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FINITE SPEED OF PROPAGATION
AND LOCAL BOUNDARY CONDITIONS

FOR WAVE EQUATIONS WITH POINT INTERACTIONS

PAVEL KURASOV AND ANDREA POSILICANO

(Communicated by David S. Tartakoff)

Abstract. We show that the boundary conditions entering in the definition
of the self-adjoint operator ∆A,B describing the Laplacian plus a finite number
of point interactions are local if and only if the corresponding wave equation

φ̈ = ∆A,Bφ has finite speed of propagation.

1. Introduction and framework

The Laplace operator with point interactions in L2(R3) can be defined in the
following way (see [1, 2] and references therein for more details). Consider any
finite set Y = {yj}n

j=1 of points from R3. Then the restriction −∆0 of the Laplace
operator −∆ to the set of functions from the Sobolev space H2,2(R3) vanishing at
all points yj ∈ Y is a symmetric operator with deficiency indices (n, n). The domain
of the adjoint operator −∆∗

0 coincides with H2,2(R3 \ Y ). Every function φ from
H2,2(R3 \ Y ) possesses the following asymptotic representation in a neighborhood
of each point yj ∈ Y :

(1) φ(x) =
1

4π|x − yj |
φs

j + φr
j + O(|x − yj |), x → yj ,

where the coefficients φr
j and φs

j can be considered as certain generalized boundary
values of the function φ. These boundary values can be used to describe all self-
adjoint extensions of −∆0 as restrictions of the adjoint operator −∆∗

0 to the set of
functions satisfying the generalized boundary conditions

(2) A�φr = B�φs.

The n-dimensional complex vectors �φs and �φr have coordinates φs
j and φr

j , respec-
tively, and the n × n matrices A, B satisfy

(3) AB∗ = BA∗

and

(4) rank (A, B) = n ,
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where (A, B) is the n× 2n matrix obtained from A and B. The boundary form for
the operator −∆∗

0

〈(−∆∗
0)φ, ψ〉L2 − 〈φ, (−∆∗

0)ψ〉L2

determines the following symplectic form in the space C
2n � �φ ≡ (�φs, �φr) of bound-

ary values:

(5)
[
�φ, �ψ

]
n

:=

〈(
�φr

�φs

)
,

(
0 In

−In 0

) (
�ψr

�ψs

)〉
C2n

.

Then all self-adjoint extensions of −∆0 can be described by Lagrangian planes as-
sociated with this symplectic form. Every such plane L is described by (2) provided
that the matrices A, B satisfy conditions (3) and (4). The first condition guarantees
that the symplectic form vanishes for all �φ, �ψ ∈ L, i.e. that the corresponding ex-
tension of −∆0 is symmetric. The second condition guarantees that the plane L has
the maximal dimension n, i.e. that the operator extension is not only symmetric
but self-adjoint as well.

Definition 1. The operator −∆A,B is the restriction of the adjoint operator −∆∗
0

to the domain

(6) D (−∆A,B) =
{

φ ∈ H2,2(R3 \ Y ) : A�φr = B�φs
}

.

It is clear that different pairs of matrices (A, B) can determine the same self-
adjoint extension of −∆0. If the matrix A is invertible, then the boundary conditions
(2) can be written as

(7) �φr = H�φs,

with a Hermitian matrix H = A−1B. The operator −∆H will be identified with
the operator −∆In,H .

The action of the operator −∆A,B coincides with the action of the (differential)
Laplace operator, and therefore this operator is always local, i.e. supp −∆A,Bφ ⊆
supp φ for any φ ∈ D (−∆A,B) and for any admissible pair A, B. However the
boundary conditions (2) entering in Definition 1 are local, i.e. do not connect the
“boundary values” φs

j , φ
r
j at different points yj if and only if the matrices A and B

can be chosen diagonal. In this case to check whether the function φ satisfies the
boundary conditions (7) or not, one needs to check the behavior of the function
φ in a certain small neighborhood of each point yj separately. In this case the n-
dimensional Lagrangian plane L corresponding to (2) can be presented as a tensor
product of n 1-dimensional Lagrangian planes for the symplectic form in C2

