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Abstract. The problem of constructing generalized point interactions of the second deriv-
ative operator in L2(R) leading to the same scattering data as for reflectionless potentials
is considered. It is proved that this problem has a solution only if extensions in Pontrya-
gin spaces are involved. The solution of the inverse scattering problem is not unique, this
is illustrated by considering the scattering data for soliton of the Korteweg-de Vries equa-
tion.
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1. Introduction

The classical Schrödinger operator −d2/dx2 + V (x) can be considered as a per-
turbation of the free second derivative operator A0 =−d2/dx2 by the operator of
multiplication by the real-valued function V (x). It is well known that potentials V

from the Faddeev class of locally integrable functions with
∫∞
−∞(1+|x|)|V (x)|dx <

∞ are determined uniquely by the scattering data consisting of one reflection
coefficient R(k), the eigenvalues En =−β2

n, for n=1,2, . . . ,N and the correspond-
ing normalizing constants mn [3,10] (or see any standard text on Schrödinger scat-
tering theory).

Instead of the above mentioned additive perturbations of A0 one can also study
certain domain perturbations. The method of generalized interactions was first
developed by Pavlov [8,9] for operators in Hilbert spaces and recently also in
Pontryagin spaces [7].

By restricting the second derivative operator A0 to a certain symmetric operator
with finite deficiency indices and then extending it in a – possibly – larger space to
another self-adjoint operator A one obtains a domain perturbation. If the original
Hilbert space has finite defect in the larger space, then the absolutely continuous
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spectra of the perturbed and the unperturbed operators coincide. Thus one can
study the scattering problem for the pair (A0, A).

The aim of the present paper is to obtain a domain perturbation of A0, more
precisely a generalized point interaction A, leading to the same scattering data as
the additive perturbation by a reflectionless potential. In the case of the half line
this question has been investigated in [4,5].

We show that the problem for the whole line always has a solution, but only
if extensions in Pontryagin spaces, i.e., spaces with indefinite inner product, are
allowed. It turns out that then the model operator A has the prescribed eigen-
values, but the corresponding eigenspaces are two-dimensional. However, each
eigenspace has a positive and a negative subspace, where the positive one corre-
sponds to the physical eigenfunctions. Due to this particular structure one could
also split off the non-positive part, but then the model becomes non-local. It
appears that different generalized perturbations can determine the same scattering
data. An analogy with soliton solutions of KdV equations is used to illustrate this
phenomenon.

The paper is organized as follows. In Section 2 generalized interactions sup-
ported by one point are considered. The relation between the scattering matrix and
energy dependent boundary conditions at this point is discussed. For reflectionless
boundary conditions a connection to operator extensions is established via Krein’s
formula for generalized resolvents. An explicit model of generalized interactions
(supported by several points) is given in Section 3. It is shown in Section 4 that
the parameters in the model can be chosen such that the scattering matrix is of a
prescribed form. Furthermore spectral properties of these operators are discussed.
Section 5 is devoted to the corresponding inverse scattering problem, which turns
out to be solvable, but not necessarily uniquely.

2. Scattering Matrix and Energy Dependent Boundary Conditions

In this section, we deal with a generalized interaction that is supported by one
point, say x1 ∈ R, and hence leads to certain energy dependent boundary condi-
tions connecting the boundary values at this point. We discuss the relation to the
corresponding scattering matrix.

Consider the one-dimensional Schrödinger equation

− d2

dx2
f =Ef (1)

with the energy dependent boundary conditions

{f }x1 =q1(E)[f ′]x1 , {f ′}x1 =−q2(E)[f ]x1 , (2)

where the functions q1 and q2 depend on the energy E and the following notations
are used
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{f }x1 := 1
2 (f (x1+0)+f (x1−0)) , [f ]x1 := (f (x1+0)−f (x1−0)) . (3)

This form of the boundary conditions guarantees that the energy dependent inter-
action is invariant with respect to reflection at x1.

The corresponding scattering matrix can be introduced by considering the two
scattering solutions

fleft =
{

eikx +S21e−ikx, x <0,

S22eikx, x >0,
and fright =

{
S11e−ikx, x <0,

e−ikx +S12eikx, x >0.

