
Letters in Mathematical Physics45: 33–47, 1998.
© 1998Kluwer Academic Publishers. Printed in the Netherlands.

33

Symmetries of Schrödinger Operators with
Point Interactions

S. ALBEVERIO1, L. DA̧BROWSKI2 and P. KURASOV3
Fakultät für Mathematik, Universität Bonn, D-53315 Bonn, Germany

1Institute of Mathematics, Ruhr-Universität, D-44780 Bochum; SFB 237; BiBoS; Cerfim
(Locarno); Acc.Arch, USI (Mendrisio)
2SISSA, 34014 Trieste, Italy
3Alexander von Humboldt fellow, Institute of Mathematics, Ruhr-Universität, Bochum Department
of Mathematics, Stockholm University; Department of Mathematics, Luleå University; Department
of Mathematical and Computational Physics, St. Petersburg University.

(Received: 27 January 1998)

Abstract. The transformations of all the Schrödinger operators with point interactions in dimension
one under space reflectionP , time reversalT and (Weyl) scalingWλ are presented. In particular,
those operators which are invariant (possibly up to a scale) are selected. Some recent papers on
related topics are commented upon.

Mathematics Subject Classifications (1991):34L40, 47A55, 81Q10.

Key words: Schrödinger operators, symmetries, extension theory, point interactions, exactly solvable
models.

1. Introduction

Differential operators with point interactions are used to obtain exactly solvable
models in quantum mechanics, in the study of wave propagation in electrody-
namics and more generally in some models of theoretical physics [3, 7, 12, 24].
Let us recall the definition of point interactions. LetA andA1 be two (different)
selfadjoint operators acting in the Hilbert spaceL2(R

n), n ∈ N. Let 0 be a set
of points fromR

n :0 ⊂ R
n . Consider the restrictionsA0 andA0

1 of the operators
A andA1 to the sets of functions from the domains of the operatorsA andA1,
respectively, and vanishing (at least) in an arbitrary open neighborhood of the set
0. Then the operatorA1 is a singular perturbation with the support on0 of the
operatorA if and only if the restricted operatorsA0 andA0

1 coincide. If the set0
contains only one point, then such an operatorA1 is calleda point perturbation
of the operatorA. In other words, the operatorA1 is equal to the operatorA plus
a certain point interaction. An interaction defined in this way generally cannot be
written explicitly as an operator sum.
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We are going to discuss here the point interactions for the Schrödinger operator
in dimension one. It is known that the most general family of point interactions for
these operators are described by unitary 2× 2 matrices using the extension theory
for symmetric operators. It is astonishing that the truly whole family of point inter-
actions has been investigated very little up to now, although many authors study
various lower-dimensional subfamilies, most often a particular three parameter
subfamily [8–10, 28]. The four-parameter family of selfadjoint extensions has been
first studied for a dense domain in U(2) in [26], the full family was studied in [2],
[19], however without a detailed description of the symmetry properties which is
the main subject of this Letter.

We have already mentioned one important problem related to point interactions:
how to describe the point interactions explicitly by certain linear operators which
are singular and characterized by their singular set0 so that they can be defined in a
generalized sense? Every function with the support separated from the singular set
0 belongs to the kernel of such an operator. Such operators are finite rank singular
perturbations for the original operator. The corresponding abstract problem has
been studied recently using the extension theory for symmetric operators with finite
deficiency indices [5, 6, 16–18, 29].

Let us now concentrate on the problem of one-dimensional Schrödinger opera-
tors with point interactions. Let us start our discussion by considering the following
family of operators with singular interactions:

Lx1x2 = −
d2

dx2
+ x1δ + x2δ

(1),

whereδ andδ(1) denote the Dirac delta function and its derivative. The termx1δ

occurring in such a singular perturbation of the second derivative operator can-
not be defined as an operator in the Hilbert spaceL2(R). But the corresponding
quadratic form〈x1δψ,ψ〉 = x1|ψ(0)|2 is a form bounded perturbation of the oper-
ator−(d2/dx2) with the relative bound zero. Therefore, the operator−(d2/dx2)+
x1δ can be defined using the KLMN theorem [14, 25]. The quadratic form cor-
responding to the derivative of the delta function is not form bounded with the
relative bound zero and therefore the operator−(d2/dx2) + x2δ

