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Abstract. The extension theory for semibounded symmetric operators is gen-
eralized by including operators acting in a triplet of Hilbert spaces. We concentrate
our attention on the case where the minimal operator is essentially self-adjoint in
the basic Hilbert space and construct a family of its self-adjoint extensions inside
the triplet. All such extensions can be described by certain boundary conditions,
and a natural counterpart of Krein’s resolvent formula is obtained.

1 Introduction

The extension theory for symmetric operators [1, 30] developed originally by J. von
Neumann [27] gives an affirmative answer to the question under which conditions
does a symmetric densely defined operator possess self-adjoint (canonical) exten-
sions and describes all such extensions as restrictions of the adjoint operator. The
family of self-adjoint operators may then be parametrized by Krein’s resolvent
formula [20], where spectral properties of the operators are encoded in a certain
Nevanlinna function, usually known as Krein’s Q-function.

In the current article, we study so-called triplet extensions of symmetric oper-
ators. Consider a triplet of Hilbert spaces [8] (see the rigorous definition below)

(1.1) G ⊂ H ⊂ G†

and an operatorB, which is symmetric and densely defined both as an operator inG
and in H . Certainly the deficiency indices for these two operators can be different;
the case which attracted our attention is when the operator B is semibounded and
essentially self-adjoint in H , but has nontrivial deficiency indices as an operator in
G. In this case, there is a unique self-adjoint extension ofB inH, but insideG there
is a nontrivial family of extensions. This family can be characterized by classical
extension theory and therefore is not particular interesting. Such extensions do not
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fully use the structure of the Gelfand triplet (1.1); more precisely, the spaceG† plays
no role in this construction. On the other hand, every densely defined operatorB in
G determines the triplet adjoint operator B† acting in G†. It is therefore interesting
to study (generalized) extensions ofB which are at the same time restrictions ofB†.
We call such operators triplet extensions. This construction naturally generalizes
the von Neumann approach and clearly coincides with it in the degenerate case
G = H = G†. In defining triplet extensions, we exclude canonical extensions of B
in G, which can as well be obtained as restrictions of B† since B∗ ⊂ B†, where B∗

denotes the operator which is adjoint to B in G (see Definition 3.1 for details).

Starting with the most general definition of triplet extensions, we continue with
the case where G is one of the spaces from the scale of Hilbert spaces associated
with the unique self-adjoint extension of B in H . This assumption is satisfied in
several examples exhibited below. In addition, we restrict our considerations to
the case where the deficiency indices of B in G are (1, 1) in order to make our
presentation more transparent; most of the formulas can easily be generalized to
the case of any equal deficiency indices. For the same reason, we treat just the
case when B is essentially self-adjoint in H , since in this case triplet extensions
are of particular interest. As expected, formulas generalizing Krein’s resolvent
formula play the central role in the characterization of the corresponding operator
families. In particular, we obtain an extension of Krein’s formula, where the role
of the Q-function is played by a certain generalized Nevanlinna function. This is
especially surprising, since the corresponding operator is self-adjoint in a certain
Hilbert space, not in a Pontryagin space, where the appearance of generalized
Nevanlinna functions is standard.

In the rest of the introduction, we discuss a few examples showing that triplet
extensions are important in certain applications. The extension theory for symmet-
ric operators plays an important role in modern mathematical physics, especially
in quantum mechanics. This role is two-fold

• On the one hand, extension theory is sometimes needed to describe the family
of self-adjoint operators corresponding to a formal differential expression
obtained from a classical Hamiltonian via the correspondence principle.

• On the other hand, extension theory can be used to introduce interactions
which are specific for quantum mechanics and do not have classical ana-
logues, so-called contact interactions.

Probably the most important example connected with these two approaches
concerns the Sturm-Liouville operator on the half-line, where in order to deter-
mine self-adjoint operators, one usually needs in addition to a formally symmetric
differential expression certain boundary conditions at the origin. Then the spectral
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properties of the corresponding operators are described by the Titchmarsh-Weyl
coefficient, which is identical to Krein’sQ-function in this case — a certain Nevan-
linna type function. It appears natural to try to generalize this approach in order
to include the singular case (limit point case in accordance with H. Weyl’s clas-
sification [30]) when the minimal operator has trivial deficiency indices. Almost
all constructions considered so far lead to operators in Pontryagin spaces (with
indefinite metrics) and generalized Nevanlinna functions [12, 14, 15, 24].

Another class of problems where we meet similar difficulties is the theory of
singular interactions [31, 17, 19, 3, 4, 5, 22, 23, 25, 26], where one of the first
questions is the rigorous definition of the operator formally given by

(1.2) L+ α〈ϕ, ·〉ϕ, α ∈ R,

where L is a self-adjoint operator in the Hilbert space H (with scalar product
denoted by 〈·, ·〉) and ϕ is a certain vector from the scale of Hilbert spaces Hn(L)

associated with the self-adjoint operator L (see the definition below). The inter-
esting case occurs when ϕ /∈ H; otherwise, the perturbation term is just a bounded
operator. One can define such a perturbation in the case ϕ ∈ H−n, n = 1, 2 by
associating (1.2) with one of the self-adjoint extensions of the operator Lmin —
the restriction of L to the set of functions ψ satisfying the additional condition
〈ϕ, ψ〉 = 0. The corresponding family of operators is again described by Krein’s
resolvent formula [20, 5] with a Nevanlinna function encoding their spectral prop-
erties. But this approach does not work in the case ϕ ∈ H−n \ H−2, n ≥ 3,
because the corresponding restricted operator is essentially self-adjoint (in H), so
that the original operator L is its unique self-adjoint extension. Attempts to define
a nontrivial family of operators in this case are again connected with generalized
Nevanlinna functions and operators in Pontryagin spaces [14, 22].

It has been noted [25, 26, 22] that the restricted operator has nontrivial deficiency
indices considered in the Hilbert space Hn−2 instead of H. It follows that we may
try to define the operator given formally by (1.2) as a triplet extension with respect
to the triplet

(1.3) Hn−2 ⊂ H ⊂ H−n+2,

of Hilbert spaces from the scale associated withL inH . The operator corresponding
to (1.2) has been defined on a certain vector space of singular elements forming
a sort of cascade belonging to different spaces from the scale [22, 12]. These
elements belong to different spaces from the scale and therefore have different
orders of singularity with respect to the operator B. It was shown that the vector
space can be turned into a Hilbert space to obtain a family of self-adjoint operators
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corresponding to formal singular interactions. Unfortunately, this model is not
optimal, in the sense that the parameters (certain normalization points µj < 0

and a Gram matrix Γ) have to be chosen satisfying certain restrictions whose
origin was hard to understand. In particular, in order to obtain a Hilbert space
model, it is necessary to choose all µj pairwise different, and Γ cannot be chosen
diagonal. These technical difficulties became an obstacle for further development
of the theory and using it in applications. In the model presented here, the Gram
matrix Γ is diagonal, and an explicit explanation for the choice of normalization
points µj is given. Since the basis elements in the new model have the same
order of singularity, one may call it the peak model (in order to distinguish it
from the cascade model given in [12]). This new model is more transparent
and therefore more easily used in different applications. It has also been realized
that the methods originally developed to interpret the formal expression (1.2) have
much more general applications and can be used to construct triplet extensions.
Such a general model is developed in the current article. It opens a new research
field, giving a hint how to study the triplet extensions in the case of arbitrary
deficiency indices. This program will be developed in a forthcoming article.

A similar approach has already been carried out for singular Sturm-Liouville
operators of hydrogen atom type in [24] interpreting the generalized Titchmarsh–
Weyl coefficient as Krein’s Q-function, even in the case that it is of generalized
Nevanlinna type.