In this article, we restrict ourselves to reflectionsless scattering matrices, i.e., S12 =
S21 =0 and S11 =S22 =:T , where T is called the transmission coefficient. In this case
it holds

q2(E)=Eq1(E). (4)

The relation between T and q1 is given by:

q1(E)= 1
2ik

T (k)+1
T (k)−1

and, conversely, T (k)= 2ikq1(E)−1
2ikq1(E)+1

, (5)

where E = k2. Transmission coefficients corresponding to reflectionless potentials
[3] are of the form

T (k)=
N∏

n=1

ik −βn

ik +βn

with pairwise distinct βn >0, (6)

where −β2
n are the eigenvalues of the corresponding Schrödinger operator. Then

obviously the functions qi are rational in the variable k, but more than that the
following lemma holds.

LEMMA 1. The functions qi for i=1,2 appearing in the energy dependent bound-
ary conditions (2) and corresponding to reflectionless scattering matrices (6) are real
rational functions in the variable E =k2.

Proof. Relations (6) and (5) imply that q1 is an even function of k and therefore
it is a rational function of k2, as well as q2.

Writing the boundary conditions in the form (2) enables us to interpret the
functions q1(E) and q2(E) as parameters appearing in Krein’s formula (7). Really,
the formal resolvent corresponding to the differential equation (1) and boundary
conditions (2) can be written in the form:
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R(E)= (A0 −E)−1 − 1

− 1
2ik

+q1(E)
〈 · , (A0 −E)−1δ〉(A0 −E)−1δ −

− 1
ik
2 +q2(E)

〈 · , (A0 −E)−1δ′〉(A0 −E)−1δ′. (7)

Note that if q1 and q2 are Nevanlinna functions (i.e., �qi (E)
�E

> 0 for E �∈R) this
implies that R(E) is the compressed resolvent of a self-adjoint extension A of the
symmetric operator

A0 =− d2

dx2

∣
∣
∣
∣
{f ∈W 2

2 (R):f (x1)=f ′(x1)=0}

into a Hilbert space H with L2(R)⊂H. In the situation under consideration qj are
not Nevanlinna functions, but rather belong to some generalized Nevanlinna class
[6,2]. Therefore one needs to consider self-adjoint extensions in a Pontryagin space
containing the original Hilbert space L2(R). However, Lemma 1 assures that the
extension space can be chosen such that L2(R) has finite defect.

3. Generalized Point Interactions

In this section, we describe a straightforward modification of the generalized point
interaction model to Pontryagain spaces. These models have been suggested first in
[8] and described in detail in [1] in the Hilbert space case.

Consider L distinct points xj , j=1,2, . . . ,L on the real line and with each point
xj associate two finite dimensional Pontryagin spaces Kj

i for i=1,2 and operators
A

j
i self-adjoint in Kj

i . Consider the extended Pontryagin space (H , [ · , · ] ), which is

given as the orthogonal sum H :=L2(R)⊕
⊕L

j=1
(Kj

1 ⊕Kj

2) with the induced inner

product. Choose in addition 2L vectors θ
j
i ∈Kj

i and 2L quadruples of real num-
bers (a

j
i , b

j
i , c

j
i , d

j
i )∈R

4 satisfying the additional condition a
j
i d

j
i −b

j
i c

j
i =−1.

DEFINITION 2. With the above notations the operator A acting in the Pontryagin
space H is defined on the domain

Dom A :=












f
(

f
j

1

f
j

2

)L

j=1





∈H :

f ∈W 2
2 (R \ {x1, . . . , xL}),

〈f j

1 , θ
j

1 〉= c
j

1 [f ′]xj
+d

j

1 {f }xj
,

〈f j

2 , θ
j

2 〉= c
j

2{f ′}xj
+d

j

2 [f ]xj
,

∀j






by

A







f
(

f
j

1

f
j

2

)L

j=1





 :=








−f ′′



(a

j

1 [f ′]xj
+b

j

1{f }xj
)θ

j

1 +A
j

1f
j

1

(a
j

2 {f ′}xj
+b

j

2 [f ]xj
)θ

j

2 +A
j

2f
j

2





L

j=1








,

where we again use notations (3) for the jump and the average value.
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PROPOSITION 3. The operator A given by Definition 2 is self-adjoint.
Proof. First we show that A is symmetric, indeed for arbitrary vectors f =

