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1 Introduction

The present paper is devoted to the study of the few–body quantum mechanical
problem with singular finite rank cluster interactions. The corresponding Hamil-
tonians play an important role in mathematical physics, since few–body Hamilto-
nians with more regular interactions present considerable difficulties which make
impossible a detailed analytic study [13]. Also a numerical study of such Hamil-
tonians using Faddeev equations present very hard problems, since the interaction
between the particles does not vanish at large distances. On the other hand few-
body problems with singular cluster interaction are useful and intensively studied in
statistical physics, since the corresponding Hamiltonians can be analyzed in detail
even if the number of particles is very large. Models describing one dimensional
particles are of particular interest, since the eigenfunctions of the many body Hamil-
tonians can often be calculated using Bethe Ansatz [14]. In fact the well-known
Yang-Baxter equation was first written in connection with the study of system of

1Published as: S.Albeverio and P.Kurasov, Singular cluster interactions in few-body problems,
Evolution equations and their applications in physical and life sciences (Bad Herrenalb, 1998),
277–292, Lecture Notes in Pure and Appl. Math., 215, Dekker, New York, 2001.
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several one-dimensional particles with pairwise delta interactions. Similar methods
were used in atomic physics to study collisions of several particles [12] (in three
dimensions). Few-body systems in applications are usually investigated by com-
bining the classical description of the dynamics of heavy atoms with the quantum
description of the dynamics of electrons and other light particles. The first attempt
to construct a three body Hamiltonian describing three quantum particles in R3

interacting through pairwise delta functional potentials is due to G.V.Skorniakov
and K.A.Ter-Martirosian [29]. R.A.Minlos and L.D.Faddeev proved that the corre-
sponding Hamiltonian is not bounded from below and therefore cannot be used in
the originally intended physical applications [24, 25]. The operator was defined us-
ing the method of self–adjoint perturbations used by F.A.Berezin and L.D.Faddeev
for investigating Schödinger operators with delta potential in R3 [10]. Almost three
decades later semibounded three-body operators in dimension three with general-
ized two-body interactions were constructed by extending the standard Hilbert
space of square integrable functions in R9 [17, 18, 19, 27, 30]. The most interesting
model considered used the theory of generalized extensions suggested by B.Pavlov
[7, 26]. Different aspects of these models were analyzed recently [8, 23, 20]. A
general approach to these operators is described in [7, 22]. Let us mention that a
realization of a many-body lower bounded Hamiltonian with point interactions for
particles in R3 has been obtained in the original Hilbert space by using the theory
of Dirichlet forms [2]. The few-body systems of two dimensional particles with two-
body interactions was studied in [11], where it was proven that the corresponding
Hamiltonian is semibounded.

It is stressed particularly in [7] that few-body Hamiltonians with delta inter-
actions can be efficiently studied by using the theory of finite rank perturbations.
Hamiltonians describing point interactions created at many centers, e.g. of impor-
tance in solid state physics, have been discussed in [1]. Rank one form bounded in-
teractions were analyzed in detail in an abstract setting by B.Simon and F.Gesztesy
[15, 28]. Perturbations in terms of quadratic form were studied in [3]. In [16] rank
one form unbounded interactions are defined following the paper by F.A.Berezin
and L.D.Faddeev [10] and introducing a renormalization of the coupling constant.
See also [4, 5], where these interactions are defined without renormalization of the
coupling constant using a certain regularization procedure. It is not hard to extend
this technique to obtain few-body operators with form bounded cluster interactions
(see e.g. [7]), but operators with more singular interactions need a more detailed
investigation. The present paper is devoted to the study of the few–body operator
with one singular cluster interaction having finite rank. It is proven that this in-
teraction in general is described by unbounded boundary operators. This operator
can serve as an elementary brick in the construction of the few–body Hamiltonian
with several singular cluster interactions.