The current article is organized as follows. As mentioned, our approach is
a direct extension of the classical von Neumann theory or, more precisely, its
version developed by M. Krein, M. Birman and M. Vishik [9, 21, 32, 6], which
is very useful in the physical case of semibounded operators. This theory is
briefly discussed in Section 2. The following two sections are devoted to the
definition of triplet extensions in the general case and in the case where the triplet
is formed just by three spaces from the scale. The minimal extended space is
introduced. The corresponding minimal and maximal operators acting in the
extended space are described in Section 5. The self-adjoint family of triplet
extensions is finally obtained in Section 6 by restricting the maximal operator. The
corresponding resolvents are calculated explicitly. In Section 7, we obtain a new
extended resolvent formula and describe the class of functions appearing in its
denominator. It is shown that these functions can also be obtained by a certain
natural renormalization procedure demonstrated in Section 8. The last two sections
are devoted to an application of the developed approach to the theory of singular
perturbations. In particular, a new family of point interactions for the Laplacian in
R3 is presented.
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In this article, we use the scale of Hilbert spaces

(1.4) · · · ⊂ H3 ⊂
Dom(L)

‖
H2 ⊂ H1 ⊂

H
‖
H0 ⊂ H−1 ⊂

(Dom (L))∗

‖
H−2 ⊂ H−3 ⊂ · · ·

associated with a certain positive self-adjoint operator L. The spaces H−n,
n = 1, 2, . . . can be considered as completions of H = H0 with respect to the
norms

‖U‖2
Hn

= 〈U, (L+ 1)nU〉,

where 〈·, ·〉 = 〈·, ·〉H is the scalar product in the original Hilbert space H . Then the
spaces with positive indices are just dual spaces

Hs = H∗
−s,

so that the spaces Hm ⊂ H ⊂ H−m, m = 1, 2, . . . form a Gelfand triplet (of Hilbert
spaces). The operator L+ 1 acts as an isometric shift in the scale of Hilbert spaces
mappingHn+2 onto Hn. Let us denote byLn the restriction for n > 0 and extension
for n < 0 of the operator L to the domain Dom(Ln) = Hn+2. The operator Ln so
defined is self-adjoint in Hn. In particular, the operator L0 is equal to the operator
L, and its domain is the space H2.

Note that an equivalent norm in Hn can be introduced using the scalar product

(1.5) 〈U, V 〉Hn
= 〈U, b(L)V 〉H ,

where b is any polynomial of order n positive on R+ ∪ {0}. In what follows, we
choose

(1.6) b(λ) = (λ − µ1)(λ− µ2) · · · (λ − µm),

where µ1, . . . , µm < 0 are arbitrary pairwise different negative numbers.

2 Perturbations and extensions of semibounded opera-
tors: classical theory

The aim of this article is to generalize the extension theory for symmetric operators
by including the case where the role of the adjoint operator is played by the triplet
adjoint operator. It is clear that the classical extension theory, originally developed
by J. von Neumann [27] (see also [10]), should appear as a special case when the
triplet of Hilbert spaces degenerates into just one Hilbert space, so that we have
G = H = G†. Since all operators appearing in this article are semibounded, it is
natural to use a special version of the extension procedure given by M. Sh. Birman,
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M. G. Krein and M. I. Vishik [9, 21, 32] and usually called Birman-Krein-Vishik
theory [6]. In this section, we recall the main ideas of this approach.

Let B be a nonnegative closed symmetric densely defined operator acting in
a Hilbert space H . Assume that it has deficiency indices (1, 1). Then the Hilbert
space possesses the decomposition

(2.1) H = Range (B − µ) ⊕ Ker (B∗ − µ), µ ∈ R−,

where B∗ denotes the operator adjoint to B in the space H and the negative
parameter µ can be chosen arbitrarily. Then any self-adjoint extension A is at the
same time a restriction of the adjoint operator, so that the formula

(2.2) B ⊂ A ⊂ B∗

holds. We denote by A any nonnegative self-adjoint extension of B. Such an
extension can be obtained, for example, by closing the domain of B with respect
to the graph norm. This extension is usually called the Friedrichs extension, but
the role of A can be played by any other nonnegative extension.

Let us denote by G(λ) the family of deficiency elements satisfying the identity

(2.3) G(λ) =
A− µ

A− λ
G(µ) = G(µ) + (λ− µ)

1

A− λ
G(µ), λ, µ ∈ C \ R+.

Then the domain of the adjoint operator is given by

(2.4) Dom(B∗) = Dom (A)+̇L{G(µ)},

where µ < 0 is a certain fixed point on the negative half-axis and L denotes the
linear span. The sum here is direct, since G(µ) /∈ Dom(A) and therefore every
U ∈ Dom(B∗) can be written as

(2.5) U = Ur + uG(µ), Ur ∈ Dom(A), u ∈ C,

and this representation is unique. The action of the operator B∗ is given by

(2.6) B∗(Ur + uG(µ)) = AUr + µuG(µ).

The domain of the maximal operator can also be described as

(2.7) Dom(B∗) = Dom (A) + L{G(λ) : λ ∈ C \ R+},

where the parameter λ runs over all complex numbers excluding the positive half-
axis. Note that in this representation, the sum is no longer direct, since

(2.8) G(µ) −G(λ) ∈ Dom(A).
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This formula shows that (2.4) and (2.7) describe exactly the same linear sets.

Now every self-adjoint restriction of the maximal operator can be described by
imposing the boundary condition

(2.9) 〈G(µ), (A − µ)Ur〉 = γu, γ ∈ R ∪ {∞}

on the functions possessing representation (2.5). Let us denote the corresponding
operator byAγ . In this parametrization, we haveA = A∞. The boundary condition
guarantees that the resolvent equation

(2.10) (Aγ − λ)U = F, F ∈ H

is solvable for all λ ∈ C \ R, and this solution leads to Krein’s resolvent formula

(2.11)
1

Aγ − λ
=

1

A− λ
− 1

〈G(µ), (λ − µ)G(λ)〉 − γ

〈

G(λ), ·
〉

G(λ).

In this formula, the function

(2.12) Q(λ) = 〈G(µ), (λ − µ)G(λ)〉

is a Nevanlinna function, i.e., is analytic outside the real axis, symmetric with
respect to the real axis and has nonnegative imaginary part in the upper half-plane.
This function is usually called Krein’sQ-function, and the parameter γ describes
all possible self-adjoint extensions of B. Note that, in general, the parameter γ
depends on the chosen regularization point µ.

3 Self-adjoint extensions in a triplet of Hilbert spaces

Consider a triplet of Hilbert spaces

(3.1) G ⊂ H ⊂ G†

satisfying the following properties:

• G,H,G† are Hilbert spaces;
• the space G is a dense subspace of H;
• the space H is a dense subspace of G†;

• the space G† is dual to G with respect to the norm in H.

It is natural to extend the notation 〈·, ·〉H , denoting originally the scalar product in
H, to the pairing between elements from G and G†, so that

〈U, V 〉H
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is well-defined whenever U ∈ G, V ∈ G† or U ∈ G†, V ∈ G. Let B be a densely
defined operator in G. Then the triplet adjoint operator B† is defined in the
Hilbert space G† on the domain

Dom(B†) = {V ∈ G† : ∃CV > 0 : U ∈ Dom(B) ⇒ |〈V,BU〉H | ≤ CV ‖U‖G},

by the equality

〈V,BU〉H = 〈B†V, U〉H , for all U ∈ Dom(B).

Here we investigate so-called triplet extensions of symmetric operators B in G

having nontrivial deficiency indices. We consider the case whereB is semibounded
and has defect one. Our main interest lies in the situation in which the operator B
is essentially self-adjoint in H , i.e., its closure in H is a self-adjoint operator. In
this case, considering B in H does not lead to an interesting extension theory, and
triplet extensions start to play an important role.

By a triplet extension of B we understand a generalized extension of B to
a certain Hilbert space H inside G† which is simultaneously a restriction of the
triplet adjoint operatorB†. In order to exclude canonical extensions (insideG), we
assume that H contains Ker (B† − µ), for all µ ∈ C \ R+. More precisely, we have
the following definition

Definition 3.1. Let G ⊂ H ⊂ G† be a triplet of Hilbert spaces and let B be a
densely defined symmetric operator in G. An operator A acting in a Hilbert space
H is a self-adjoint triplet extension of the operator B if and only if

• the space H

(1) is a subset of G†;

(2) contains G as a Hilbert subspace;
(3) contains Ker (B† − µ), for all µ ∈ C \ R+;

i.e.,

(3.2) G ⊂ H ⊂ G†,

and
• the operator A is self-adjoint in H and satisfies

(3.3) B ⊂ A ⊂ B†,

i.e., it is an extension of B and a restriction of B†.

Formula (3.2) follows directly from assumptions (1) and (2) and implies to-
gether with (3.3) that every triplet extension of B is an operator acting inside the
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triplet and this operator acts as the triplet adjoint. This is a direct generalization of
the classical formula (2.2) valid for self-adjoint extensions inside the space (when
the triplet (3.1) reduces to just one Hilbert space).