(f, {f j

1 , f
j

2 }L
j=1)

� and g=(g, {gj

1 , g
j

2 }L
j=1)

�∈Dom (A) a straight-forward calculation

gives [Af,g] − [f,Ag] = 0. For the self-adjointness consider the resolvent equation
(A − E)f = g = (g, {gj

1 , g
j

2 }L
j=1), for E � −1, g ∈ H. In components this equation

reads as





−f ′′ −Ef =g

(a
j

1 [f ′]xj
+b

j

1{f }xj
)θ

j

1 +A
j

1f
j

1 −Ef
j

1 =g
j

1

(a
j

2 {f ′}xj
+b

j

2 [f ]xj
)θ

j

2 +A
j

2f
j

2 −Ef
j

2 =g
j

2

and taking into account the boundary conditions it can be written as an equation
on the function f ∈ L2(R) only −f ′′ − Ef = g with energy dependent boundary
conditions






{f }xj
=q

j

1 (E)[f ′]xj
+ 1

b
j

1D
j

1 (E)+d
j

1

〈(Aj

1 −E)−1g
j

1 , θ
j

1 〉
{f ′}xj

=−q
j

2 (E)[f ]xj
+ 1

a
j

2 D
j

2 (E)+c
j

2

〈(Aj

2 −E)−1g
j

2 , θ
j

2 〉 , (8)

where the functions q
j
i and D

j
i are given by D

j
i (E) :=〈(Aj

i −E)−1θ
j
i , θ

j
i 〉 and

q
j

1 (E) :=− a
j

1D
j

1 (E)+ c
j

1

b
j

1D
j

1 (E)+d
j

1

, and q
j

2 (E) := b
j

2D
j

2 (E)+d
j

2

a
j

2D
j

2 (E)+ c
j

2

. (9)

The solution f of the differential equation, where E = −χ2 with χ > 0, contains
2L arbitrary parameters Aj and Bj

f (x)=
∫ ∞

−∞
eχ |x−y|

−2χ
g(y)dy +

L∑

j=1

(eχ |x−xj |Aj + sign(x −xj )eχ |x−xj |Bj ).

Substituting this Ansatz into equations (8) yields the linear system





(− 1
2χ

+q
j

1 (−χ2))Aj − 1
2χ

∑

l �=j

eχ |xj −xl |(Al + sign (xj−xl)Bl)=h
j

1

(
χ
2 +q

j

2 (−χ2))Bj + 1
2

∑

l �=j

eχ |xj −xl | (χ sign(xj−xl)Al +χBl

)=h
j

2

,

which is solvable for arbitrary h
j

1, h
j

2 ∈ C and for some E=−χ2, since the nondi-
agonal terms vanish exponentially when χ↑∞. Thus the range of A−E coincides
with H for a certain E and A is self-adjoint.

In the course of the proof we have also shown that the resolvent of the opera-
tor A compressed to the space L2(R) coincides with the generalized resolvent cal-
culated for the energy dependent boundary conditions (2) and rational functions
q

j
i (E) given by (9), that is
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{f }xj
=q

j

1 (E)[f ′]xj
and {f ′}xj

=−q
j

2 (E)[f ]xj
(10)

for j =1, . . . ,L. But also the converse holds true.

PROPOSITION 4. Let for j = 1,2, . . . ,L and i =1,2 functions q
j
i (E) be given

which are rational in E, symmetric with respect to the real axis, i.e., q(E) = q(E).

Then there exists a model operator A (as in Definition 2) leading to the energy
dependent boundary conditions (10).

Proof. According to (9) the functions D
j
i (E) have to be of the form

D
j

1 (E)=−d
j

1 q
j

1 (E)+ c
j

1

b
j

1q
j

1 (E)+a
j

1

, D
j

2 (E)=−c
j

2q
j

2 (E)−d
j

2

a
j

2q
j

2 (E)−b
j

2

.

For every rational q
j
i the real parameters a

j
i , b

j
i , c

j
i , d

j
i can be chosen in such a

way that the functions D
j
i (E) vanish at infinity and therefore can be written in the

form (9) with a certain Pontryagin space Kj
i , an operator A

j
i , and a vector θ

j
i .

Next we are describing this model in detail for the reflectionless case.