The paper is organized as follows. In Section 2 the few–body operator with
finite rank cluster interaction is heuristically defined. A precise definition of this
operator is given in Section 3 by separating the center of mass motion and using
the extension theory of operators with finite deficiency indices. To describe the
analytic properties of these operators a study of rational transformations of Stieltjes
functions is given in Section 4. The resolvent of the few–body operator is calculated
in Section 5. The few–body operator is described in Section 6 without separation of
the center of mass motion. Then the extension theory for symmetric operators with
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infinite deficiency indices is used. The extension is described by certain boundary
conditions involving unbounded operators.

2 Few–body operator with finite rank cluster in-
teraction

The Schrödinger operator describing several quantum mechanical particles is char-
acterized by the following property: the original Hilbert space H and the operator
A possess several tensor decompositions

H = Kn ⊗Hn, n = 1, 2, . . . , N

A = Bn ⊗ IHn
+ IKn

⊗An;
(1)

where Bn and An are positive self–adjoint operators acting in the Hilbert spaces
Kn and Hn respectively. The index n parameterizes the cluster decompositions
and the number N of such decompositions is in general different from the number
of particles. The operator An describes the motion of the particles forming the
corresponding cluster in the coordinate system associated with the center of mass
of the cluster. The operator Bn describes the motion of all other particles in
the same coordinate system. Each pair of operators (An, Bn) appearing in the
tensor decomposition determines the unperturbed operator A uniquely, since it
is essentially self–adjoint on the algebraic tensor product of the domains of the
operators An and Bn.

The few–body operator with singular finite rank interactions can heuristically
be defined by

Aα = A+
N∑

n=1

dn∑

j=1

αn,jk〈ϕnj , ·〉Hnϕnk, (2)

where ϕnj are singular vectors defining the cluster interactions. In what follows we
suppose that these vectors belong to the Hilbert spaces H−2(An) associated with
the corresponding operators An

ϕnj ∈ H−2(An), j = 1, 2, . . . , dn, n = 1, 2, . . . , N.

The numbers dn ∈ N determine the rank of the cluster interaction. The coupling
constants αn,jk form dn × dn Hermitian matrices. Then the perturbation term is
formally symmetric.

If the vectors ϕnj do not belong to the spaces H−1(An) then the perturbation
term is not form bounded with respect to the unperturbed operator. To determine
the few–body operator in this case it is necessary to carry out a special analysis
including the extension theory for symmetric operators.

The aim of the current paper is to describe few–body Hamiltonians with one
cluster interaction. This is the first step towards the definition of general few–body
Hamiltonian with finite rank cluster interactions.
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Let us consider the Hilbert space H and the operator A possessing the tensor
decomposition

H = K ⊗H,

A = B ⊗ IH + IK ⊗A
(3)

where B and A are positive self–adjoint operators in the Hilbert spaces K and H
respectively. Consider d singular vectors from the Hilbert space H−2(A). The the
few–body operator with single cluster interaction is heuristically described by

Aα = A+
d∑

j,k=1

αjk〈ϕj , ·〉Hϕk, (4)

where the coupling constants αjk form an Hermitian matrix.
If the vectors ϕj are from the Hilbert space H, then the perturbation term is a

bounded operator. The perturbed operator in this case has the same domain as the
original operator A. The problem of defining the operator with cluster interactions
is trivial in this case. Therefore we are going to concentrate our attention on the
case of so-called H-independent vectors.

Definition 2.1 The set of vectors {ϕj}d
j=1 ⊂ H−2(A) is called H-independent

if and only if any nontrivial linear combination

d∑

j=1

fjϕj , fj ∈ C,

d∑

j=1

|fj |2 > 0

does not belong to the Hilbert space H.

In what follows without loss of generality we suppose that the vectors {ϕj}d
j=1

form an orthonormal set in H−2(A), i.e.
〈

1
A− i

ϕi,
1

A− i
ϕj

〉

H

= δij . (5)

Any set of independent vectors can be orthonormalized and the new set is indepen-
dent also. In particular

ϕj ∈ H−2(A) \H.

