQ[Jnu, Jnv].

The form Q is skew-Hermitian and nondegenerate. Moreover Q[s, t] = Q[s, t] for
all s, t ∈ C2n; hence the corresponding bilinear form W[s, t] = Q[s, t] is symplectic.
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Therefore the form Q can be called sesquilinear symplectic. Every vector space with
a sesquilinear symplectic structure has Lagrangian planes, i.e. subspaces E which
are orthogonal to themselves with respect to the form Q: E = E⊥. All Lagrangian
planes have dimension n, since Q is nondegenerate, which implies dimE+dimE⊥ =
2n.

Theorem 3.1. The map Dom(L) 7→ Jn(Dom(L)) ⊂ C2n defines a 1-1 correspon-
dence between the set of selfadjoint extensions of L0

0 and the set of subspaces of C2n

that are Lagrangian with respect to the form Q.

Proof. Given a selfadjoint extension L, it follows from Lemma 3.2 that the form Q
vanishes on the subspace (3.7) of C2n. If the dimension of E were less than n, then
the elements of the domain of L would span a subspace of Nz ⊕Nz̄ with dimension
less than n, and this would imply that L is not selfadjoint. Therefore E must be
n-dimensional and hence Lagrangian.

Conversely, let E be Lagrangian. Let the domain of L be defined by (3.7). Then
the operator L is symmetric. Selfadjointness of L follows from the fact that the
map Jn restricted to Nz ⊕Nz̄ is injective (Lemma 3.1).

3.3. Singular interactions and selfadjoint perturbations. We shall now ap-
ply the distribution theory developed in Section 2 to define a domain for the op-
erator L in (3.2). If the Dirac distributions in (3.2) are interpreted as elements of
K ′ and Wn

2 (R \ {0}) is considered as a subset of K ′, then the operator L maps
Wn

2 (R \ {0}) into K ′. Note that the differential operator Dx then has to be under-
stood according to Definition 2.4. Composing with the map η : K ′ → D′(R), we
get an operator u 7→ η(Lu) from Wn

2 (R \ {0}) into D′(R). We can then define a
new operator L in L2(R) as Lu = η(Lu) with the domain

Dom(L) = {u ∈ Wn
2 (R \ {0});Lu ∈ L2(R)}.(3.8)

Theorem 3.2. The operator

L = η

(iDx)
n +

n−1∑
l,m=0

clmδ
(m)(·)δ(l)


defined by the Hermitian matrix C = {clm}n−1

l,m=0 is selfadjoint on the domain (3.8).

The operator L coincides with the operator L0∗
0 restricted to the domain of functions

u ∈ Wn
2 (R \ {0}) satisfying the following boundary condition at the origin:

2~β(u) = −(−i)nIAC~δ(u).(3.9)

Proof. If L acts from Wn
2 (R\{0}) ⊂ K ′ into K ′ as explained above, then by (2.10)

Lu = inv + 2in
n−1∑
l=0

(−1)n−l−1
(
δ(n−l−1)(u)β(l) + β(n−l−1)(u)δ(l)

)
+

n−1∑
l,m=0

clmδ
(m)(u)δ(l),

(3.10)

where v = (d/dx)nu ∈ L2(R). Note that here δ(j) ∈ K ′, and hence

δ(j)(u) =
(−1)j

2
(u(j)(+0) + u(j)(−0)).
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Since η(β(j)) = 0 and η(δ(j)) = δ(j) ∈ D′(R), this gives

Lu = inv + 2in
n−1∑
l=0

(−1)n−l−1β(n−l−1)(u)δ(l) +

n−1∑
l,m=0

clmδ
(m)(u)δ(l).(3.11)

The requirement that Lu ∈ L2(R) then means that for each l

2in(−1)n−l−1β(n−l−1)(u) +

n−1∑
m=0

clmδ
(m)(u) = 0,

which is the formula (3.9). This boundary condition defines a certain Lagrangian
plane in C2n, and it follows from Theorem 3.1 that the restricted operator is self-
adjoint.

3.4. Singular interactions with infinite coupling. The operators with singular
interaction form a proper subset of the set of all selfadjoint perturbations of the
operator L0. This is related to the fact that not every Langrangean subspace of
C2n can be described by a relation of the form (3.9). Let C be presented in the
form C = C−1

0 C1, where C0, C1 are Hermitian n× n matrices. Then the boundary
conditions (3.9) can be written as

2C0IA~β(ψ) = inC1
~δ(ψ).(3.12)

The last equation can be considered even if the matrix C0 is not invertible. This
situation corresponds formally to the matrices C with infinite determinant, and can
be considered as singular interaction with infinite coupling. The case of rank one
perturbations with infinite coupling was considered in [GeSi]. Singular interactions
with infinite coupling for second order differential operators were studied in [Ku].
Every Lagrangian subspace of C2n can be described by conditions of the type (3.12).
Thus the set of selfadjoint extensions of the operator L0

0 coincides with the set of
singular interactions with finite or infinite coupling.
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