4. Reflectionless Generalized Interactions

4.1. PONTRYAGIN SPACE MODEL FOR A SINGLE FACTOR

We first discuss the special case where the transmission coefficient is of the form
T (k)= (ik−β)/(ik+β) for some β >0. Then the functions q1 and q2 in the bound-
ary conditions (2) become q1(E) = −2β and q2(E) = −E/2β. Hence a possible
choice for the parameters is a1 = 0, b1 = c1 = 1, d1 = 2β and a2 = 1, b2 = c2 = 0,
d2 = −1 which gives D1(E) = 0 and D2(E) = 2β/E. The first boundary condition
does not depend on the energy and hence the space K1 can be chosen trivially,
K1 ={0}; the function D2 can be realized as (9) in a one-dimensional Pontryagin
space. Then the model operator A can be defined in the space H=L2(R)⊕C� f =
(f, f2)

� (where [f,g] := (f, g)L2 −f2 g2 denotes the indefinite inner product) by

A : (f, f2)
� �→ (−f ′′, {f ′}x1

√
2β)�

on

dom A={(f, f2)
�∈H :f ∈W 2

2 (R \ {x1}), [f ′]x1=−2β{f }x1 , [f ]x1=
√

2βf2}.
Then A has only one eigenvalue E1=−β2, it has multiplicity 2 and the cor-

responding eigenspace is spanned by fs and fa, having symmetric, respectively
antisymmetric, with respect to x1, components fs = e−β|x−x1| and fa = sign(x −
x1) e−β|x−x1| and satisfying

[fs, fs]= 1
β

and [fa, fa]=− 1
β

.
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Since β > 0 this means that the symmetric element fs is a positive element in the
Pontryagin space H and the antisymmetric element fa is negative.

The position of the point x1 cannot be determined from the scattering matrix
and, in analogy with the inverse scattering method for potentials, one needs to
introduce normalization constants.

For the eigenvalue E1 = −β2 of the operator A we define the corresponding
normalizing constant m> 0 in the following way: consider the first component of
the normalized positive eigenelement 1/

√
[fs, fs]fs, so that this function has the as-

ymptotics me−βx for x→+∞. The coefficient m defined like this will be called the
normalizing constant. In our case this is m=√

βeβx1 . Hence here for given β there
is a one-to-one correspondence between the normalizing constant m and the posi-
tion x1 of the interaction.

Summed up, in the reflectionless case with one factor as transmission coefficient
and for given eigenvalue and normalizing constant we have solved the inverse scat-
tering problem, that is we have constructed a Pontryagin space H and an operator
A such that its scattering data (scattering matrix and normalization constant) coin-
cide with the prescribed ones. A Hilbert space model can be obtained by reducing
the operator A to a positive invariant subspace, but then the model is not local.

4.2. MODEL FOR SEVERAL FACTORS

In the general situation choose L points x1<x2<· · ·<xL and suppose that T is fac-
tored as T =∏L

j=1 Tj , where Tj (k) :=∏Nj

n=1(ik − β
j
n)/(ik + β

j
n), with pairwise dis-

joint β
j

1 > · · ·>βNj
, so that each factor Tj corresponds to a transmission through

the point xj . This means that the scattering solution, which is eikx for x < x1,
locally at the point xj is of the form:

Define the following functions like in (5) and (4)

q
j

1 (E)= 1
2ik

Tj (k)+1
Tj (k)−1

and q
j

2 (E)=− ik

2
Tj (k)+1
Tj (k)−1

. (11)

Then, by Proposition 4 there exists a generalized perturbation A, leading to
these energy dependent boundary conditons.

PROPOSITION 5. For the generalized point interaction A the exit space⊕L

j=1
(Kj

1 ⊕Kj

2) has dimension N :=∑L
j=1 Nj .

Proof. We omit the index j within this proof since each point xj can be treated
separately. Inserting the functions T explicitly in (11) shows that q1 can be written
in the form −q−1

1 (E) = 2
∑L

l=1 βl + p1(E)/q(E) where p1 and q are polynomials
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with deg p1 < deg q = n. The rational function D1(E) := p1(E)/q(E) vanishes at
∞ and hence admits a minimal realization D1(E) = 〈(A1 − E)−1θ1, θ1〉 in some
Pontryagin space K1 of dimension n with a self-adjoint operator A1 and an
element θ1. Define

D2(E) :=− 1
q2(E)

=− 1
E q1(E)

. (12)

Again the explicit analysis shows that for N =2n, we have D2 =p2/q with deg
p2<deg q =n, hence D2 has a realization in a space K2 of dimension n. In the sec-
ond case, N =2n+1 we have D2(E)=p3(E)/(E q(E)), where p3(0) �=0, hence D2

admits a realization in a space K2 with dimension n+1. In both cases the dimen-
sions add up to N .