The Hermitian coupling matrix can be diagonalized using a certain orthogonal
transformation. Therefore it is enough to consider only diagonal coupling matrices.
Thus the following heuristic operator will be studied in this paper

Aα = A+
d∑

j=1

αj〈ϕj , ·〉Hϕj , (6)

where the vectors ϕj form an orthonormal subset of H−2 and the real coupling
constants are different from zero,

αj ∈ R, αj 6= 0, j = 1, 2, . . . , d. (7)
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3 Cluster interaction via separation of the center
of mass motion

The operator Aα can be defined using the following formal decomposition

Aα = B ⊗ IH + IK ⊗A +
d∑

j=1

αj〈ϕj , ·〉Hϕj

= B ⊗ IH + IK ⊗

A +

d∑

j=1

αj〈ϕj , ·〉Hϕj


 .

(8)

The operator

Aα = A +
d∑

j=1

αj〈ϕj , ·〉Hϕj (9)

is a finite rank perturbation of the operator A and it can easily be defined following
[6]. To define the operator Aα we restrict first the operator A to the domain

Dom (A0) = {ψ ∈ Dom(A) : 〈ϕj , ψ〉H = 0, j = 1, 2, . . . , d} . (10)

The restricted operator A0 is symmetric and densely defined. The deficiency ele-
ments at point i are given by

1
A− i

ϕj , j = 1, 2, . . . , d,

and form an orthonormal subset of the Hilbert space H. The intersection between
the deficiency subspace and the domain of the original operator is trivial

Ker (A0∗ ± i) ∩Dom (A) = {0}.

Therefore the restricted operator is densely defined and has deficiency indices (d, d).
The vectors 1

A−iϕj form a basis in the deficiency subspace Ker (A0∗ − i) denoted
by M , i.e.

M ≡ Ker (A0∗ − i).

All self–adjoint extensions of the operator A0 can be described using von Neumann
formulas. But we prefer to define the extension using Krein’s resolvent formula.
Essentially all extensions of the operator A0 can be parameterized by an Hermitian
operators γ acting in M in such a way that the resolvent of the corresponding
self–adjoint operator Aγ is given by 2

1
Aγ − z

=
1

A− z
− A + i

A− z

1
γ + q(z)

PM
A− i

A− z
, (11)

2The self–adjoint extensions that would not be described by this formula would have the follow-
ing property: the operator A0 is not the largest common symmetric restriction of the perturbed
and unperturbed operators. But this implies that at least one of the coupling constants is equal
to zero, which is impossible due to our assumption (7).
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where ”Krein’s Q-operator” q can be chosen as follows

q(z) = PM
1 + zA

A− z
|M .

q is a d × d matrix Nevanlinna function, i.e. its imaginary part is positive in
the upper half plane =z > 0. Our choice of q is determined by the normalization
condition

q(i) = i|M . (12)

If all vectors ϕj are from the space H−1(A) then the relation between the cou-
pling parameters α1, α2, . . . , αd and the Hermitian operator γ is given by

γ = α(−1) + PMA|M , (13)

where α is the following coupling operator defined in M

α =
d∑

j=1

αj〈 1
A− i

ϕj , ·〉 1
A− i

ϕj .

The second term in (11) is well defined. In fact using the orthonormal basis { 1
A−iϕj

in M we have

PMAPM =
d∑

j,k=1

1
A− i

ϕk

〈
1

A− i
ϕj , A

1
A− i

ϕk

〉

H

〈
1

A− i
ϕj , ·

〉

H

, (14)

since the deficiency subspace M is a subset of H−1(A). (We remark that the scalar
products

〈
1

A−iϕj , A
1

A−iϕk

〉
H
≡

〈
ϕj ,

A
A2+1ϕk

〉
H

are well defined.)