(8)
[(

φs
j

φr
j

)
,

(
ψs

j

ψr
j

)]
1

:=
〈(

φr
j

φs
j

)
,

(
0 1
−1 0

) (
ψr

j

ψs
j

)〉
C2

defined for the boundary values (φr
j , φ

s
j) associated with the point yj . Such boundary

conditions and corresponding self-adjoint extensions of −∆0 will be called local.
In fact all interesting local extensions correspond to boundary conditions that

can be written in the form (7) with a diagonal matrix H. The boundary conditions
are local if the matrices A, B can be chosen diagonal. These conditions can be
written as (7) if the matrix A is invertible which can be assumed without loss of
generality. Indeed if it is not the case, then one can remove a few points from the
set Y to get boundary conditions equivalent to (2) with invertible matrix A (maybe
having a certain smaller dimension).
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The purpose of this note is to show (see Theorem 4 below) that the boundary
conditions (2) are local if and only if the wave equation

(9) φ̈ − ∆A,B φ = 0

has finite speed of propagation. We recall that in general an abstract wave equation

(10) φ̈ + Aφ = 0

is said to have finite speed of propagation if for any solution φ and for any real t,

(11) diam(supp φ(t)) ≤ 2v |t| + diam
(
supp φ(0) ∪ supp φ̇(0)

)
holds with a certain v ∈ (0,∞). While it is obvious what “local boundary con-
ditions” means in the case of −∆A,B , the situation is not so clear for self-adjoint
operators arising from extensions of symmetric operators obtained by restricting
the Laplacian to the set of smooth functions with compact support on R3 \ M ,
where M is not discrete, for example a subset with Hausdorff dimension 0 < d < 2
or a low-dimensional manifold [2, 8]. Since the wave equation (10) is always well
defined (in the sense that it generates a strongly continuous group of evolution) for
any bounded from below self-adjoint operator A (see e.g. [3], chapter 2, section 7),
our result could be used to shed light on the problem of the locality of boundary
conditions in more complicated situations.

We conclude by pointing out that locality of boundary conditions, hence finite
speed of propagation, is equivalent to locality in the sense of forms. According
to [9], section 1.2, the self-adjoint operator −∆A,B is said to be form-local if the
sesquilinear form of the operator −∆A,B vanishes on any two functions from the
domain D(FA,B) of the quadratic form having disjoint supports. Theorem 2 from
[7] implies that the operator −∆A,B is form local if and only if the boundary
conditions (2) can be written in the form (7) with local (i.e. diagonal) operator H.
Hence the boundary conditions (7) with diagonal matrices H describe all form-local
operators.

2. Proofs

The following representation for functions from the domain of the operator
−∆A,B will be used in our proofs.

We denote by H̄1,2(R3) the homogeneous Sobolev space of tempered distribu-
tions φ such that i∇φ is square integrable. Then H̄2,2(R3) denotes the space
of φ ∈ H̄1,2(R3) such that −∆φ ∈ L2(R3). In general neither φ ∈ H̄1,2(R3)
nor φ ∈ H̄2,2(R3) imply φ ∈ L2(R3); by Sobolev embedding theorems one has
H̄1,2(R3) ⊂ L6(R3) and H̄2,2(R3) ⊂ Cb(R3).

We use the symbol G to denote the Green function of −∆, i.e.

G(x) :=
1
4π

1
|x| .

For any yj ∈ Y we define the functions

Gj(x) := G(x − yj) , dj(x) := |x − yj | ,

and the symmetric matrices G = (Gij) and D = (dij), 1 ≤ i, j ≤ n, by

Gij := G(yi − yj) , i = j , Gjj := 0 , dij := |yi − yj | .
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Lemma 2. The self-adjoint operator −∆A,B given in Definition 1 can be re-written
in the following way:

D(−∆A,B) :=


φ ∈ L2(R3) : φ = φ0 +

∑
1≤j≤n

ζj
φ Gj , φ0 ∈ H̄2,2(R3),

�ζφ ∈ C
n,

∑
1≤j≤n

Aijφ0(yj) =
∑

1≤j≤n

(B − AG)ij ζj
φ


 ,

−∆A,Bφ := −∆φ0 .

Proof. It is sufficient to note that for any φ from the operator domain defined above
one has φ ∈ H2,2(R3 \ Y ) and

lim
x→yj

(φ − ζj
φ Gj)(x) = φ0(yj) +

∑
1≤k≤n

Gjk ζk
φ .