If the operator B in G has nontrivial deficiency indices, then the kernel
Ker (B† − λ) is always nontrivial. In particular, Definition 3.1 implies that

(3.4) H ⊃ Range (B − µ)+̇Ker (B† − µ), µ ∈ R−,

where the sum is orthogonal with respect to the scalar product in G† (but not
necessarily in H). This formula is a natural generalization of (2.1) valid for
extensions inside the space.

If B is essentially self-adjoint in G, then the kernel Ker (B† − µ), µ ∈ R−,
is trivial, since B† is a positive self-adjoint operator in G†. Condition (3) makes
no further restriction on H in this case, and the closure of B in H satisfies the
definition. Therefore in what follows only operators with nontrivial deficiency
indices will be considered.

We do not aim to describe the whole family of triplet extensions in the current
article. The family we construct is minimal in the sense that the space H is the
minimal vector space satisfying assumptions (1)–(3). In addition, we assume that
the spaces G and G† are from the scale of Hilbert spaces associated with a certain
nonnegative operator and B is a restriction of this operator to a subspace of G.
The corresponding triplet extensions can be referred to as extensions in the scale
of Hilbert spaces and are considered further in the following section.

4 Triplet extensions in the scale of Hilbert spaces

In this section, we consider the case in which the Hilbert space G from the triplet
(3.1) coincides with one of the Hilbert spaces associated with the closure of B in
H (recall that B is essentially self-adjoint in H). It is convenient to change our
point of view slightly. Let L be a nonnegative self-adjoint operator in the Hilbert
space H . Consider the triplet

(4.1) Hm ⊂ H ⊂ H−m

and the minimal operator Lmin satisfying the conditions
(1) Lmin is a restriction of L;

(2) Lmin has deficiency indices (1, 1) in Hm;

(3) Lmin is essentially self-adjoint in H .
It follows that Lmin is a restriction of Lm, which is self-adjoint in Hm. The triplet
adjoint to the operatorLm coincides withL−m. It follows that the maximal operator
Lmax = L†

min, the triplet adjoint to Lmin, is an extension of L−m in H−m.
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Hence we are in the situation described at the beginning of the preceding section
with

G = Hm, G† = H−m, B = Lmin and B† = Lmax.

In what follows, we investigate the possibility of constructing a self-adjoint triplet
extension A of Lmin in a certain Hilbert space H. In our approach, such extensions
are constructed by first specifying the linear space H and then defining the operator
Amax in it as a restriction of Lmax. Such an operator possesses self-adjoint restric-
tions if and only if the minimal operator Amin = A∗

max — the adjoint of Amax in
H— is also a restriction of Amax. We show that Amin is also an extension of Lmin,
so that the following inclusions hold:

(4.2) Lmin ⊂ Amin ⊂ Amax ⊂ Lmax.

This condition implies certain restrictions on the scalar product, which now may
be introduced on H to turn it into a Hilbert space. If formula (4.2) holds, then a
triplet extension A of Lmin can be obtained using standard extension theory inside
the new Hilbert space H so that

(4.3) Lmin ⊂ Amin ⊂ A ⊂ Amax ⊂ Lmax.

Let us denote byG(λ) the family of deficiency elements for the operatorLmin in
Hm which are solutions to the equation (L∗

min−λ)G(λ) = 0.1 Then the self-adjoint
canonical extensions of Lmin inside the space Hm can be constructed following the
original scheme described in Section 2; in particular, formula (2.4) implies

(4.4) Dom(L∗
min) = Dom (Lm)+̇L{G(µ)}, µ < 0.

This construction does not bring any new ideas, and the corresponding operator is
not a triplet extension of Lmin since condition 3 in Definition 3.1 is not satisfied.

Let us determine the domain of the maximal operatorLmax = L†
min. The domain

of L†
min consists of all V ∈ H−m such that the form 〈V, LU〉H , U ∈ Dom(Lmin),

determines a bounded linear functional with respect to U ∈ Hm, i.e.,

|〈V, LU〉H | ≤ CV ‖U‖Hm
, for some CV > 0.

Recall that the domain of L∗
min described by (4.4) is precisely the set of allW ∈ Hm

such that

|〈W,LU〉Hm
| = |〈W, b(L)LU〉H | ≤ C̃W ‖U‖Hm

, for some C̃W > 0.

1L∗

min
denotes here the operator adjoint to Lmin in the Hilbert space Hm.



TRIPLET EXTENSIONS OF SEMIBOUNDED OPERATORS 261

It follows that Dom(Lmax) = b(L)Dom(L∗
min); and hence every V ∈ Dom(Lmax)

possesses the representation

(4.5) V = Ṽ + vg(µ), Ṽ ∈ H−m+2, v ∈ C,

where

(4.6) g(µ) = b(L)G(µ) ∈ H−m

and µ is a fixed negative number. Since the operators L and b(L) commute, the
action of Lmax is given by

(4.7) Lmax

(

Ṽ + vg(µ)
)

= LṼ + µvg(µ).

In particular, the function g(λ), λ ∈ C \ R+ solves the equation

(Lmax − λ)g(λ) = 0;

and every other solution is a multiple of g(λ). The functions g(λ) resemble the
deficiency elements appearing in the classical extension theory but do not belong
to the original Hilbert space H, since the operator Lmin is essentially self-adjoint
there.2 In our approach, g(λ) is a deficiency element for the minimal operator
defined in a certain extension of the original Hilbert space.

Lemma 4.1. In the above situation, the minimal vector space H satisfying

assumptions 1, 2 and 3 of Definition 3.1 is an m-dimensional extension of Hm,

which can be described as

(4.8) H = Hm+̇L{g(µ1), g(µ2), . . . , g(µm)},

where µj are different negative numbers

(4.9) µj < 0, µj 6= µi, i, j = 1, 2, . . . ,m.

Proof. The set H contains at least the set

Hm + L{g(λ), λ ∈ C \R+}.

We claim that this extension is finite dimensional. It is sufficient to show that every
g(λ) can be written as a linear combination of g(µj), j = 1, . . . ,m and a function
from Hm. Indeed, this representation is given by

(4.10) g(λ) =

m
∑

j=1

bj(λ)

bj(µj)
g(µj) + b(λ)G(λ),

2In fact, g(λ) is a deficiency element for the operator L−m restricted to the set of functions
U ∈ H−m+2 satisfying the further condition 〈U, (L − λ)G(λ)〉 = 0.
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where the polynomial b is determined by (1.6) and

(4.11) bj(λ) =
∏

i6=j

(λ− µi).

The sum in (4.8) is direct, since

Hm ∩ L{g(µ1), . . . , g(µm)} = {0}.

Hence every vector space satisfying the assumptions of Definition 3.1 contains the
vector space given by (4.8). �

The last lemma describes H as a vector space. It can be turned into a Hilbert
space by introducing a scalar product using a certain positive definite Gram matrix
Γ

(4.12) 〈U,V〉H = 〈U, b(L)V 〉H + 〈~u,Γ~v〉Cm ,

where we write

(4.13) ~u = (u1, u2, . . . , um) ∈ C
m.

With this scalar product, the Hilbert space H can be identified with the orthogonal
sum

(4.14) H
∼
= Hm ⊕ C

m,

with the natural identification

(4.15) U = (U, ~u) = U +
m
∑

j=1

ujg(µj).

Therefore, in what follows, elements from H are considered both as functions from
H−m and as pairs U = (U, ~u), U ∈ Hm, ~u ∈ Cm.

It turns out that the matrix Γ has to be chosen diagonal in order to satisfy (4.2);
but, in order to explore all possibilities, we assume for the moment that Γ is just a
Hermitian matrix with positive eigenvalues.

5 Maximal and minimal operators

In this section, we describe the maximal and minimal operators acting in the
extension space H. The operator Amax acting in H is defined as the restriction of
the linear operator Lmax to the space H.