In the case where some of the ϕj are not from H−1(A) the operator γ cannot
be calculated from the coupling parameters without using additional assumptions.
Only some partial information concerning the operator γ can be recovered. The
formal expression (9) does not define a unique operator in this case, but a certain
family of self–adjoint operators described by several parameters. The number of
free real parameters can be different from d2 (the number of real parameters in
von Neumann formulas), since the operator γ should satisfy some admissibility
conditions if the vectors ϕj are not H−1-independent. Suppose that a certain
linear combination of the vectors ϕj belongs to the space H−1

φ =
d∑

j=1

ajϕj ∈ H−1(A), aj ∈ C

then the scalar product
〈
φ, A

A2+1φ
〉

H
is well defined. Therefore the operator γ

necessarily satisfies the admissibility condition
〈

d∑

j=1

ajϕj ,
A

A2 + 1

d∑

k=1

akϕk

〉

H

=
d∑

j,k=1

ajak

(
γjk − α−1

j δjk

)
,
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where γik are the coefficients of the operator γ in the chosen orthonormal basis

γjk =
〈

1
A− i

ϕj , γ
1

A− i
ϕk

〉

H

.

The operators satisfying all admissibility conditions are called admissible. The fam-
ily of admissible operators γ was described in [6]. If in addition the operator A and
all vectors ϕj are homogeneous with respect to a certain group of unitary transfor-
mations, then the operator γ could be determined uniquely by requiring additional
natural homogeneity properties of the perturbed operator. This approach has been
developed in [4, 5] for perturbations of rank one.

In what follows we suppose that the extension of the operator A0 is determined
by a certain admissible Hermitian operator γ, which is compatible with the heuristic
expression (9). This extension will be denoted by Aγ . In what follows the operator
Aγ will be substituted for the operator Aα. The corresponding few-body operator
with single cluster interaction is defined by

Aγ = B ⊗ IH + IK ⊗Aγ . (15)

The last formula determines the operator Aγ uniquely, since B ⊗ IH + IK ⊗ Aγ

is essentially self–adjoint on the algebraic tensor product of the domains of the
operators B and Aγ . Hence

Dom (Aγ) = Dom (B)×Dom (Aγ). (16)

In order to simplify our presentation let us restrict ourselves to the case of
perturbations of rank one (d = 1). We are going to drop the lower index of the
coupling constant and singular vector

α ≡ α1, ϕ ≡ ϕ1.

To calculate the resolvent of the operator Aγ we need to study the properties of
the Nevanlinna functions describing the interaction.

4 Rational transformations of Stieltjes functions

Let us prove first some facts concerning Nevanlinna functions F which belong to
the Stieltjes class, i.e. possess the representation

F (z) =
∫ ∞

A

1 + zλ

λ− z
dρ(λ), (17)

where the real measure ρ is finite
∫∞

A
dρ(λ) < ∞.

Lemma 4.1 Let F be a Stieltjes function. Then for any real y and any positive
ε > 0 there exists a certain b = b(y, ε) > 0 such that the following estimate holds

|F (x + iy)| < ε|x|+ b (18)

for all x < A.
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Proof Consider the real and imaginary parts of the function

F (x + iy) =
∫ ∞

A

1 + (x + iy)λ
λ− x− iy

dρ(λ).

The imaginary part

=F (x + iy) = y

∫ ∞

A

λ2 + 1
(λ− x)2 + y2

dρ(λ)

is uniformly bounded for all x < A. The real part is given by the sum of two
integrals as follows:

<F (x + iy) =
∫ ∞

A

λ(1− y2)− x

(λ− x)2 + y2
dρ(λ) +

∫ ∞

A

xλ(λ− x)
(λ− x)2 + y2

dρ(λ).

The first integral is uniformly bounded. The second integral can be estimated as
follows ∣∣∣∣

∫ ∞

A

xλ(λ− x)
(λ− x)2 + y2

dρ(λ)
∣∣∣∣ ≤

∫ ∞

A

|x||λ|
λ− x

dρ(λ)

for all x < A − 1. To estimate the latter integral we choose C > A such that∫∞
c

dρ(λ) < ε/2 and we get
∫ ∞

A

|x| |λ|
λ− x

dρ(λ) ≤ |x| C

C − x

∫ ∞

A

dρ(λ) + |x|
∫ ∞

C

dρ(λ)

≤
(

C

C − x

∫ ∞

A

dρ(λ) + ε/2
)
|x|.