Thus
φs

j = ζj
φ , φr

j = φ0(yj) +
∑

1≤k≤n

Gjk ζk
φ .

�
The proof of our main result relies on the following representation of the solutions

of the Cauchy problem given by the wave equation (2). This result, in the simpler
case of a single point interaction, was already obtained, by a different, less explicit
proof, in [5] (also see [6]).

Theorem 3. The Cauchy problem

(12)
φ̈ = ∆A,Bφ,

φ(0) ∈ D(∆A,B),
φ̇(0) ∈ D(FA,B)

has a unique strong solution

φ ∈ C(R; D(∆A,B) ∩ C1(R; D(FA,B)) ∩ C2(R; L2(R3))

explicitly given, when t ≥ 0, by

φ(t) = φf (t) +
∑

1≤j≤n

θ(t − dj) ζj
φ(t − dj)Gj ,

where θ denotes the Heaviside function, φf is the unique solution of the Cauchy
problem for the free wave equation

φ̈f = ∆φf ,(13)

φf (0) = φ(0),(14)

φ̇f (0) = φ̇(0) ,(15)

and �ζφ(t), t ≥ 0, is the unique solution of the Cauchy problem for the system of
inhomogeneous retarded first-order differential equations

∑
1≤j≤n

Aij

(
ζ̇j
φ

4π
− φf (yj)

)
+ Bijζ

j
φ =

∑
1≤j,k≤n

AijGjkθ(· − djk) ζk
φ(· − djk) ,(16)

ζφ(0) = ζφ(0) .(17)
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Proof. Since −∆A,B is a bounded from below self-adjoint operator, it is well known
from the theory of abstract wave equations in Hilbert spaces (see e.g. [3], chapter
2, section 7) that the corresponding Cauchy problem has a unique strong solution
in C(R; D(∆A,B)∩C1(R; D(FA,B))∩C2(R; L2(R3)). Let us denote by φ(t) such a
solution. By the structure of D(−∆A,B) given in Lemma 2 we know that

φ(t) = φ0(t) +
∑

1≤j≤n

ζj
φ(t)Gj ,

with φ0(t) ∈ H̄2,2(R3) and

(18)
∑

1≤j≤n

Aij φ0(t, yj) =
∑

1≤j≤n

(B − AG)ij ζj
φ(t)

for all t ∈ R. Let us now define, for any t ≥ 0,

(19) φf (t) := φ(t) −
∑

1≤j≤n

φj(t) ,

where φj(t) denotes the spherical wave

φj(t) := θ(t − dj) ζi
φ(t − dj)Gj .

Since

φ̈j = ∆φj + ζj
φ δyj

,

one has

φ̈f = ∆


φ0 −

∑
1≤j≤n

φj


 −

∑
1≤j≤n

ζj
φ δyj

= ∆


φ0 −

∑
1≤j≤n

(φj − ζj
φ Gj)




= ∆


φ −

∑
1≤j≤n

φj




= ∆φf

and thus φf is the unique solution of the Cauchy problem (13), (14), (15). Writing
the boundary conditions (18) by using the decompositions of φ given by the relation
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(19), one obtains∑
1≤j,k≤n

(Bij − AikGkj) ζj
φ(t)

=
∑

1≤j≤n

Aij


 lim

x→yj


φ(t) −

∑
1≤k≤n

ζk
φ(t)Gk


 (x)




=
∑

1≤j≤n

Aij


φf (t, yj) +

∑
1≤k≤n

θ(t − djk) Gjk ζk
φ(t − djk)

−
∑

1≤k≤n

Gjkζk
φ(t) + lim

x→yj

ζj
φ(t − |yj − x| ) − ζj

φ(t)
4π|yj − x|




=
∑

1≤j≤n

Aij


φf (t, yj) +

∑
1≤k≤n

θ(t − djk) Gjkζk
φ(t − djk)

−
∑

1≤k≤n

ζj
φGjk − 1

4π
ζ̇j
φ(t)


 .

This shows that �ζφ is a solution of (16), (17). Such a Cauchy problem has a unique
solution. Indeed let �ζ(t), with �ζ(0) = �0, solve the system

1
4π

A�̇ζ + B�ζ = 0 .