It is clear that the continuous spectrum of A is absolutely continuous and fills
up the interval [0,∞). The following theorem describes the discrete spectrum of A.

THEOREM 6. Let A be the self-adjoint operator given in Proposition 5. Then its
eigenvalues are the numbers E

j
n :=−(β

j
n)2 for n=1, . . . ,Nj and j =1, . . . ,L. The

eigenspaces are two-dimensional, indefinite, but nondegenerate.
Proof. Consider the eigenvalue problem

Af =Ef, (13)

where f = (f, (f
j

1 , f
j

2 )L
j=1)

� ∈Dom A.

Let us first discuss the case E ∈ R \ {0} and set E =: k2. Hence the function f

has to be of the form:

Then for j =1, . . . ,L the boundary conditions (10) imply

Aj+1 =Tj (k)Aj and Bj−1 =Tj (k)Bj . (14)

For E>0 the condition f ∈ L2(R) implies A1=AN+1=B0=BN =0, and for E<0
without loss of generality we can assume ik>0 and hence

AN+1 =B0 =0. (15)

In both cases we see that the function f and hence also the element f is non-
trivial if and only if ik equals one of the β

j
n ’s for j = 1, . . . ,L and n= 1, . . . ,Nj ,

which is only possible if E < 0. Let us fix ik =β
j0
n0 and denote it for simplicity by

β. From (15) it follows that Aj =0 for j >j0 and Bj =0 for j <j0. Since the β
j
n ’s

are pairwise disjoint the corresponding eigenspace is two-dimensional.
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What is left is to calculate the inner product [f, f ] in the space H. For the
internal components u

j
i equation (13) implies

f
j

1 =−(a
j

1 [f ′]xj
+b

j

1{f }xj
)(A

j

1 +β2)−1θ
j

1 =−{f }xj
(A

j

1 +β2)−1θ
j

1

f
j

2 =−(a
j

2 {f ′}xj
+b

j

2 [f ]xj
)(A

j

2 +β2)−1θ
j

2 =−{f ′}xj
(A

j

2 +β2)−1θ
j

2 .

Note −β2∈�(A
j
i ). Indeed, the eigenvalues of A

j
i are the poles of D

j
i and hence the

zeros of q
j
i . But it can be seen that the functions q

j
i do not vanish on the negative

real line. Then for j<j0 it holds

〈uj

1, u
j

1〉+〈uj

2, u
j

2〉= 1
4
(Aj+1 +Aj)

2e2βxj ×
×(〈(Aj

1 +β2)−2θ
j

1 , θ
j

1 〉+β2〈(Aj

2 +β2)−2θ
j

2 , θ
j

2 〉)

= 1
4
(Aj+1 +Aj)

2e2βxj
(
D

j

1
′
(−β2)+β2D

j

2
′
(−β2)

)

and likewise for j >j0

〈uj

1, u
j

1〉+〈uj

2, u
j

2〉= 1
4
(Bj−1 +Bj )

2e−2βxj
(
D

j

1
′
(−β2)+β2D

j

2
′
(−β2)

)
.

Here we have used the identity

〈(Aj
i −E)−2θ

j
i , θ

j
i 〉= d

dE
D

j
i (E)=D

j
i

′
(E).