For all x ≤ x0 = C(1 − 1
ε

∫∞
A

dρ(λ)) the last expression is estimated by ε|x|. The
function F (x + iy) is continuous on the bounded interval x0 ≤ x ≤ A and is
therefore uniformly bounded on this interval (which is empty if x0 > A). The
lemma is proven.

2

The following lemma describes rational transformations of Stieltjes functions.

Lemma 4.2 Let F be a Stieltjes function. Let a, b, c, d be real numbers such that

ad− bc = 1. (19)

Then there exists a real number A1, such that for any real y and any positive ε > 0
there exists b1 = b1(y, ε) such that the function

G(z) =
aF (z) + b

cF (z) + d
(20)

possesses the representation

G(z) = βz + g(z), β > 0, (21)

where
|g(x + iy)| < ε|x|+ b1 (22)

for all x < A1.
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Proof Condition (19) guarantees that the function G is a Nevanlinna function and
possesses the representation

G(z) = α + βz +
∫ ∞

−∞

1 + λz

λ− z
dρ1(λ),

where
∫∞
−∞ dρ1(λ) < ∞, α, β ∈ R, β > 0. The support of the measure ρ1 coincides

with the set of real points z where the boundary values G(z + i0) are not real or do
not exist. The function G is real on the interval (−∞, A) outside the points where
cF (z) + d = 0. The derivative

dF (z)
dz

=
∫ ∞

A

λ2 + 1
(λ− z)2

dρ1(λ)

is positive for all z < A. It follows that there exists at most one point where
F (z) = −d

c . Therefore the support of the measure ρ1 is bounded from below.
Lemma 4.1 implies then estimate (22). The lemma is proven.

2

We remark that the constant β appearing in (22) is different from zero only if the
function F has a finite limit F (∞) at infinity and F (∞) = −d

c .

5 Krein’s resolvent formula

To calculate the resolvent of the operator Aγ we will need the following corollary
of the two previous Lemmas.

Lemma 5.1 Let y be an arbitrary positive real number. Consider the Nevanlinna
function

G(λ) =
1

γ − q(λ)
=

1
γ − 〈ϕ, 1+λA

A−λ
1

A2+1ϕ〉H
.

If ϕ ∈ H−1(A), then the function satisfies the estimate

|G(x + iy)| ≤ C1(y)(1 + |x|) (23)

for all negative x < 0 and a certain C1(y) > 0. If ϕ ∈ H−2(A) \ H−1(A), then the
function can be estimated by

|G(x + iy)| ≤ C2(y) (24)

for all negative x < 0 and a certain positive C2(y) > 0.

Proof The function q is a Stieltjes function, since the operator A is positive.
Lemma 4.1 implies that the estimate (23) holds for all ϕ ∈ H−2(A).

Consider the case ϕ ∈ H−2(A) \ H−1(A). We are going to prove that the real
part of q(x + iy) tends to minus infinity when x → −∞. In fact the function q can
be presented by the following integral

q(λ) =
∫ ∞

0

1 + µλ

µ− λ
dρ(λ),
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where the measure ρ is finite, i.e.
∫∞
0

dρ(µ) < ∞, but the integral
∫∞
0

µdρ(µ) = ∞
diverges.

The real part of q(x + iy) is given by

<q(x + iy) =
∫ ∞

0

(µ− x)− µy2

(µ− x)2 + y2
dρ(µ) +

∫ ∞

0

xµ(µ− x)
(µ− x)2 + y2

dρ(µ). (25)

The first integral in the last formula is bounded for negative values of x :
∣∣∣∣
∫ ∞

0

(µ− x)− µy2

(µ− x)2 + y2
dρ(µ)

∣∣∣∣ ≤
∫ ∞

0

µ− x

(µ− x)2 + y2
dρ(µ) +

∫ ∞

0

µy2

µ2 + y2
dρ(µ)

≤
∫ ∞

0

1
2y

dρ(µ) +
∫ ∞

0

y

2
dρ(µ).