TRIPLET EXTENSIONS OF SEMIBOUNDED OPERATORS 263

Lemma 5.1. Let Amax be the restriction of Lmax to the space H. Then it acts

on the domain

Dom(Amax) = Hm+2+̇L{g(µ), g(µ1), g(µ2), . . . , g(µm)} 3 U(5.1)

U = Ur + ug(µ) +

m
∑

j=1

ujg(µj), Ur ∈ Hm+2, u, uj ∈ C,

as

(5.2) Amax

(

Ur + ug(µ) +

m
∑

j=1

ujg(µj)

)

= LUr + µug(µ) +

m
∑

j=1

µjujg(µj),

where µ 6= µj is a certain negative number and µj satisfy (4.9).

Proof. By definition, the domain of Amax is given by

Dom(Amax) = {U ∈ H ∩ Dom(Lmax) : LmaxU ∈ H},

where the first condition actually represents no restriction since every U ∈ H

possesses the representation (4.5)

U = U +
m
∑

j=1

ujg(µj), U ∈ Hm, uj ∈ C

and therefore belongs to Dom(Lmax). Hence such a function belongs to the domain
of Amax if and only if it is mapped by the operator Lmax − µ, µ < 0, to a certain
V ∈ H. Since V again possesses the representation (4.15), we have

(L− µ)U +

m
∑

j=1

uj(µj − µ)g(µj) = V +

m
∑

j=1

vjg(µj),

which implies

U = (L − µ)−1V +

m
∑

j=1

(vj − uj(µj − µ))(L − µ)−1g(µj).

Every such function U can be written as a linear combination of the functions

g(µ), g(µ1), g(µ2), . . . , g(µm)

and a function from Hm+2. It follows that U possesses the representation (5.1).
It is clear that the sum is direct, since no nontrivial linear combination of g(µ),

g(µ1), . . . , g(µm) belongs to Hm+2.
Taking into account that Lmaxg(λ) = λg(λ) and LmaxUr = LUr, we get formula

(5.2). �
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We have shown that the maximal operator Amax is given by formulas (5.1) and
(5.2). In what follows it is useful to obtain a description of the domain and the
action of this operator compatible with the orthogonal decomposition (4.14).

Let us introduce the diagonal m×m matrix

(5.3) M = diag {µ1, µ2, . . . , µm}

and the m-dimensional vector ~b ∈ C
m with coordinates

(5.4) bj =
1

bj(µj)
, j = 1, 2, . . . ,m,

where the polynomials bj are given by (4.11).

Lemma 5.2. For the maximal operator Amax given by (5.1) and (5.2), it holds

that

(5.5) Dom(Amax) = {U = (U, ~u) : U = Ur + uG(µ), Ur ∈ Hm+2, u ∈ C, ~u ∈ C
m}

and

(5.6) Amax

(

Ur + uG(µ)

~u

)

=

(

LUr + µuG(µ)

M~u+ u~b

)

.

Proof. It follows from

(5.7) G(µ) =

m
∑

j=1

1

bj(µj)

1

µj − µ
(g(µj) − g(µ)) ∈ Hm

that any function U from Dom(Amax) given by (5.1) can be written in the form

Ur + uG(µ) +

m
∑

j=1

ujg(µj), Ur ∈ Hm+2

with coefficients u, uj ∈ C. Hence formula (5.5) holds.
Let us calculate the action of the operator. Using (5.7) and (5.2), we get

Amax

(

Ur + uG(µ) +

m
∑

j=1

ujg(µj)

)

= Amax

(

Ur + u
m
∑

j=1

1

bj(µj)

1

µ− µj
(g(µ) − g(µj)) +

m
∑

j=1

ujg(µj)

)

= LUr + u
m
∑

j=1

1

bj(µj)

1

µ− µj
(µg(µ) − µjg(µj)) +

m
∑

j=1

ujµjg(µj)

= LUr + µuG(µ) +

m
∑

j=1

(

µjuj + u
1

bj(µj)

)

g(µj),

which completes the proof. �



TRIPLET EXTENSIONS OF SEMIBOUNDED OPERATORS 265

The maximal operator Amax plays the role of the adjoint operator for the exten-
sion problem in H. In the sequel, we require its boundary form, which shows in
particular that this operator is not symmetric:

〈AmaxU,V〉H − 〈U,AmaxV〉H

(5.8)

=

〈(

LUr + µuG(µ)

M~u+ u~b

)

,

(

Vr + vG(µ)

~v

)〉

H

−
〈(

Ur + uG(µ)

~u

)

,

(

LVr + µvG(µ)

M~v + v~b

)〉

H

= 〈LUr + µuG(µ), b(L) (Vr + vG(µ))〉H − 〈Ur + uG(µ), b(L) (LVr + µvG(µ))〉H
+ 〈M~u+ u~b,Γ~v〉Cm − 〈~u,Γ

(

M~v + v~b
)

〉Cm

=u(〈Γ~b, ~v〉Cm − 〈g(µ), (L− µ)Vr〉H) − (〈Γ~b, ~u〉Cm − 〈g(µ), (L − µ)Ur〉H)v

+ 〈~u, (MΓ − ΓM)~v〉
Cm .

Note that if Γ is diagonal, the last term in the formula vanishes.
Any triplet extension of the operator Lmin can now be characterized as a self-

adjoint restriction of Amax. Consider the minimal operator Amin acting in H — the
operator adjoint to Amax in H. The operator Amax possesses symmetric restrictions
if and only if the minimal operator Amin is symmetric or, in other words, is a
restriction of the maximal operator. This necessary property of the new minimal
operator puts certain restrictions on the Gram matrix Γ which defines the scalar
product in H. Knowing that the new minimal operator Amin is symmetric enables
us to determine all triplet extensions of Lmin using standard extension theory as
described in Section 2.

Let us now calculate the minimal operator Amin for arbitrary choice of the Gram
matrix Γ.

Lemma 5.3. The operator Amin is defined on the functions in Dom(Amax)

(given by (5.5)), which satisfy the two additional conditions

(5.9)







u = 0,

〈Γ~b, ~u〉Cm = 〈g(µ), (L− µ)Ur〉H

and acts as

(5.10) Amin

(

Ur

~u

)

=

(

LUr

Γ−1MΓ~u

)

.

Proof. We calculate the operator adjoint to Amax − µ. Consider two arbitrary
vectors, U ∈ Dom(Amax) and V ∈ H. The sesquilinear form of the operator
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Amax − µ is

〈V, (Amax − µ)U〉
H

= 〈V, b(L)(L− µ)Ur〉H + 〈~v,Γ(M− µ)~u〉Cm + 〈~b,Γ~v〉Cmu.

Consider first vectors of the type U = (Ur,~0); then the sesquilinear form reduces to

〈V, (Amax − µ)U〉
H

= 〈V, b(L)(L− µ)Ur〉H
and determines a bounded linear functional with respect to U in the norm of H

only if V = Vr ∈ Hm+2. Using this fact, we can now write the boundary form for
arbitrary U ∈ Dom(Amax) as

〈V, (Amax − µ)U〉
H

= 〈V, b(L)(L− µ)(Ur + uG(µ))〉H + 〈(M− µ)Γ~v, ~u〉
Cm

+ {〈~b,Γ~v〉Cm − 〈G(µ), (L − µ)b(L)Vr〉H}u.

The first two summands determine bounded linear functionals with respect to
U ∈ H, but the functional (Ur + uG(µ), ~u) 7→ u is not bounded in the norm of
H. Thus, the expression in the curly brackets must vanish. In other words, every
function V ∈ Dom(Amin) should satisfy

(5.11) 〈Γ~b, ~v〉Cm = 〈g(µ), (L − µ)Vr〉H .

Summing up, we have proved that the domain of the adjoint operator Amin − µ is
determined by (5.9) and the sesquilinear form is

〈Ur + uG(µ), (L − µ)b(L)V 〉H + 〈~u, (M− µ)Γ~v〉
Cm .

It follows that the action of Amin is given by formula (5.10). �

Note that Amin is an extension of Lmin.
It is easy to see that Amin is symmetric in H or, in other words, is a restriction

of Amax, if and only if the matrices M and Γ commute

(5.12) ΓM = MΓ.

Here M is diagonal with all diagonal elements pairwise different while Γ is Her-
mitian and positive definite. Hence, in order to satisfy (5.12), Γ has to be diagonal
as well, and all diagonal elements must be positive numbers. Therefore, in the
sequel we assume that Γ is diagonal and positive definite. Under this assumption,
(5.10) takes the form

(5.13) Amin

(

Ur

~u

)

=

(

LUr

M~u

)

.

