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Abstract

Singular and slow decaying solutions of the KdV equation are dis-
cussed. It is shown that the positon solution coincides with the two-
soliton solution considered for a special choice of parameters. Rela-
tions with the spectral properties of the scattering problem on the half
line are discussed.
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1 Introduction.

The inverse scattering transformation plays an important role during the
solution of nonlinear equations. Analytical solutions of such equations can
be obtained in the case, when the inverse problem can be solved analytically.
This paper is devoted to the analytical solutions of the KdV equation:

ut = 6uux − uxxx. (1)

Gardner, Green, Kruskal and Miura [12] were the first to show the relations
between the solutions of this equation and the inverse scattering problem on
the line. It was shown that soliton solutions of the KdV equation are defined
by the the bound states of the corresponding Schroedinger operator on the
line. In this case potential is defined by the reflection coefficient, energies of
the bound states and normalizing constants. Solitons are analytical solutions
of the KdV equation, corresponding to the zero reflection coefficient. These
solutions are defined by a finite number of parameters. One can obtain
such solutions solving the inverse scattering problem in the Faddeev class of
potentials L1,1 ∫ +∞

−∞
(1 + |x|)|u(x)|dx < ∞. (2)

The inverse scattering problem in this case is equivalent to some finite di-
mensional problem. As the result, the solution can be expressed in terms of
determinants of finite dimensional matrices. Corresponding potentials were
named Bargmann potentials. The construction procedure can be carried out
step by step using the Darboux transformation [16]. We note that soliton po-
tentials can be obtained during the solution of the inverse scattering problem
on the halfaxis for the rational reflection coefficient. Corresponding formulas
are essentially the same.

We are interesting in the solutions of the KdV equation which violate
Faddeev condition (2). Stationary solutions of this type were known for a
long time (see [6] for review). The first solution which has an extremely

slow decay like sin(kx+ϕ)
x

at infinity x →∞ was constructed first by Matveev
using some generalization of the Darboux transformation [17, 18, 19]. It was
named ”positon” due to the relations with the positive eigenvalues embedded
into the continuous spectrum [23]. Later the generalizations of the Darboux
transformation were used to derive positon solutions of Sine-Gordon [4] and
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mKdV [25] equations. Potentials similar to the positon solutions of the KdV
equation were obtained independently at the same time by the author during
the solution of the inverse scattering problem on the half line for the rational
reflection coefficients [13, 14]. Relations between these two approaches were
pointed out first by S.N.M.Ruijsenaars. The aim of this paper is to clarify
these relations.

The second section is devoted to singular solutions of the KdV equation
which can be obtained by a limit procedure for Darboux transformation. It
will be shown that such solutions can be obtained by analytical continuation
of the one-soliton solutions to complex values of the parameters. The third
section is devoted to the calculation of the positon as a soliton pair corre-
sponding to the negative velocity. We restrict our consideration to the case
of one-positon solution which coincides with the two-soliton solution with a
special choice of parameters. The forth section is devoted to the relations
between the positon solution and the scattering problem on the line.
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2 Singular solutions and solitons.

We will derive here singular solutions of the KdV equation using the first
Darboux transformation. It will be shown that such solutions can be obtained
by an analytical continuation of the soliton solution, which is defined usually
by two real parameters b1, x1 ∈ R :

u[1] =
−2b2

1

cosh2 (b1(x− 4b2
1t)− x1)

. (3)

This is bounded solution of the KdV equation decreasing at infinity expo-
nentially.

In the first step we recall some facts about Darboux transformation [16]
for the case of the zero initial potential. Starting from the Schroedinger
equation

−ψxx = λψ (4)

on the real axis we get the following potential after the first Darboux trans-
formation:

u1(a1, b1, x) = −2
∂2

∂x2
ln W11(a1, b1, x) (5)

where W11 is Wronskian of two solutions of the equation (4)

W11(a1, b1, x) =
1

a2
1 − b2

1

W [f0(ıa1, x), ϕ0(ıb1, x)];

f0(ıa1, x) = e−a1x; ϕ0(ıb1, x) =
sinh(b1x)

2b1

.