The second integral in (25) is negative and can be estimated as
∣∣∣∣
∫ ∞

0

xµ(µ− x)
(µ− x)2 + y2

dρ(µ)
∣∣∣∣ ≥ x2

x2 + y2

∫ ∞

0

|x|µ
µ− x

dρ(µ)

≥ x2

x2 + y2

1
2

∫ |x|

0

µdρ(µ).

The last integral tends to infinity when x → −∞. It follows that

lim
x→−∞

G(x + iy) = lim
x→−∞

1
γ − q(x + iy)

= 0.

Therefore the continuous function G(x + iy) is uniformly bounded on the interval
x < 0, i.e. the estimate (24) holds. The lemma is proven.

2

We remark that if y = 0 then the estimates (23) and (24) hold for x ∈ (−∞, A1),
where A1 is a certain real constant.

Theorem 5.1 The resolvent of the operator Aγ = B ⊗ IH + IK ⊗Aγ at a certain
point λ,=λ 6= 0, is given by the formula

1
Aγ − λ

=
1

A− λ
− 1
A− λ

(
1

γ + q(λ−B)
〈 1
A− λ̄

ϕ, ·〉H ⊗ ϕ

)
(26)

where q(λ−B) = 〈ϕ,
1 + (λ−B)⊗A

A− λ

1
A2 + 1

ϕ〉h.

Comment Let us discuss formula (26) first. Let ϕ ∈ H−1(a). Then for any f ∈ H
the following inclusion holds

〈 1
A− λ̄

ϕ, f〉h = 〈 1√
|a|+ 1

ϕ,

√
|a|+ 1
A− λ

f〉h ∈ H1(B).

The function 1
γ−q(x+iy) satisfies the estimate (23) and it follows that the operator

1
γ − q(λ−B)
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maps H1(B) onto H−1(B). This implies that

1
γ − q(λ−B)

〈
1

A− λ̄
ϕ, f

〉

h

⊗ ϕ ∈ H−2(A). (27)

This means that formula (26) defines a bounded operator in the Hilbert space H
for ϕ ∈ H−1(a).

Consider now the case ϕ ∈ H−2(A) \ H−1(A). For any f ∈ H the vector
〈 1
A−λ̄

ϕ, f〉h = 〈 1
A+iϕ, (A + i) 1

A−λf〉H belongs to the space K. The function
1

γ−q(x+iy) is bounded for negative x (see (24)) and the operator 1
γ−q(λ−B) is bounded

in K. This implies that condition (27) holds. Therefore formula (26) defines a
bounded operator acting in the Hilbert space for any ϕ ∈ H−2(A).

Proof of Theorem 5.1 Let us denote by FB the operator of spectral transfor-
mation for B – the linear operator which maps the operator B into the operator of
multiplication by the independent real variable x. Then the resolvent on a dense
set can easily be calculated as follows

1
Aγ − λ

f = ψ

⇒ f = (Aγ − λ)ψ

⇒ (FBf)(x) = (x + Aγ − λ)(FBψ)(x)

⇒ (FBψ)(x) =
1

Aγ − (λ− x)
(FBf)(x)

=
1

A− (λ− x)
(FBf)(x)

−
(

1
γ + q(λ− x)

〈
1

A− (λ̄− x)
ϕ, (FBf)(x)

〉

H

)

⊗ 1
A− (λ− x)

ϕ

⇒ ψ =
1

A− λ
f − 1

A− λ

({
1

γ + q(λ−B)
〈 1
A− λ̄

ϕ, f〉H
}
⊗ ϕ

)
.

We have supposed that ψ ∈ Lγ , where Lγ is an algebraic tensor product of Dom (B)
and Dom (aγ). The operator Aγ is essentially self–adjoint on this domain and this
completes the proof of the theorem.