(1) cannot be de-
fined using standard perturbation theory. There were several attempts to define
the corresponding selfadjoint operator using certain particular interpretations of
the meaning of the interaction terms, leading to different one parameter families
of selfadjoint operators [4, 13, 15, 21, 27]. In [19, 20], it was suggested using
distribution theory with discontinuous test functions as a proper tool to define
such operators in general. According to this approach the domain of a selfadjoint
operator corresponding to the formal expression−(d2/dx2) + x2δ

(1) should con-
tain functions with a jump discontinuity at the origin. Letψ be such a function
having a nontrivial jump discontinuity at the origin. Then the productδ(1)ψ can
be defined only within the framework of the distribution theory with discontinuous
test functions. This theory developed in [19] also gives a possibility of describing
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the most general four parameter family of singular operators related to the above
Schrödinger operators. We comment on this result in Section 4. In particular, we
discuss the Schrödinger operator with aδ(1) potential from this point of view.

Symmetries are well known for playing an important role in quantum mechan-
ics. As far as symmetric (Hermitian) operators are concerned, they are capable of
restricting the nonuniqueness of the selfadjoint extensions and selecting some of
them (if there exists some selfadjoint extension which has the required symmetry
properties). In that respect, the fundamental symmetries of Schrödinger operators
with point interactions have not yet been analyzed in a systematic way. The time
reversal symmetry has been discussed in the recent paper [10]. Unfortunately, this
paper ignores completely the rich mathematical literature on point interactions in
one dimension. In this Letter, we study the full four-parameter family of selfadjoint
operators with the point interactions mentioned above and its behavior under fun-
damental symmetry transformations (at the same time putting the results of [10] in
the right perspective by extending the study of symmetries of this particular case,
and relating [10] to the mathematical literature).

We first discuss how the whole family of one-dimensional Schrödinger oper-
ators with point interactions can be described in terms of boundary conditions.
Next, the complete classification of the point interactions with a singular set at
the origin (or at a single point) is given. The basic symmetries are investigated in
Section 5, where we study the parity, time reversal and scaling transformations. In
Section 6, is shown how the symmetry results can be obtained from the described
classification of the point interactions.

2. Four Parameter Family of Point Interactions

Consider the second derivative operatorA = −(d2/dx2) with the domain
Dom (A) = W2

2 (R). Every second derivative operator with the point interaction
at the origin coincides with a certain selfadjoint extension of the second derivative
operator−(d2/dx2) restricted to the setC∞0 (R\{0}) of all C∞0 (R) functions having
compact support separated from the origin. The closure of this operator is defined
on the domainD0 of all functions vanishing at the origin together with the first
derivative

D0 = {ψ ∈ W2
2 (R): ψ(0) = ψ ′(0) = 0}.

Let us denote the restricted symmetric operator byA0. The operatorA0 has
deficiency indices (2,2). LetFλ > 0 (with F denoting the imaginary part), then we
choose the orthogonal basis in the deficiency subspace Ker(A0∗ − λ) as follows:

g−(λ, x) = 2(−x) exp(−ikx), g+(λ, x) = 2(x) exp(ikx), (1)

wherek = √λ,Fk > 0 and2 is the Heaviside function

2(x) =
{

0, x 6 0;
1, x > 0.
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The domain of the adjoint operatorA0∗ coincides with the spaceW2
2 (R \ {0}).