Now we are in the situation described by (4.2), and all self-adjoint restrictions of
Amax can be obtained using classical Birman-Krein-Vishik extension theory for
symmetric operators in a Hilbert space.
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6 The self-adjoint family of extensions

In this section, we calculate explicitly the one-parameter family of self-adjoint
operators in H satisfying (4.3) with Amin,Amax from the previous section. One
particular extension, denoted by A0, is not hard to guess:

A0 = L⊕M, Dom(A0) = Hm+2 ⊕ C
n−2.

Let us calculate the defect and deficiency element for the symmetric operator
Amin. The operator Amax is closed and therefore is the adjoint operator to Amin.
Any deficiency element F(λ), =λ 6= 0, is a nontrivial solution to the equation

(Amax − λ)F(λ) = 0,

which can be written in the form







(L − λ)Fr + (µ− λ)G(µ)f = 0,

(M− λ)~f + f~b = 0.

Any solution to this system is a multiple of

(6.1) F(λ) =

(L−µ
L−λG(µ)

− 1
M−λ

~b

)

=

(

G(λ)

− 1
M−λ

~b

)

.

We conclude that Amin has deficiency indices (1, 1). With this parametrization, the
family of deficiency elements has the important property

(6.2) F(z) =
A0 − λ

A0 − z
F(λ).

Every element F(λ) can also be viewed as a function from Hm

(6.3) F(λ) =
1

b(λ)
g(λ).

To prove this, one can use the formula

(6.4)
1

b(L)
=

n−2
∑

j=1

1

bj(µj)

1

L− µj
,
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with bj given by (4.11), and its natural modification

F(λ) = G(λ) −
m
∑

j=1

1

µj − λ

1

bj(µj)
g(µj) =

1

b(L)
g(λ) +

m
∑

j=1

1

bj(µj)

1

λ− µj
g(µj)

=

m
∑

j=1

( 1

bj(µj)

1

L− µj
g(λ) +

1

bj(µj)

1

λ− µj
g(µj)

)

=

m
∑

j=1

1

bj(µj)

1

λ− µj
g(λ)

=
1

b(λ)
g(λ).

It follows that the functions g(λ) (multiplied by a scalar factor) play the role of
deficiency elements in our construction.

Now it is standard to determine the family of self-adjoint extensions of the
minimal operator Amin, which are at the same moment restrictions of the maximal
operator Amax. All such restrictions and their resolvents are described by Theorem
6.1 below.

Such operators can always be determined by certain boundary conditions con-
necting the “boundary values”

u, ~u and 〈g(µ), (L − µ)Ur〉H .

Under the condition that Γ is diagonal, the boundary form of Amax is (see (5.8))

(6.5) 〈AmaxU,V〉H − 〈U,AmaxV〉H

= u
(

〈Γ~b, ~v〉Cn−2 − 〈g(µ), (L − µ)Vr〉H
)

−
(

〈Γ~b, ~u〉Cn−2 − 〈g(µ), (L − µ)Ur〉H
)

v.

We define then the following restrictions of the maximal operator and show that
these are exactly the self-adjoint extensions.

Definition 6.1. The domain of the operator Aθ, θ ∈ [0, π), consists of func-
tions U ∈ H possessing the representation

(6.6) U =

(

U

~u

)

=

(

Ur + uG(µ)

~u

)

, Ur ∈ Hn, u ∈ C, ~u ∈ C
n−2,

and satisfying the boundary condition

(6.7) sin θ 〈g(µ), (L − µ)Ur〉H + cos θ u− sin θ〈Γ~b, ~u〉Cn−2 = 0.

The action of Aθ is given by the formula

(6.8) AθU = Aθ

(

Ur + uG(µ)

~u

)

=

(

LUr + µuG(µ)

M~u+ u~b

)

,
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where the matrix M and the vector ~b are determined by (5.3) and (5.4).

Note that the operator A0 introduced earlier coincides with Aθ for θ = 0. It is
straightforward to calculate the resolvent of Aθ.

Theorem 6.1. Let Γ be a positive diagonal matrix. Then the family of self-

adjoint restrictions of the maximal operator Amax coincides with the family Aθ, θ ∈
[0, π). The resolvent of the operator Aθ for =λ 6= 0 is given by

(6.9)

1

Aθ − λ
− 1

A0 − λ

= − 1

Q(λ) + cot θ





〈

g(λ̄), ·
〉

H
G(λ)

〈

−1
M−λ̄

~b,Γ·
〉

Cm

G(λ)
〈

g(λ̄), ·
〉

H
−1

M−λ
~b
〈

−1
M−λ̄

~b,Γ·
〉

Cm

−1
M−λ

~b



 ,

where

(6.10) Q(λ) = 〈g(µ), (λ − µ)G(λ)〉H +
〈

~b,Γ
1

M− λ
~b
〉

Cm

.

Proof. Since the matrix Γ is diagonal, the boundary form of the maximal
operator is given by (6.5); and it is then clear that the restriction of Amax to the set
of functions satisfying (6.7) is a symmetric operator (the boundary form vanishes).

Let us calculate directly the resolvent of Aθ. Consider the resolvent equation
for λ ∈ C \ R,

1

Aθ − λ
V = U ⇒ V = (Aθ − λ)U,

where V ∈ H and U ∈ Dom(Aθ). The last equation implies






V = (L− λ)Ur + (µ− λ)G(µ)u,

~v = (M− λ)~u +~bu;

⇒







Ur = 1
L−λV − µ−λ

L−λG(µ)u

~u = 1
M−λ~v − 1

M−λ
~bu.

Substituting into the boundary condition (6.7), we calculate

u =
−
〈

g(λ), V
〉

H
+ 〈Γ~b, 1

M−λ~v〉Cm

〈g(µ), (λ − µ)G(λ)〉H +
〈

~b,Γ 1
M−λ

~b
〉

Cm

+ cot θ
.

It is natural to denote the Nevanlinna function appearing in the denominator by
Q(λ) (see (6.10). Then all components of the function U can be calculated






U = 1
L−λV − 1

Q(λ)+cot θ

{

〈

g(λ̄), V
〉

H
G(µ) +

〈

−1
M−λ̄

~b,Γ~v
〉

Cn−2

G(µ)
}

,

~u = 1
M−λ~v − 1

Q(λ)+cot θ

{

〈g(λ), V 〉H −1
M−λ

~b+
〈

−1
M−λ̄

~b,Γ~v
〉

Cn−2

−1
M−λ

~b
}

,
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which implies formula (6.9). Hence every operator Aθ is symmetric, and the range
of Aθ−λ, =λ 6= 0, coincides with all of H. Thus every such operator is self-adjoint.

On the other, hand formula (6.9) can be written in Krein’s form as

(6.11)
1

Aθ − λ
− 1

A0 − λ
= − 1

Q(λ) + cot θ

〈

F(λ), ·
〉

H
F(λ),

where F(λ) is given by (6.1). This proves that the family Aθ is indeed the family
of all possible self-adjoint restrictions of Amax. �

The resolvent formulas just proved (6.9,6.11) are classical Krein formulas, and
the Q-function appearing in the denominator is a Nevanlinna function, since the
operators A0,Aθ are self-adjoint in the Hilbert space H. In the following subsection,
we present another resolvent formula associated with the particular structure of the
triplet extensions.

7 Extended resolvent formula of Krein type

The Hilbert space H decomposes naturally into the orthogonal sum of the infinite
dimensional space Hm and a finite dimensional space Cm in accordance to (4.14).
It is clear therefore that the compression of the resolvent to the infinite dimen-
sional component is given by Krein’s formula for generalized resolvents with the
denominator equal to a sum of two Nevanlinna functions:

PHm

1

Aθ − λ

∣

∣

∣

Hm

=
1

L− λ
− 1

Q(λ) + cot θ

〈

g(λ̄), ·
〉

H
G(λ)(7.1)

=
1

L− λ
− 1

q(λ) + qΓ(λ) + cot θ

〈

G(λ̄), ·
〉

Hm

G(λ),

where
• q(λ) = 〈g(µ), (λ − µ)G(λ)〉H is the Q-function associated with the operators
L and Lmin in Hm, and

• qΓ(λ) =
〈

~b,Γ 1
M−λ

~b
〉

Cm
is the Q-function associated with the operator M and

vector ~b in C
m.

This resolvent formula shows once again that the operator Aθ is indeed a
generalized extension of the operator Lmin.