2

6 Cluster interaction without separation
of the center of mass motion

The resolvent of the operator Aγ has been calculated using the tensor decomposi-
tion. The operator Aγ is a self–adjoint extension of the symmetric operator

A0 = B ⊗ Ih + IK ⊗A0
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with infinite deficiency indices. Consider the annulating set Φreg of regular func-
tionals for the operator A0 defined as follows:

• if ϕ ∈ H−1(A) then

Φreg = {Φ : Φ = ρ(Φ)⊗ ϕ, ρ(Φ) ∈ H−1(B)},

• if ϕ ∈ H−2(A) \ H−1(A) then

Φreg = {Φ : Φ = ρ(Φ)⊗ ϕ, ρ(Φ) ∈ K = H0(B)}.

Let us consider the corresponding subspace of regular elements from the domain
of the adjoint operator A0∗:

• if ϕ ∈ H−1(A) then
Domreg(A0∗) = {ψ : ψ = ψ̃ + A

A2+1ρ(ψ)⊗ ϕ, ψ̃ ∈ Dom (A), ρ(ψ) ∈ H−1(B)};
• if ϕ ∈ H−2(A) \ H−1(A) then

Domreg(A0∗) = {ψ : ψ = ψ̃ + A
A2+1ρ(ψ) ⊗ ϕ, ψ̃ ∈ Dom(A), ρ(ψ) ∈ K =

H0(B)}.
The boundary form of the adjoint operator calculated on the regular elements is
given by

U, V ∈ Domreg(A0∗) ⇒

〈U,A0∗V 〉 − 〈A0∗U, V 〉 = 〈ρ(U)⊗ ϕ, Ṽ 〉 − 〈Ũ , ρ(V )⊗ ϕ〉
=

〈
ρ(U), 〈ϕ, Ṽ 〉h

〉
K
−

〈
〈ϕ, Ũ〉h, ρ(V )

〉
K

.
(28)

A symmetric extension of the operator A0 can be defined in terms of any sym-
metric operator Γ by restricting the operator A0∗ to the domain of functions from
Domreg(A0∗) satisfying the boundary condition

−〈ϕ, Û〉 = Γρ(U). (29)

In order to obtain the perturbed operator possessing the tensor decomposition (8)
let us consider the symmetric operator AΓ determined by the following boundary
operator

Γ = γ −B

〈
ϕ,

AA− 1
(A2 + 1)(A2 + 1)

ϕ

〉

H

. (30)

The operator 〈ϕ, AA−1
(A2+1)(A2+1)ϕ〉H is a bounded self–adjoint operator in K com-

muting with the operator B. The norm of this operator is less than or equal to
1. Therefore the operator Γ is essentially self–adjoint on the domain Dom (B) of
the operator B. We are going to keep the same notation Γ for the corresponding
self–adjoint operator.

Let us find an expression for the resolvent of the operator AΓ. Consider an
arbitrary f ∈ H and suppose that ψ = ψ̃ + A

A2+1ρ(ψ) ⊗ ϕ = 1
AΓ−λf . Then the

function ψ satisfies the following equation

(A− λ)ψ̃ − 1 + λA
A2 + 1

(ρ(ψ)⊗ ϕ) = f

12



and the boundary conditions (29). Applying the resolvent of the original operator
A to the previous equation we get

ψ̃ − 1 + λA
A− λ

1
A2 + 1

ρ(ψ)⊗ ϕ =
1

A− λ
f

⇒
(

Γ + 〈ϕ,
1 + λA
A− λ

1
A2 + 1

ϕ〉H
)

ρ(ψ) = −〈ϕ,
1

A− λ
f〉H . (31)

This equation can be solved and the function ρ(ψ) can be calculated if the operator
Γ+〈ϕ, 1+λA

A−λ
1

A2+1ϕ〉H is invertible. The operator can be simplified as follows taking
into account equality (30)