The operatorA0 is closed, therefore every function from the domain of the adjoint
operatorA0∗ possesses the following representation:

ψ = ψ̃ + a+g+(λ)+ a−g−(λ)+ b+g+(λ̄)+ b−g−(λ̄), (2)

whereψ̃ ∈ D0, a±, b± ∈ C and¯means complex conjugation.
The deficiency elements (1) have equal norm and are orthogonal. Therefore, the

selfadjoint extensions of the operatorA0 can be parametrized by a 2× 2 unitary
matrix using von Neumann formulas. Let

V =
(

v++ v+−
v−+ v−−

)

be a unitary matrix. Then the restriction of the operatorA0∗ to the set

DV =
{

ψ = ψ̃ + a+g+(λ)+ a−g−(λ)+ b+g+(λ̄)+ b−g−(λ̄) ∈ Dom (A0∗):
(

b+(ψ)

b−(ψ)

)
= −V

(
a+(ψ)

a−(ψ)

)}
(3)

is a selfadjoint extension of the operatorA0. Let us denote this selfadjoint operator
by AV . In particular, the unitary matrix

V = −1

k̄

(
iFk Rk

Rk iFk

)

(withR denoting real part) corresponds to the original operatorA.

3. Boundary Conditions

An important characterization of the selfadjoint extensions of the operatorA0 is
provided by using the boundary conditions at the origin. Consider the boundary
form of the adjoint operatorA0∗ calculated on the functionsψ, ϕ ∈ Dom(A0∗)
given by

〈A0∗ψ, ϕ〉 − 〈ψ,A0∗ϕ〉
= ψ ′(+0)ϕ(+0)− ψ(+0)ϕ′(+0)− ψ ′(−0)ϕ(−0)+ ψ(−0)ϕ′(−0), (4)

(with 〈·, ·〉 meaning the scalar product inL2(R)). The boundary form (4) deter-
mines a symplectic structure on the domain of the adjoint operatorA0∗. Therefore,
the family of selfadjoint extensions of the operatorA0 is isomorphic to the set of
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linear subspaces of Dom(A0∗) that are Lagrangian with respect to the symplectic
form (4). Every such subspace can be described by a certain boundary condi-
tion at the origin. The following Theorem describes the family of such boundary
conditions.

THEOREM 1. Every selfadjoint extension of the operatorA0 coincides with the
operatorA0∗, restricted to the set of functions which satisfy the boundary condi-
tions at the origin of one and only one of the following types

1.

(
ψ(+0)

ψ ′(+0)

)
= 3

(
ψ(−0)

ψ ′(−0)

)
, (5)

where the matrix3 is equal to

3 = eiθ

(
a b

c d

)
(6)

with the real parametersθ ∈ [0, π), a, b, c, d ∈ R fulfilling the conditionad −
bc = 1;

2. ψ ′(+0) = h+ψ(+0) ψ ′(−0) = h−ψ(−0), (7)

with the parametersh± ∈ R ∪ {∞}. If h+ = ∞, then the first equation(7) reads
ψ(+0) = 0. Similarly forh− = ∞.

Remark.The theorem establishes a one-to-one correspondence between the set
of selfadjoint extensions of the operatorA0 and the two families (5) and (7) of
boundary conditions. The boundary conditions from the first family (5) (‘boundary
conditions of the first type’) are generic and in terms of them those from the second
family (7) (‘boundary conditions of the second type’) can in fact be obtained as
limit cases. Only the boundary conditions (7) were used by P. Seba [26] and P.
Chernoff and R. Hughes [9], since these conditions link together the two half axes.
Our description gives all possible boundary conditions (as it was described in [2]
and [19]).

The second family of boundary conditions (7) can be split into four subfamilies
described by finite parameters. We combine them together, noting that they define
selfadjoint operators which are equal to the orthogonal sum of two second deriva-
tive operators on the half axes with certain boundary conditions at the origin. Such
extensions of the operatorA0 can be calledseparated. Let us denote the corre-
sponding separated selfadjoint operator byAs

H , whereH = (h−, h+) ∈ (R ∪∞)2.
In particular, if h± = 0 or∞, we have various combinations of Dirichlet and
Neumann boundary conditions.
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Instead, the boundary conditions (5) of the first type determine operators which
do not possess such a decomposition and therefore will be callednonseparated.
Let us denote the corresponding selfadjoint operator byAn

3.