Let us now consider another type of resolvent formula — the re striction of the
resolvent of Aθ to Hm, but written in the functional representation

1

Aθ − λ

∣

∣

Hm

=
1

L− λ
− 1

Q(λ) + cot θ

〈

g(λ̄), ·
〉

H
F(λ)(7.2)

=
1

L− λ
− 1

b(λ)(Q(λ) + cot θ)

〈

g(λ̄), ·
〉

H
g(λ).
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The function appearing in the denominator

Qm(λ) = b(λ)(Q(λ) + cot θ)(7.3)

= b(λ)
(〈

ϕ,
1

L− λ

λ− µ

L− µ

1

b(L)
ϕ
〉

H
+
〈

~b,Γ
1

M− λ
~b
〉

Cn−2

+ cot θ
)

is a generalized Nevanlinna function (see [13]). In the following section, we show
that this function can be obtained by regularizing the classical formula (2.12), valid
for canonical extensions.

We emphasize that a generalized Nevanlinna function appears in our model
despite the fact that only self-adjoint operators in Hilbert space are involved.

8 Renormalization of the Q-function

For canonical extensions (inside the original Hilbert space), the functions g(λ) and
G(λ) coincide, since this case corresponds to m = 0 and b ≡ 1. The function
(2.12) appearing in the denominator of Krein’s formula in the case of canonical
extensions can be considered as a renormalization of the Nevanlinna function

Q(λ) = 〈g(µ),
(L− µ)2

L− λ
g(µ)〉H = 〈g(µ), (L − µ)g(λ)〉H ,

which is well-defined only if g(µ) ∈ H1. In fact, precisely this function appears in
the resolvent formula when the perturbed operator is a bounded rank one pertur-
bation (see [5] and Section 9).

If g(µ) ∈ H \ H1, then the function Q can be obtained using the following
renormalization procedure;

Q(λ)
formally

= 〈g(µ),
(L− µ)2

L− λ
g(µ)〉H − 〈g(µ), (L− µ)g(µ)〉H + p(8.1)

= 〈g(µ), (λ − µ)g(λ)〉H + p,

with the renormalization point µ < 0 and renormalization parameter p
formally

=

〈g(µ), (L− µ)g(µ)〉H ∈ R. If g(µ) ∈ H1, then the renormalization parameter is
uniquely determined by the last formula; if g(µ) ∈ H \H1, then this parameter can
be chosen arbitrarily.3

This renormalization procedure can be continued in order to include more and
more singular elements g(µ). For example, if g(µ) ∈ H−1 \ H, then the scalar
product 〈g(µ), g(λ)〉H is not defined and one needs one further renormalization

3This is connected with the fact that H−1-perturbations are uniquely determined, but H−2-
perturbations not (see Section 9).
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with a certain µ1 < 0 and p1 ∈ R,

Q1(λ)
formally

= (λ− µ) {〈g(µ), g(λ)〉H − 〈g(µ), g(µ1)〉H + p1} + p(8.2)

=

〈

g(µ), (λ − µ)
λ− µ1

L− µ1
g(λ)

〉

H

+ (λ− µ)p1 + p.

The renormalization parameter p1 is formally equal to 〈g(µ), g(µ1)〉H ; and if
g(µ) ∈ H, then this parameter is uniquely defined and the Q-function coincides
with the function given by (8.1). The function Q1 contains two renormalization
parameters p and p1 and is not necessarily a Nevanlinna function, but rather a
generalized Nevanlinna function, with one negative square.

Continuing this renormalization procedure, we obtain the following formula
for the Q-function in the case g(µ) ∈ H−m \H−m+1, m ≥ 1,

Qm(λ) =
〈

g(µ), (λ − µ)
λ− µ1

L− µ1
· · · λ− µm

L− µm
g(λ)

〉

H
+ p(λ)(8.3)

=
〈

g(µ), (λ − µ)
b(λ)

b(L)
g(λ)

〉

H
+ p(λ)

where

(8.4) p(λ) = (λ− µ)
m
∑

j=1

(λ− µ1) · · · (λ − µj−1)pj + p.

The renormalization points µj are all chosen negative µj < 0, and the real renor-
malization parameters are formally equal to the scalar products

(8.5) pj
formally

= 〈g(µ),
1

(L − µj)(L− µj−1) · · · (L− µ2)
g(µ1)〉H .

As before, this sequence of Q-functions is constructed in such a way that if the
deficiency element is less singular, so that some of the scalar products in (8.5) are
well-defined, then the renormalization parameters pj can be properly chosen to get
the Q-function corresponding to the less singular deficiency elements.

The function Qm is a generalized Nevanlinna function with at most
[

m+1
2

]

negative squares and containsm+1 arbitrary real parameters p, pj . If the deficiency
elements are less singular, for example if g(µ) ∈ H−l, l < m−1, then the parameters
can be chosen in such a way that the Q-function has fewer negative squares. In
particular, if g(µ) ∈ H, then the functionQm can be made a Nevanlinna function by
choosing the renormalization parameters properly. Moreover, if g(µ) ∈ H−m \ H,
then Qm is not a usual Nevanlinna function, independently of how the parameters
p, pj are chosen.



TRIPLET EXTENSIONS OF SEMIBOUNDED OPERATORS 273

Formulas (8.3) and (7.3) give the same function if and only if the polynomial
p(λ) is chosen to be

(8.6) p(λ) = −
m
∑

j=1

γ2
jj

(bj(µj))2
bj(λ) + b(λ) cot θ,

where bj are given by (4.11) and γjj are the entries of Γ.

9 Triplet extensions and supersingular perturbations

Let L be a positive self-adjoint operator acting in the Hilbert space H . Let ϕ be an
element from the scale of Hilbert spaces Hn associated with the operator L,

(9.1) ϕ ∈ H−n \ H−n+1.

Then a rank one perturbation of the operator L is given by the formal expression

(9.2) L+ α〈ϕ, ·〉Hϕ, α ∈ R.

In this section, we construct self-adjoint operators corresponding to the formal
expression (9.2) in the case n > 2. Such perturbations are usually called super-
singular, in order to distinguish them from the singular perturbations given by
ϕ ∈ H−2 \ H.

Let us recall first the main ideas of the theory of regular (n = 0) and singular
(n = 1, 2) perturbations. If ϕ ∈ H0 = H, then the perturbation in (9.2) is bounded
and the perturbed operator, denoted by Lα, is self-adjoint on Dom(L). If ϕ ∈ H−1,
then (9.2) determines a unique operator Lα, since the perturbation is relative form
bounded in this case and the method of quadratic forms can be applied. It is
also possible to use the extension theory for symmetic operators and identify the
operator given by (9.2) with one particular self-adjoint extension of the symmetric
operator Lmin = L|{U∈Dom(L):〈ϕ,U〉H=0}. If ϕ ∈ H−2 \H−1, then the quadratic form
approach cannot be applied; but the extension theory approach can be used, since
Lmin is well-defined as a symmetric (not essentially self-adjoint operator) in H .
Then the operator corresponding to (9.2) is usually defined as an operator from
the one-parameter family of self-adjoint extensions of Lmin. In general, it is im-
possible to decide which particular extension corresponds to formula (9.2), which
is understood formally; in order to emphasize this, we denote the corresponding
operator by Aγ , γ ∈ R ∪ {∞}, instead of Lα. Using the fact that the deficiency
elements for the symmetric operator Lmin are

(9.3) g(λ) =
1

L− λ
ϕ,
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we can describe the resolvent of any operator Aγ by Krein’s formula

(9.4)
1

Aγ − λ
=

1

L− λ
− 1

Q(λ) + γ

〈 1

L− λ̄
ϕ, ·
〉

H

1

L− λ
ϕ, =λ 6= 0,

where Q(λ) is given by

(9.5) Q(λ) =
〈

ϕ,
λ− µ

(L− λ)(L − µ)
ϕ
〉

H
+ p,

and µ < 0 and p ∈ R are arbitrary parameters. The same formula (9.4) gives the
resolvent of the operator Lα in the case of H−1-perturbations if the parameters are
properly chosen as

p = 〈ϕ, 1

L− µ
ϕ〉H and γ = 1/α.

In this case, the Q-function is just equal to

(9.6) Q(λ) =
〈

ϕ,
1

L− λ
ϕ
〉

H
.