Γ + 〈ϕ,
1 + λA
A− λ

1
A2 + 1

ϕ〉h

= γ −B

〈
ϕ,

AA− 1
(A2 + 1)(A2 + 1)

ϕ

〉

h

−
〈

ϕ,
1 + λA
A− λ

1
A2 + 1

ϕ

〉

H

= γ +
〈

ϕ,
1 + (λ−B)⊗A

A− λ

1
A2 + 1

ϕ

〉

H

,

(32)

which holds on functions from Dom B. Since ϕ ∈ H−2(A) and the operators A
and B are positive the following inclusion holds 〈ϕ, 1

A−λf〉H ∈ K. The comment
after Theorem 5.1 shows that the operator Γ + 〈ϕ, 1+λA

A−λ
1

A2+1ϕ〉H is invertible in
K. Therefore there exists ρ(ψ) ∈ Dom(Γ) ⊂ K which satisfies equation (31).

The component ψ̃ of the function ψ can be calculated using the formula

ψ̃ =
1

A− λ
f +

1
A− λ

1 + λA
A2 + 1

ρ(ψ)⊗ ϕ.

Thus the function ψ is given by

ψ =
1

A− λ
f − 1

A− λ

({
1

Γ + 〈ϕ, 1+λA
A−λ

1
A2+1ϕ〉h

〈
ϕ,

1
A− λ

f

〉

H

}
⊗ ϕ

)
.

The resolvent of the operator AΓ coincides with the resolvent of the self–adjoint
operator Aγ . This implies that the operator AΓ is in fact self–adjoint even if it has
been first defined only on the regular elements.

Thus the following theorem has been proven.

Theorem 6.1 The operator AΓ which is the restriction of the operator A0∗ to the
set of regular elements

ψ = ψ̃ +
A

A2 + 1
(ρ(ψ)⊗ ϕ) ∈ Domreg(A0∗) (33)

satisfying the boundary condition

〈ϕ, ψ̃〉H = Γρ(ψ) (34)
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is self–adjoint and its resolvent is given by

1
AΓ − λ

=
1

A− λ
− 1
A− λ

({
1

γ + 〈ϕ, 1+(λ−B)⊗a
A−λ

1
a2+1ϕ〉H

〈ϕ,
1

A− λ
·〉h

}
⊗ ϕ

)

(35)
for any λ; =λ 6= 0.

Comment In the course of the proof of the previous theorem we have shown that
the density ρ(ψ) is an element from the domain of the operator Γ. It is possible to
prove that the restriction of the operator AΓ to the domain of functions possessing
the representation (33), boundary conditions (34) and having ρ(ψ) ∈ Dom (B) is
essentially self–adjoint.

Suppose that ϕ ∈ H−1(A). Then the boundary conditions (34) can be simplified
as follows. Consider the scalar product 〈ϕ,ψ〉H , where ψ is any function from the
domain of the operator AΓ. Then the following equalities hold

〈ϕ,ψ〉H =
〈
ϕ, ψ̃

〉
H

+
〈

ϕ,
A

A2 + 1
ρ⊗ ϕ

〉

H

= −Γρ(ψ) +
〈

ϕ,
A

A2 + 1
ρ⊗ ϕ

〉

H

= −γρ(ψ) +
〈

ϕ,

(
B(AA− 1)

(A2 + 1)(A2 + 1)
+

A
A2 + 1

)
ρ⊗ ϕ

〉

h

= −γρ(ψ) +
〈

ϕ,
A

A2 + 1
ϕ

〉

h

ρ(ψ)

= (−γ + c) ρ(ψ),

(36)

where we have used the fact that the function ψ satisfies boundary condition (34).
Taking into account (13) the latter condition can be written as

−α〈ϕ,ψ〉H = ρ(ψ).

One can define the operator AΓ using this boundary condition, but this condition
cannot be generalized to the case of H−2 interactions, since the scalar product〈
ϕ, A

A2+1ρ⊗ ϕ
〉

H
does not necessarily define a function from K in this case.
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