Proof of Theorem 1. Every selfadjoint extensionAV of the operatorA0 is
described by the von Neumann conditions (3)(

b+(ψ)

b−(ψ)

)
= −V

(
a+(ψ)

a−(ψ)

)
, (8)

whereV is an unitary matrix. The boundary values of the functionψ on the left
and right-hand sides of the origin are given by(

ψ(+0)

ψ ′(+0)

)
=
(

1− v++ −v+−

ik + ikv++ ikv+−

)(
a+(ψ)

a−(ψ)

)
; (9)

(
ψ(−0)

ψ ′(−0)

)
=
( −v−+ 1− v−−

−ikv−+ −ik − ikv−−

)(
a+(ψ)

a−(ψ)

)
. (10)

Conditions (8) can be written in terms of the boundary values of the functionψ

only. There are two possibilities to write these boundary conditions. If the matrix
V is diagonal, then equality (9) can be simplified

ψ(+0) = (1− v++)a+(ψ)

ψ ′(+0) = (ik + ik̄v++)a+(ψ)
⇒ (1− v++)ψ ′(+0) = (ik + ik̄v++)ψ(+0);

Multiplying the latter equation by(1−v++) we get a boundary condition of the
same type with the real parameters

(1− v++)(1− v++)ψ ′(+0) = (i(k − k)+ ikv++ − ikv++)ψ(+0). (11)

The second condition can be derived in a similar way using (10)

ψ(−0) = (1− v−−)a−(ψ)

ψ ′(−0) = −(ik + ik̄v−−)a−(ψ)

⇒ (1− v−−)ψ ′(−0) = −(ik + ik̄v−−)ψ(−0)

⇒ (1− v−−)(1− v−−)ψ ′(−0) = (i(k − k)+ ikv−− − ikv−−)ψ(−0).

(12)

Equations (11, 12) are boundary conditions of the second type (7).
If the matrixV is not diagonal, then the determinant of the linear system (10) is

equal toiv−+(k+ k̄) 6= 0. The second item does not vanish becausek has nonzero
real part. It follows that Equation (8) can be written in the form(

ψ(+0)

ψ ′(+0)

)
= 3

(
ψ(−0)

ψ ′(−0)

)
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with the matrix3 = (λ11 λ12
λ21 λ22

)
satisfying the following conditions:

λ11λ̄22− λ21λ̄12= 1; λ11λ̄21 ∈ R; λ12λ̄22 ∈ R.

Every such matrix3 can be written in the form (4) with the real parameters
θ, a, b, c, d. The boundary form of the operator (4) vanishes on the subset of
functions defined by the boundary conditions of the first and second types. It
follows that the operatorA0∗ restricted to the linear set defined by these boundary
conditions is selfadjoint and the theorem is proven. 2

In geometric terms, the nonseparated boundary conditions provide a local para-
meterization of a dense part of U(2) byθ, a, b, c, d ∈ R, satisfyingθ ∈ [0, π) and
ad−bc = 1 (altogether there are four independent real coordinates, as dimRU(2) =
4). The remaining part of U(2), which has dimension two and corresponds to sep-
arated boundary conditions, is (locally) parametrized by a pair of (real) projective
coordinates.

4. Classification of the Point Interactions

The relations between the four-parameter families of the selfadjoint extensions
of the operatorA0 and the second derivative operators with singular interactions
having support at the origin have already been discussed in [19, 20]. In these refer-
ences it was suggested using the distribution theory with discontinuous test func-
tions to determine the selfadjoint operator corresponding to the following formally
symmetric differential expression

LX = − d2

dx2
(1+ x4δ)+ i

d

dx
(2x3δ − ix4δ

(1))+ x1δ + (x2− ix3)δ
(1), (13)

whereX = (x1, x2, x3, x4) ∈ R4. Letu, v ∈ W2
2 (R), then〈LXu, v〉 = 〈u,LXv〉. In

fact, one has

LXu = −u′′ + x1u(0)δ + x2(u(0)δ(1) − u′(0)δ)+
+ix3(u(0)δ(1) + u′(0)δ)− x4u

′(0)δ(1),

hence

〈LXu, v〉 = 〈u′, v′〉 + x1u(0)v(0)+ x2(−u(0)v′(0)− u′(0)v(0))