It is precisely this renormalization procedure that was generalized in Section 8.
Summing up, to define singular perturbations given by (9.2), classical extension

theory of symmetric operators may be used. The function Q(λ) is a Nevanlinna
function and contains information about spectral properties of the operator Aγ .

Let us discuss now supersingular perturbations given by vectors ϕ ∈
H−n \ H−n+1, n > 2. The formal expression (9.2) naturally leads to the min-
imal operator

(9.7) Lmin = L|{U∈Hn:〈ϕ,U〉H=0}.

This is a symmetric operator in the Hilbert space Hn−2 and has deficiency indices
(1, 1) if considered in this Hilbert space. It is clear that the functions g(λ) andG(λ)

are given in this case by

(9.8) g(λ) =
1

L− λ
ϕ ∈ H−n+2, G(λ) =

1

b(L)

1

L− λ
ϕ ∈ Hn−2.

Since ϕ /∈ H−2, Lmin is essentially self-adjoint in the original Hilbert space H and
therefore satisfies the assumptions formulated in Section 3 with m = n − 2. Any
self-adjoint operator associated with (9.2) must be an extension of Lmin, and it is
natural to associate with it the family of triplet extensions constructed in Section 6.
The kernel of the operator Lmax − λ = L†

min − λ is spanned by the functions g(λ).
The model space H is then given by

(9.9) H = Hn−2+̇L{(L − µ1)
−1ϕ, (L − µ2)

−1ϕ, . . . , (L− µn−2)ϕ} 3 U = (U, ~u)
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and endowed with the scalar product given by (4.12). The elements from the space
can also be viewed as elements from H−n+2,

U = U +

n−2
∑

j=1

uj(L− µj)
−1ϕ,

since (L − µj)
−1ϕ ∈ H−n+2. Constructing the space H, we have chosen n − 2

arbitrary negative renormalization points µj < 0, j = 1, 2, . . . , n − 2, and n − 2

arbitrary positive parameters γjj > 0, j = 1, 2, . . . , n− 2, since the Gram matrix Γ

in (4.12) has to be chosen diagonal and positive in order to guarantee the existence
of self-adjoint triplet extensions.

The one-parameter family Aθ, θ ∈ [0, π) of triplet extensions of Lmin in H is
then defined on the domain of functions possessing the representation

(9.10) U = (Ur + ub−1(L)(L− µ)−1ϕ, ~u), Ur ∈ Hn, u ∈ C, ~u ∈ C
n−2

and satisfying the boundary condition

(9.11) sin θ〈ϕ,Ur〉H + cos θu − sin θ〈Γ~b, ~u〉Cn−2 = 0.

Note that b−1(L)(L− µ)−1ϕ ∈ Hn−2. The action of the operator Aθ is given by

(9.12) AθU = Aθ

(

Ur + ub−1(L)(L− µ)−1ϕ

~u

)

=

(

LUr + µub−1(L)(L− µ)−1ϕ

M~u+ u~b

)

where the matrix M and the vector ~b are determined by (5.3) and (5.4). Taking
into account (9.8), we can calculate the resolvent of the self-adjoint operator Aθ

(9.13)
1

Aθ − λ
− 1

A0 − λ

= − 1

Q(λ) + cot θ





〈

1
L−λ̄

ϕ, ·
〉

H

1
b(L)(L−λ)ϕ

〈

−1
M−λ̄

~b,Γ·
〉

Cn−2

1
b(L)(L−λ)ϕ

〈

1
L−λ̄

ϕ, ·
〉

H

−1
M−λ

~b
〈

−1
M−λ̄

~b,Γ·
〉

Cn−2

−1
M−λ

~b



 ,

with

(9.14) Q(λ) =
〈

ϕ,
1

b(L)

λ− µ

(L− λ)(L − µ)
ϕ
〉

H
+
〈

~b,Γ
1

M− λ
~b
〉

Cn−2

.

The extended resolvent formula (7.2) takes the form

(9.15)
1

Aθ − λ
|Hn−2

=
1

L− λ
− 1

b(λ)(Q(λ) + cot θ)

〈 1

L− λ̄
ϕ, ·
〉

H

1

L− λ
ϕ,

which is a natural generalization of (9.4). The denominator is given by the gener-
alized Nevanlinna function

(9.16) Qn−2(λ) =
〈

ϕ,
1

L− λ

λ− µ

L− µ

b(λ)

b(L)
ϕ
〉

H
+ p(λ),
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with the polynomial p(λ) given by (8.6).

To summarize, supersingular perturbations, at least of semibounded operators,
are given by triplet extensions. Their spectral properties are described by general-
ized Nevanlinna functions.

The peak model for supersingular perturbations presented here is a generaliza-
tion of the cascade model described in [22, 12]. The advantage of the new model
is that the Gram matrix Γ is now diagonal, which leads to simplification of all
formulas and renders the study of the corresponding operator more transparent. In
the new model, it is clear that all µj must be pairwise different, since otherwise the
functions (L − µj)ϕ are not linearly independent.

10 Point interactions in R3: new family

In this section, we apply methods developed in the previous section to construct a
new family of point interactions in R3 3 x = (x1, x2, x3). Classical point interaction
goes back to E. Fermi [16]; in three-dimensional space, it can be described formally
by

(10.1) −∆ + αδ = −∆ + αδ〈δ, ·〉,

where δ is Dirac’s delta function in R3 and α ∈ R ∪ {∞} is a coupling con-
stant. F. A. Berezin and L. D. Faddeev [7] suggested interpreting this operator
using a restriction-extension procedure. This procedure can be summarized as
follows. Consider the restriction of the Laplace operator to the set of functions
in W 2

2 (R3) which vanish at the origin.4 Note that the perturbation term vanishes
on such functions; therefore, the Laplace operator and any self-adjoint operator
corresponding to (10.1) are two (different) extensions of the restricted operator.
This construction provides a rigorous mathematical foundation for the celebrated
Fermi pseudopotential [16], widely used in physics and chemistry [11]. The most
serious limitation of this method is connected with the fact that the deficiency ele-
ment g(µ) = ei

√
µ|x|/4π|x| is spherically symmetric; therefore, the original Laplace

operator and its perturbation given by (10.1) differ only on the subspace of spher-
ically symmetric functions, i.e., this method allows one to introduce interaction
in the s-channel only. The perturbed operator is defined on the set of functions
U = Ũ + ug(µ), Ũ ∈W 2

2 (R3), u ∈ C, whose asymptotics at the origin are given by

(10.2) U(x) =
u−

4π|x| + u0 + o(1), x → 0,

4This restriction is possible due to Sobolev embedding theorem.
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where u−, u0 ∈ C can be considered as certain boundary values of the function U .
More precisely, every self-adjoint operator corresponding to the formal expression
(10.1) coincides with the (differential) Laplace operator−∆ defined on the domain
of functions in W 2

2 (R3 \ {0}) satisfying the boundary condition

(10.3) u0 = γu−, γ ∈ R ∪ {∞}.

Without any additional assumption, it is not possible to establish the connection
between the real parameters α in (10.1) and γ in (10.3) (except for the fact that
α = 0 should correspond to γ = ∞), since this perturbation is from the class
H−2 : δ ∈ H−2(−∆).5 This approach has been generalized to study numerous
problems from mathematical physics and its applications [2, 11, 28, 29].

The limitations of the model described are connected first of all with the fact that
the singular element determining the perturbation in (10.1) — Dirac’s δ-function
— is spherically symmetric. Suppose we want to get similar mo dels where point
interactions are not spherically symmetric.6 Intuitively, it is clear that one has to
consider singular elements which are not spherically symmetric. Restricting our
consideration to singular elements given by distributions, we take into account
that any generalized function with support at the origin can be written as a linear
combination of derivatives of the delta function. Here we consider only first order
derivatives, which yields for the perturbed Laplacian the formal expression

(10.4) L~α = −∆ +
3
∑

i=1

αi〈∂xi
δ, ·〉∂xi

δ,

where αi, i = 1, 2, 3 are real coupling constants and ∂xi
= ∂/∂xi denotes the

derivative with respect to the variable xi. The perturbation term is from the
class H−3, since ϕj = ∂xi

δ ∈ H−3(∆); it follows that in order to determine
the operator L~α, the theory of supersingular perturbations must be applied (see
previous Section). The rank of the perturbation is equal to three, but the elements
ϕi = ∂xi

δ, i = 1, 2, 3 and the operator −∆ generate three mutually orthogonal
subspaces. Thus the developed approach needs just a slight modification. Let
us restrict our consideration to interactions commuting with the permutation of
the coordinates, i.e. α1 = α2 = α3 ≡ α. We show later that the corresponding
interaction is spherically symmetric but influences the p-channel (instead of the
s-channel, as in the classical Fermi pseudopotential).