We suppose that constants a1, b1 are real and positive. Then the formula (5)
gives us a reflectionless potential:

u1(a1, b1, x) =
2b2

1

sinh2(b1x− ıδ1(ıb1))
, (6)

where δ1(k) denotes the phase of the Bluaschke product defined by the con-
stant a1 :

eı2δ1(k) =
k − ıa1

k + ıa1

. (7)
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This potential has a quadratic singularity on the negative halfaxis at the point
b1x = ıδ1(ıb1). We note that ıδ1(k) is real for pure imaginary k. Solution of
the Schroedinger equation with this potential can be expressed in terms of
elementary functions

ψ1(a1, b1, k, x) = eıkx
eb1x

(
1

b1−a1
− 1

b1+ık

)
+ e−b1x

(
1

b1+a1
− 1

b1−ık

)

eb1x

b1−a1
+ e−b1x

b1+a1

Asymptotics of the calculated solution

ψ(k, x) ∼x→+∞ eıkx

(
1− b1 − a1

b1 + ık

)

ψ(k, x) ∼x→−∞ eıkx

(
1− b1 + a1

b1 − ık

)
(8)

shows that the reflection coefficient is identically equal to zero R(k) ≡ 0, the
transition coefficient is given by the following expression

T (k) =
ık − b1

ık + b1

(9)

Calculated singular potential is reflectionless, but it does not belong to the
standard class L1,1 (see (2)) due to the quadratic singularity. Corresponding
solution of the KdV equation (1) can be obtained by substitution of ϕ0(ıb1, x)
by a time dependent oscillatory solution of (4)

ϕ0(ıb1, x, t) =
sinh(b1(x− 4b2

1t))

2b1

. (10)

This solution is moving to the right with the constant velocity:

u1(a1, b1, x, t) =
2b2

1

sinh2 (b1(x− 4b2
1t)− ıδ1(ıb1))

. (11)

Constructed singular solution coincides with the soliton solution (3), consid-
ered for the complex values of the parameter x1 = ıπ/2 + ıδ1(ıb1).

Another important example of the singular solution can be obtained as
a limit of the calculated solution for b → 0. The pointwise limits of the
potential and corresponding scattering solution can be calculated [6]

u1(a1, 0, x, t) =
2a2

1

(1 + a1x)2 ;
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ψ(a1, 0, k, x) = eıkx 1 +
a2
1

k2 + a1x(1 + a1

ık
)

1 + a1x
(12)

It is easy to verify that the limit scattering solution is a solution of the
Schroedinger equation with the limit potential everywhere excluding point
x = −1/a1, where potential has a singularity. But both potential and scat-
tering solution can be continued analytically to the complex neighborhood of
this point. The scattering matrix for the calculated potential coincides with
the limit scattering matrix, i.e. the reflection coefficient is equal to zero and
the transition coefficient is constant T (k) ≡ 1. Such potentials were named
superreflectionless in [17, 18]. Calculated potential represent a stationary
solution of the KdV equation decreasing at infinity like 1/x2. Hence this so-
lution does not belong to the class L1,1 not only due to the singularity but
due to the slow decay at infinity also.

Another class of the soliton-like solutions is connected with the possibility
to consider complex values of the parameter b1. For example if parameter b1

is purely imaginary b1 = ıχ, χ ∈ R, then the Darbous transformation gives
us a real valued function

u1(a1, ıχ, x, t) =
−8χ2

a2
1 + χ2

(
eıχ(x+4χ2t)

a1 − ıχ
− e−ıχ(x+4χ2t)

a1 + ıχ

)−2

=

= 2χ2 sin−2(χ(x + 4χ2t) + δ1(χ)). (13)

This is a periodic solution with infinitely many singularities on the real axis,
mooving to the left, i.e. in the direction opposite to one for the standard
soliton.

6



3 Positons and solitons.

We consider in this section the second Darboux transformation, which was
used to derive two soliton solutions of the KdV equation. It will be shown
that the limit of such solution considered for a special choice of parameters
coincides with a positon solution [17, 18, 19].

The second Darboux transformation gives the following solution of KdV
equation

u2(a1, a2, b1, b2, x, t) = −2
∂2

∂x2
ln detW(a1, a2, b1, b2, x, t); (14)

where W is a 2× 2 matrix with the components

Wnm =
1

a2
n − b2

m

W [f0(ıan, x), ϕ0(ıbm, x, t)];

f0(ıan, x) = e−anx; ϕ0(ıbm, x, t) =
sinh(bm(x− 4b2

mt))

2bm

.