+ix3(−u(0)v′(0)+ u′(0)v(0))+ x4u
′(0)v′(0)

= 〈u,LXv〉.
To define a selfadjoint operator with point interactions, one has to extend the latter
sesquilinear form to a sesquilinear form onW2

2 (R\{0}) ⊕ W2
2 (R\{0}). Such ex-

tensions have been classified in [19, 20] and it was shown that a unique extended



40 S. ALBEVERIO ET AL.

sesquilinear form exists possessing the same scaling properties as the original one.
The latter problem has been solved using the following extension of the distribution
δ(n) to the set of test functions with a jump discontinuity at the origin

δ(n)ψ = (−1)n ψ(n)(+0)+ ψ(n)(−0)

2
. (14)

It was proven that the selfadjoint operator corresponding to the extended sesqui-
linear form coincides with the restriction of the operatorA0∗ to the domain of
functions fromW2

2 (R \ {0}) satisfying the following boundary conditions at the
origin(

ψ(+0)

ψ ′(+0)

)

=


(2+ x2)

2− x1x4+ x2
3

(2− ix3)2+ x1x4−x2
2

−4x4

(2− ix3)2+ x1x4−x2
2

4x1

(2− ix3)2+ x1x4− x2
2

(2− x2)
2− x1x4+x2

3

(2−ix3)2+x1x4−x2
2


(

ψ(−0)

ψ ′(−0)

)
(15)

if (2− ix3)
2 + x1x4 − x2

2 6= 0. The exceptional case(2− ix3)
2 + x1x4 − x2

2 = 0
and infinite values of the parametersx1, x2, x3, x4 corresponds to the separated
boundary conditions of the second type (see [19] for more details). In [19] it also
has been proven that every point interaction at the origin can be described by a
certain pseudo-operator with singular interaction.

The following one two parameter and two one-parameter subfamilies of oper-
ators from the general four parameter family (13) are described by the matrices
3

– the Schrödinger operator with a ‘generalized potential’

Lx1x2 = −
d2

dx2
+ x1δ + x2δ

(1)⇒ 3 =


2+ x2

2− x2
0

4x1

4− x2
2

2− x2

2+ x2

 ;
– the regularized Schrödinger operator with a ‘singular gauge field’

Lx3 = −
d2

dx2
+ ix3

(
2

d

dx
δ − δ(1)

)
⇒ 3 =


2+ ix3

2− ix3
0

0
2+ ix3

2− ix3

 ; (16)
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– the Schrödinger operator with a ‘singular density’

Lx4 = −
d2

dx2
(1+ x4δ)+ x4

d

dx
δ(1)⇒ 3 =

(
1 −x4

0 1

)
. (17)

In particular, we see that the selfadjoint operator corresponding to the formal
expression

Lx2 = −
d2

dx2
+ x3δ

(1) (18)

is determined by following diagonal matrix

3 =
( 2+x2

2−x2
0

0 2−x2
2+x2

)
. (19)

According to the frequent terminology in the literature by a ‘δ′-interaction’ one de-
notes the interactions determined by boundary conditions of the form (17) (see [3]).
However, as it was shown by P. Seba [27], this ‘δ′-interaction’ does not describe
a Schrödinger operator perturbed by the derivative of aδ potential. There were
several attempts to define the latter interaction. Even one-dimensional families of
nonselfadjoint operators have been suggested (see [4] for references). N. Elander
and P. Kurasov [21] and D. Griffiths [15] independently derived the boundary
conditions (19) using the extension (14). The selfadjoint operator described by the
boundary conditions (19) possesses the same symmetry properties as the original
formal expression (see Section 6). Let us remark that such a definition for theδ(1)

potential interaction has been already used to study several physical problems [11,
22].