Relations (12) and (4) imply D
j

1
′
(E)−E D

j

2
′
(E)=− 1

E q
j

1 (E)
, and hence

[f, f ]= 1
2β




j0−1∑

j=1

(
A2

j −A2
j+1 − (Aj+1 +Aj)

2 Tj (β)−1
Tj (β)+1

)
e2βxj +

+
L∑

j=j0+1

(

B2
j −B2

j−1 − (Bj−1 +Bj )
2 Tj (β)−1
Tj (β)+1

)

e−2βxj



+

+ 1
2β

(
A2

j0
e2βxj0 +B2

j0
e−2βxj0

)+〈uj0
1 , u

j0
1 〉+〈uj0

2 , u
j0
2 〉,

here the summands in the square brackets vanish by (14).
In what follows we focus on two particular eigenelements for which the exter-

nal component f locally at xj0 is symmetric (and antisymmetric) with respect to
the point xj0 . Denote by fs the symmetric (and fa the antisymmetric) element, i.e.,
Aj0 =e−βxj0 , Bj0 =eβxj0 (and Aj0 =−e−βxj0 , Bj0 =eβxj0 , respectively). Observing the
identity

q
j

1 ′
(q

j

1 )2
(−k2)= 1

k

τj (k)−1
τj (k)+1

+
2τ ′

j (k)

(τj (k)+1)2
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with the real functions τj (k) :=Tj (k/i) it follows

[fs, fs] = 1
β

+ q
j

1
′

(q
j

1 )2
(−β2)=2τ ′

j0
(β)

[fa, fa] = 1
β

− q
j

1
′

(q
j

1 )2
(−β2)− 1

β2q
j0
1 (−β2)

=−2τ ′
j0

(β).

(16)

Hence for each eigenvalue either the symmetric or the antisymmetric element is
positive (negative, respectively). Moreover, a similar calculation yields that they are
orthogonal, i.e., [fs, fa]=0. Hence the eigenspace is nondegenerate.

In the same way one can treat E =0 and obtain that it cannot be an eigenvalue
of A. Since the dimension of the extension space is N =∑L

j=1 Nj it follows that the
number of negative squares (and hence also the dimension of every non-positive
subspace) of the Pontryagin space H is bounded by N . But we have shown that
there exists an N -dimensional negative subspace spanned by eigenelements for real
eigenvalues. Thus there cannot be a non-real eigenvalue, since its eigenelement had
to be neutral.

Equation (16) also implies that for each point xj , the symmetric and antisym-
metric eigenfunctions interchange their type so that the symmetric eigenfunction
corresponding to the lowest eigenvalue −(β

j

1 )2 is always of positive type.

5. Inverse Problem for Reflectionless Operator Extensions

5.1. INVERSE PROBLEM: EXISTENCE OF THE SOLUTION

In the model described – following the idea in Section 4.1 – we define normalizing
constants m(βj , xj ) in the following way:

DEFINITION 7. Let E=−β2 be an eigenvalue of the operator A. Denote by f
the symmetric eigenelement if it is positive (otherwise take the antisymmetric). We
call a number m>0 normalizing constant related to the eigenvalue E =−β2, if the
external (i.e., the first) component of 1√

[f,f ]
f may be chosen equal to me−βx for

x >xL.

For given scattering data (Ei,mi)
n
i=1 it is not immediately clear how to recon-

struct the positions of the interactions. In fact, here a normalizing constant does
not only depend on the corresponding point, but also on its position with respect
to the other points. We will show that the inverse scattering problem can always
be solved, however its solution need not be unique.

Let us first consider single points, i.e., at the point xj there is the interaction
according to the transmission coefficient Tj (k)= (ik −βj )/(ik +βj ). With (14) and
(16) one finds that in this case the normalizing constants are given by:
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m(βj , xj )=√βj

∏

xn>xj

∣
∣
∣
∣
βj +βn

βj −βn

∣
∣
∣
∣ e

βj xj .

Denote y(β,m) :=1/β ln(m/
√

β), which gives the position of a single basic interac-
tion with the energy E =−β2 and normalizing constant m. The following theorem
gives an answer to the inverse scattering problem, and in addition describes one of
the solutions more precisely.

THEOREM 8. For any scattering data consisting of the eigenvalues E1<E2<· · ·<En

and the corresponding normalizing constants mj ∈ R
+ for j = 1, . . . , n there exist

distinct real points x1, . . . , xn such that mj = m(βj , xj ) and xj�maxi=1,... ,n yi ,
where yi :=y(βi,mi).