By (3) and Ker(A)∩Ker(B) = {�0}, which is a consequence of (4), one has

| det(iA + B)|2 = det((iA + B)(−iA∗ + B∗)) = det(AA∗ + BB∗) = 0,

so that zA + B, z ∈ C, is a regular pencil of matrices, i.e. p(z) := det(zA + B) is
not the zero polynomial. By Theorem 3.2 of [4] this implies �ζ(t) = 0. �

The above theorem has an analogous version for negative times. In this case
one obtains a representation involving the advanced waves θ(−t− dj) ζi

φ(t + dj)Gj ,
instead of the retarded waves θ(t − dj) ζi

φ(t − dj)Gj . Since there is no substantial
difference between these two situations, in the proof of the following theorem we
will consider only the positive time case, the proof in the negative time case being
essentially the same.

The previous theorem shows that compactly supported Cauchy data always gives
rise to the compactly supported solution. However this does not necessarily imply
a finite speed of propagation. Indeed we have the following

Theorem 4. Let −∆A,B be a point perturbation of the Laplace operator described by
Definition 1 with the matrices A, B satisfying (3) and (4). Then the wave equation

(20) φ̈ − ∆A,Bφ = 0

has finite velocity of propagation if and only if −∆A,B is defined by local bound-
ary conditions, i.e. if and only if both matrices A and B can be chosen diagonal
simultaneously.
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Proof. Let φ(t) be a solution of (12) with diam(S0) < +∞, where

S0 := supp φ(0) ∪ supp φ̇(0) .

By Theorem 3,
φ(t) = φf (t) +

∑
1≤i≤n

φi(t) ,

where φi(t) denotes the spherical wave

φi(t) := θ(t − di) ζi
φ(t − di) Gi .

Since the free wave equation has velocity of propagation equal to one, we have (here
and below t ≥ 0)

diam(supp φf (t)) ≤ 2t + diam(S0)
and

diam(suppφi(t)) = diam({di < t}) = 2t .

Thus, if Y ⊆ S0,
diam(supp φ(t)) ≤ 2t + diam(S0) .

Let us now consider the case Y0 := Y \ (S0 ∩ Y ) = ∅.
Suppose that A and B can be chosen diagonal. Let yi ∈ Y0. By (16), in order for

the wave φi(t) to be present, the point yi must have been reached at some earlier
stage either by the free wave φf or by a spherical wave φj originated from a different
point yj . Since all these waves travel with the speed v = 1, in conclusion one has
that

diam(supp φ(t)) ≤ 2t + diam(S0) .

We have proven sufficiency.
To prove the necessity consider the operator −∆A,B described by arbitrary ma-

trices A, B satisfying (3) and (4). Take an arbitrary point yk ∈ Y and initial data
satisfying the following conditions:

�ζφ0 ≡ �ζφ(0) = 0,(21)
dist(yk, S0) < dist(Y \ {yk} , S0).(22)

Then the solution φf of (13), (14), (15) reaches the point yk before it reaches any
other point from Y. Therefore, for some sufficiently small ε0 and for any t such that
dist(yk, S0) < t < dist(yk, S0) + ε, the system of equations (16) takes the form

(23)
∑

1≤j≤n

1
4π

Aij ζ̇
j
φ + Bijζ

j
φ = Aikφf (yk) , i = 1, ..., n .

The evolution has finite speed of propagation only if all ζi
φ, i = k are zero, otherwise

diam(suppφ(t))|yi − yk| , dist(yk, S0) < t < dist(yk, S0) + ε,

which violates (11) since both diam(S0) and dist(yk, S0) can be made arbitrarily.
If all ζi

φ are zero for i = k, then (23) becomes

1
4π

Aik ζ̇k
φ + Bikζk

φ = Aikφf (yk) , i = 1, ..., n ,

so that the k-th columns of A and B are linearly dependent. Since the point yk is
chosen arbitrarily from Y , finite speed of propagation implies that the linear spaces
Vk spanned by the k-th columns of A and B are one dimensional for all k. Then
condition (4) implies that any vector v =

∑n
k=1 vk, vk ∈ Vk, is equal to zero only

if all vk = 0. Therefore the corresponding Lagrangian plane is a tensor product of
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Lagrangian planes for boundary values associated with each singular point yk, i.e.
that the boundary conditions are local. �
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