5. Symmetries

Consider the unitary operatorsP , T andWλ, with λ > 0, defined by

(Pψ)(x) = ψ(−x), (T ψ)(x) = ψ̄(x), (Wλψ)(x) = λ1/2ψ(λx) (20)

on the Hilbert spaceL2(R, dx). The corresponding transformation of a selfadjoint
operatorA defined byU = P, T ,Wλ is given by

A 7→ UAU−1. (21)

The operatorsP and T map each of the second derivative operators with point
interactions (as listed in Theorem 1) to the operator from the same class with the
interaction defined by different parameters

As
HU = UAs

HU−1; An
3U = UAn

3U−1, (22)
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where

HP = −H ; HT = H ;

3P =
(

1 0
0 −1

)
3−1

(
1 0

0 −1

)
3T = 3̄.

(23)

LEMMA 1. Let�P be the set of selfadjoint extensions of the operatorA0 which are
invariant with respect to the symmetry transformationP i.e.B ∈ �P ⇒ BP = B.
Then the family�c

P of nonseparated extensions from�P is a two-parameter family
and it is defined by all matrices3 = (

a b

c a

)
with the real parametersa, b, c ∈ R

fulfilling the conditiona2 − bc = 1. The family�s
P of separated extensions from

�P is a one-parameter family and is described by allH such thath+ = −h−.
Proof. Consider the family of nonseparated selfadjoint extensions of the oper-

ator A0. Every such extension is described by a certain matrix3 possessing the
representation (6). If the extended operator is invariant with respect to the sym-
metry transformationP , then the matrices3P and3 coincide, i.e. the following
equality holds:

eiθ

(
a b

c d

)
=
(

1 0

0 −1

)
e−iθ

(
d −b

−c a

)(
1 0

0 −1

)
.

The latter equality implies that

eiθ

(
a b

c d

)
= e−iθ

(
d b

c a

)
.

Since the coefficientsa, b, c, d are real andθ ∈ [0, π), the latter equality is satis-
fied if and only ifθ = 0 anda = d. The lemma is thus proven for nonseparated
extensions. The proof for separated extensions is similar. 2

LEMMA 2. Let�T be the set of selfadjoint extensions of the operatorA0 which are
invariant with respect to the symmetry transformationT , i.e.B ∈ �T ⇒ BT = B.
Then the family�c

T of nonseparated extensions from�P is a three-parameter fam-
ily and it is defined by all matrices3 = (a b

c d

)
with the real parametersa, b, c, d ∈

R fulfilling the conditionad − bc = 1. Every separated extension of the operator
A0 is invariant with respect to the symmetry operatorT .

Proof.The proof follows the same lines as the proof of Lemma 1. Considering
the nonseparated extensions invariant with respect to the operatorT , we arrive to
the following equation for the matrix3

eiθ

(
a b

c d

)
= e−iθ

(
a b

c d

)
.
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The latter equality is satisfied if and only ifθ = 0. The parametersa, b, c, d are
arbitrary real numbers constrained only byad − bc = 1. The lemma has thus been
proven for nonseparated extensions. But every separated extension is also invariant
with respect to the symmetry operatorT , since the coefficientsh± are real, which
completes the proof of the lemma. 2

The following lemma can be proven using the same method:

LEMMA 3. Let�PT be the set of selfadjoint extensions of the operatorA0 which
are invariant with respect to the (composed) symmetry transformationPT , i.e.
B ∈ �PT ⇒ BPT = B. Then the family�c

PT of nonseparated extensions from
�PT is a three-parameter family and it is defined by all matrices3 = eiθ

(
a b

c a

)
with

the real parametersθ ∈ [0,∞); a, b, c ∈ R fulfilling the conditiona2 − bc = 1.
The family�s

PT of separated extensions from�PT is a one-parameter family and
is described by allH such thath+ = −h−. It coincides with the family�s

P .