Proof. We use the fact that changing the model by adding a single interac-
tion to the right of the other points changes the normalizing constants only by
a factor, which is less than 1 and then we use induction. For n = 1 the point x1

equals the point y1. So let us assume that the claim already holds for n − 1. By
N denote an index for which yN = maxi=1,... ,n yi and define the numbers m̃j :=∣
∣(βj −βN)/(βj +βN)

∣
∣mj . Then according to the assumption for the scattering data

(Ej , m̃j )j∈{1,... ,n}\{N} there exist distinct points xj for j ∈ {1, . . . , n}\{N} such that
m̃j = m(βj , xj ). We show that the points xj for j ∈ {1, . . . , n}\{N} and xN := yN

give a solution to the problem. Indeed, by assumption and since y(E,m) is strictly
increasing in m, it holds

xj� max
j∈{1,... ,n}\{N}

y(Ej , m̃j )< max
j∈{1,... ,n}\{N}

y(Ej ,mj )�yN .

Hence the points are distinct and the additional inequality is satisfied. Moreover,
m(βj , xj )= ∣∣(βj +βN)/(βj −βN)

∣
∣ m̃j =mj , which finishes the proof.

In the proof only one possible choice for the positions xj is given. Although for
some scattering data it is unique, it can also happen that different configurations
of the xj ’s lead to the same scattering data. This phenomenon occurs when the
singular points are ‘close’ and is described in the following subsection.

5.2. INVERSE PROBLEM: NON-UNIQUENESS

In this section we consider the time-dependent scattering data

βi(t)=βi(0), mi(t)=mi(0)e4β3
i t (17)

and analyze the corresponding model operator A and its time evolution.

Remark 9. Note that, with reflection coefficients Ri(t) = 0 for every fixed t the
inverse scattering method gives for the scattering data (17) a potential V (x, t). This
function is a soliton of the Korteweg-de Vries equation.
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Our consideration can easily be generalized to an arbitrary number of solitons
but we prefer to restrict ourselves to the case of two in order to make the presen-
tation more transparent.

The operator A can be constructed with two (may be coinciding) singular points
x1 and x2. We recall the three possibilities that can occur. Without loss of gen-
erality suppose E1<E2, with Ej =−β2

j . Denote the corresponding singular points
by x1 and x2, or X1 and X2. In the case of a double singular point we denote its
coordinate by x0.

1. Double point: x0 and the corresponding transmission coefficient is

T (k)= ik −β1

ik +β1

ik −β2

ik +β2
.

Then the symmetric eigenelement fs corresponding to β1 is positive and the
normalizing constant is

m1 =
√

β1D0eβ1x0 , with D0 = β1 +β2

β1 −β2
.

The corresponding antisymmetric eigenfunction for E2 =−β2
2 has the normaliz-

ing constant

m2 =
√

β2D0eβ2x0 .

2. Two single points: x1 < x2. The positive eigenfunctions are locally symmetric
(near the corresponding singular points) and the normalizing constants are
given by:

m1 =
√

β1D0eβ1x1 and m2 =
√

β2eβ2x2 .

3. Two single points: X1 >X2. Again the eigenfunctions are locally symmetric, but
the normalizing constants are given by:

m1 =
√

β1eβ1X1 and m2 =
√

β2D0eβ2X2 .

In order to reconstruct the model, one has in particular to reconstruct the singular
points from the scattering data. Note that in (17) only the normalizing constants
depend on the time, hence in the model only the positions of the singular points
are time-dependent.

For t �−1 the second model has to be used and hence it holds

x1(t)= 1
β1

ln
m1(0)√
β1D0

+4β2
1 t and x2(t)= 1

β2
ln

m2(0)√
β2

+4β2
2 t.

Here the precise upper bound tB , for which these formulas are allowed is deter-
mined by the condition x1(t)<x2(t).
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Figure 1.

For t �1 the third model has to be used, which gives

X1(t)= 1
β1

ln
m1(0)√

β1
+4β2

1 t and X2(t)= 1
β2

ln
m2(0)√
β2D0

+4β2
2 t.

In Fig. 1 the time dependence is illustrated.
For t < tA the points have to move along the lines of x1 and x2, since the

inequality X2 <X1 is not satisfied. Since x1, the point to the left, is moving faster,
their distance is getting smaller. For tA < t < tB both inequalities are satisfied and
hence both cases (two and three) are possible (note D0 > 1). For t > tB the points
have to be on the lines X1 and X2. So somewhere inbetween they have to change
the lines, and therefore they have to jump, it is impossible to find a continous
movement of the singular points.
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