This solution is real for a special choice of the parameters a1,2, b1,2. These
constants have to be real or conjugated one to another complex numbers.
The two soliton solution can be obtained in the same way. The constructed
solution decreases at infinity exponentially for b1,2 with the positive real part.
We will consider the limit of this solution when <bj = ε → 0,=b1,2 = ±b0.
The determinant of the matrix W is equal to zero for bj pure imaginary:

detW ∼ε→0 ε
e−a1xe−a2xı(a2 − a1)

b1b2(a2
1 + b2

0)(a
2
2 + b2

0)

{
2b0(x + 3b2

0t) + 2B − sin(2b0(x + b2
0t) + 2δ2(b0))

}
(15)

where the following notations were used

B = B(b0, a1, a2) =
b0(a1 + a2)(a1a2 + b2

0)

(a2
1 + b2

0)(a
2
2 + b2

0)
,

e2ıδ2(k) =
(k − ıa1)

(k + ıa1)

(k − ıa2)

(k + ıa2)
(16)
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But the pointwise limit of the solution is not trivial

u2(a1, a2, ıb0,−ıb0, x, t) =

16b2
0

1− (b0(x + 12b2
0t) + B) sin 2 (b0(x + 4b2

0t) + δ2(b0))− cos 2 (b0(x + 4b2
0t) + δ2(b0))

(2b0(x + 12b2
0t) + 2B − sin 2 (b0(x + 4b2

0t) + δ2(b0)))
2 ,

(17)
This form of the solution of the KdV equation coincides with the one posi-
ton solution constructed first in [18]. Our form of the positon depends on
three real parameters {a1, a2, b0} or {<a1,=a1, b0} again. For <aj > 0 the
singularity of the positon is situated on the negative halfaxis at the initial
moment. By changing the constants a1, a2 one can change position of the
positon on the real line at the initial moment.

Our calculations show that one positon solution coincides with the pair
of soliton solutions. This soliton pair is formed by two periodic singular
solutions of the type (13). These two solutions are periodic moving to the
left with the same velocity, but the limit solution decreases at infinity like:

u2(a1, a2, ıb0,−ıb0, x, t) ∼x→∞
−4b0 sin 2 (b0(x + 4b2

0t) + δ2(b0))

x
(18)

Both singular periodic solutions are functional invariant solutions of the KdV.
Positon changes the form, but in general it moves to the left with the same
velocity as two singular solutions. One can say, that two solitons exchange
the mass or the energy. More detailed description of the positon proper-
ties can be found in [17]. We recall only that positons represent another
class of superreflectionless potentials. The transition coefficient is equal to 1
identically again.
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4 Superreflectionless potentials and scatter-

ing problem on the halfline.

The inverse scattering problem in one dimension was first investigated for po-
tentials satisfying the Faddeev condition (2) (see [9, 11, 20]). It was shown
that the scattering matrix defines potential uniquely if no bound states are
present. Later several examples of potentials with the same scattering matrix
were found [1, 2, 3, 5, 8, 21]. All these potentials decrease at infinity like
const

x2 , and thus violate condition (2). Constructed superreflectionless poten-
tials present a family of potentials with the same scattering matrix without
any bound state. It is another one example of potentials for which the inverse
scattering problem does not have a unique solution in it’s standard formula-
tion. The inverse scattering problem for such potentials was considered for
the case of the scattering problem on the half line with Dirichlet boundary
condition at the origin[13, 14]. It was shown that such potentials correspond
to the rational reflection coefficients R(k) of a special form: the Levinson’s
theorem is violated for them:

R2(k) =
k − ıa1

k + ıa1

k − ıa2

k + ıa2

. (19)

The Jost function F (k) for such potentials has a singularity on the real axis:

F (k) =
k + ıa1

k − b0

k + ıa2

k + b0

, =b0 = 0. (20)

The inverse scattering problem for such reflection coefficients can be solved
using some approximation procedure. One can suppose that the singularity
of the Jost function is situated in the lower half plane of the spectral param-
eter k at the points k = ±b0− ε and consider the limit, when this singularity
approaches the real line ε → 0. This procedure is similar to the limit pro-
cedure for Darboux transformation used in this paper. Scattering solutions
and potentials were calculated. It was shown that all potentials of the form
u2(a1, a2, ıb0,−ıb0, x, 0) have one and the same scattering matrix R2(k), and
as the result the solution of the inverse scattering problem for such potentials
is not unique even on the half line. The singularity of the Jost function on
the real axis can not be reconstructed from the reflection coefficient. The
spectral nature of this nonuniqueness is not the same as in the case of the
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eigenvalue. The spectral density, corresponding to these potentials is equal
to zero at the points k = ±b0.
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