Consider now the scaling transformationWλ in more details. The unitary trans-
formation (21) maps the second derivative operator−(d2/dx2) to the operator
−(1/λ2)d2/dx2. Therefore, the transformed operator can only be proportional to
the original operator with point interactions. Again the unitary transformationWλ

does not change the class of boundary conditions

As
HW = 1

λ2
WλA

s
HW−1

λ ;

An
3W = 1

λ2
WλA

n
3W−1

λ , (24)

where

3W =
(

1 0

0 1/λ

)
3

(
1 0

0 λ

)
, H3 = H/λ. (25)

The following lemma describes the set of boundary conditions that are invariant
with respect to the scaling transformation.

LEMMA 4. The family of nonseparated boundary conditions invariant with re-
spect to all the scaling transformationsWλ, λ > 0 is described by all matrices3
of the form

3 = eiθ

(
a 0

0 a−1

)
(26)

with θ ∈ [0,∞), a ∈ R \ {0}. The family of separated boundary conditions in-
variant with respect to the scaling transformation consists of four elements(0, 0),

(0,∞), (∞, 0) and(∞,∞).
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Proof. Every matrix3 invariant with respect to the scaling transformation for
all λ > 0 satisfies the following equation:

eiθ

 a b

c d

 = ( 1 0

0 1/λ

)
eiθ

(
a b

c d

)(
1 0

0 λ

)
,

which implies thatb = c = 0 for λ 6= 1. Thus such a3 is given by (26).
Consider now separated boundary conditions. The equationh± = h±/λ, ∀λ >

0, has only two solutionsh± = 0,∞. Therefore, all separated invariant bound-
ary conditions are given byH = (0, 0), (0,∞), (∞, 0), (∞,∞). The lemma is
proven. 2

6. Symmetries and Pseudo-Operators

Let us study the symmetry properties of the point interactions using the classifica-
tion described in Section 4.

The following two parameter subfamily of differential pseudo-operators (13) is
invariant with respect to the inversionP

Lx1x4 = −
d2

dx2
(1+ x4δ)+ i

d

dx
(−ix4δ

(1))+ x1δ (27)

and it is described by the nonseparated boundary conditions with the matrix

3 =


4− x1x4

4+ x1x4

−4x4

4+ x1x4

4x1

4+ x1x4

4− x1x4

4+ x1x4

 .

The family of matrices obtained in this way coincides with the family of matrices
3 described by Lemma 1.

The parameterx3 in (13) describes the singular gauge field with the support
at the origin as given by (16). The operator with gauge field is not invariant with
respect to the time reversal symmetry. Therefore, the symmetric differential ex-
pressions (13) invariant with respect to the complex conjugationT form the three
parameter subfamily

Lx1x2x4 = −
d2

dx2
(1+ x4δ)+ d

dx
(x4δ

(1))+ x1δ + x2δ
(1) (28)

defined by the nonseparated boundary conditions with the matrix
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3 =


(2+ x2)

2− x1x4

4+ x1x4 − x2
2

−4x4

4+ x1x4− x2
2

4x1

4+ x1x4 − x2
2

(2− x2)
2− x1x4

4+ x1x4− x2
2

 .

We get all matrices3 which describe nonseparated boundary conditions given by
Lemma 2.

The two parameter family

Lx2x3 = −
d2

dx2
+ 2i

d

dx
x3δ + x2δ

(1) (29)

is selfsimilar with respect to the scalingWλ and the corresponding operator is
defined by the nonseparated boundary conditions with the matrix

3 =


(2+ x2)

2+ x2
3

(2− ix3)
2− x2

2

0

0
(2− x2)

2− x2
3

(2− ix3)2− x2
2

 .

All nonseparated boundary conditions given by Lemma 4 can be obtained in this
way. In particular, the Schrödinger operator with theδ(1) potential belongs to the
family. Therefore, the function from its domain satisfy the boundary conditions
with the diagonal matrix3.

We have seen that the approach developed using the distribution theory with dis-
continuous test functions gives a possibility to separate the selfadjoint perturbations
possessing certain symmetry properties. This approach can be generalized to in-
clude separated extensions. Infinite values of the parametersx1, x2, x3, x4 should be
considered.A more detailed analysis can be carried out using the four-dimensional
projective coordinates, see [19].
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