For the reader’s convenience, we present here our model using function rep-
resentation. Since the perturbation is from the class H−3, one needs to consider

5See Section 1.5 in [5] and [3], where such a relation is established using the homogeneity properties
of the Laplace operator and the delta-function.

6Such models are needed to describe small objects having complicated geometry.
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only one renormalization point µ1 = −β2
1 , β1 > 0. The functions g(λ) and G(λ)

can easily be calculated using (9.8) and the fact that eik|x|

4π|x| , k =
√
λ is the Green’s

function for the Laplacian:

gj(λ) =
∂

∂xj

eik|x|

4π|x| =
ik|x| − 1

4π|x|3 eik|x|xj , j = 1, 2, 3(10.5)

Gi(λ) =
1

β2
1 + k2

(

gi(λ) − gi(−β2
1)
)

=
1

β2
1 + k2

(ik|x| − 1)eik|x| + (β1|x| + 1)e−β1|x|

4π|x|3 xi.

The functions gi(λ) are pairwise orthogonal in W−1
1 (R3) = H−1(−∆) (just as

functions having different symmetries), as well as the functions Gi(λ).

Writing

(10.6) h(k, r) =
ikr − 1

4πr3
eikr

allows us to simplify the formulas of (10.5) to

gj(λ) = h(k, |x|)xj and Gj(λ) =
h(k, |x|) − h(iβ1, |x|)

β2
1 + k2

xj ,

keeping in mind that the function h is just a combination of elementary functions.
The model Hilbert space can now be chosen equal to

(10.7)

H = W 1
2 (R3)+̇L{g1(−β2

1), g2(−β2
1), g3(−β2

1)} 3 U = U +

3
∑

i=1

ui
1h(iβ1, |x|)xi.

Thus, every function from H possesses the representation

(10.8) U = U +

3
∑

i=1

ui
1

−β1|x| − 1

4π|x|3 e−β1|x|xi ≡ U − β1|x| + 1

4π|x|3 e−β1|x|xtu1,

where u1 = (u1
1, u

2
1, u

3
1)

t ∈ C3 and x = (x1, x2, x3)
t ∈ R3, so that

xtu1 = x1u
1
1 + x2u

2
1 + x3u

3
1.

In (10.8), U ∈ W 1
2 (R3); therefore, this representation is unique. Hence, every

element from H can be viewed not only as a function on R3 but also, via vector
representation, as a pair U = (U,u1), U ∈W 1

2 (R3),u1 ∈ C3.

The norm in H can be chosen to be

(10.9) ‖U‖2
H = ‖U +

3
∑

i=1

ui
1gi(−β2

1)‖2
H = ‖U‖2

W 1

2
(R3) + γ‖u1‖2,
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where γ is an arbitrary positive parameter.
To define the self-adjoint operator in H corresponding to the formal expression

(10.4), consider another negative parameter µ = −β2, β > 0 and the extension
parameter θ ∈ [0, π). Then the operator Aθ is defined on the set of functions
possessing the representation

U = Ur +

3
∑

i=1

uiGi(−β2) +

3
∑

i=1

ui
1gi(−β2

1),

(10.10)

= Ur +
−(1 + β|x|)e−β|x| + (1 + β1|x|)e−β1|x|

(β2
1 − β2)4π|x|3 xtu − 1 + β1|x|

4π|x|3 e−β1|x|xtu1,

= Ur +
h(iβ, |x|) − h(iβ1, |x|)

β2
1 − β2

xtu + h(iβ1, |x|)xtu1,

Ur ∈W 3
2 (R3), u,u1 ∈ C

3,

and the boundary conditions7

(10.11) sin θ 〈∂iδ, Ur〉 + cos θ ui − sin θ γ ui
1 = 0, i = 1, 2, 3.

The last condition can be written in vector notation as

(10.12) sin θ(∇∇∇Ur(0) + γu1) = cos θ u.

The action of the operator Aθ is determined by the formula

(10.13)

Aθ

(

Ur +
−(1 + β|x|)e−β|x| + (1 + β1|x|)e−β1|x|

(β2
1 − β2)4π|x|3 xtu − 1 + β1|x|

4π|x|3 e−β1|x|xtu1

)

= −∆Ur − β2−(1 + β|x|)e−β|x| + (1 + β1|x|)e−β1|x|

(β2
1 − β2)4π|x|3 xtu

− 1 + β1|x|
4π|x|3 e−β1|x| (xtu− β2

1x
tu1

)

,

which implies that outside the origin it acts pointwise just as the usual Laplacian

(10.14) (AθU) (x) = −(Ux1x1
+ Ux2x2

+ Ux3x3
)(x), x 6= 0.

Using (10.6), we can write the action of the operator as

(10.15)
Aθ

(

Ur +
h(iβ, |x|) − h(iβ1, |x|)

β2
1 − β2

xtu + h(iβ1, |x|)xtu1

)

= −∆Ur − β2 h(iβ, |x|) − h(iβ1, |x|)
β2

1 − β2
xtu + h(iβ1, |x|)(xtu − β2

1x
tu1),

7In principle, it is possible to choose three different real extension parameters θi, i = 1, 2, 3,

independently; but our aim is to construct a model operator corresponding to the formal expression
(10.4) with all αi equal, i.e., with the interaction commuting with permutations of the coordinates.
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As a result we obtain a spherically symmetric interaction, i.e., the corresponding
operator commutes with rotations about the origin and reflections in planes passing
through the origin. In particular, it commutes with permutations of the coordinates.

Lemma 10.1. The operator Aθ, θ ∈ [0, π), commutes with the rotations
around the origin and reflections in planes passing through the origin.

Proof. To see this, it suffices to prove that the domain Dom(Aθ) is invariant
under the transformations considered, as we already know that the action of the
operator is given by the Laplacian (10.14), which is invariant under rotations and
reflections. The boundary condition for Aθ can be written in the vector form
(10.12). To prove that the domain of Aθ is invariant under rotations we have
to prove that every function U possessing representation (10.10) possesses the
same representation after rotation and that every function satisfying the boundary
condition (10.12) satisfies this condition after the rotation.

For 3 × 3 rotation matrix R, define RF for the function F = F (x), x =

(x1, x2, x3)
t ∈ R3, by

(RF )(x) = F (R−1x).

We first prove that the linear space H is invariant under rotations. It is clear that
the subspace W 1

2 (R3) is invariant. Using the fact that h(k, |x|) is invariant under
rotations, we see easily that

(10.16) R(h(iβ1, |x|)xtu1) = h(iβ1, |x|)
(

R−1x
)t

u1 = h(iβ, |x|)xt(Ru1).

Hence H is not only invariant under rotations but, in addition, any rotation around
the origin in R

3 corresponds to the rotation of the vector u1. The rotation matrix
R induces a unitary transformation in H.

Similarly, the set of functions possessing representation (10.10) is invariant
under rotations, and rotation of the function U corresponds to rotations of the
vector u1 and u. Taking into account that

R (∇∇∇U(0)) = (∇∇∇RU) (0),

we conclude that the boundary conditions (10.12) are preserved under rotations as
well.

The proof for reflections in planes through the origin follows the same lines. �

We emphasize that the operator Aθ does not coincide with the classical point
interaction Hamiltonian and is not even unitarily equivalent to it. We have ob-
tained a new family of models which can easily be generalized to include higher
derivatives and hence more and more singular interactions.
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The three Q-functions describing spectral properties of the model are all given
by formula (9.14), which now takes the form

Qi(λ) =
〈

∂xi
δ,

1

L+ β2
1

λ+ β2

(L− λ)(L + β2)
∂xi

δ
〉

L2(R3)
+

γ

−β2
1 − λ

.

Taking into account that these functions are all equal, Q1(λ) = Q2(λ) = Q3(λ) ≡
Q(λ), we can rewrite the last formula and calculate the function explicitly as

Q(λ) =
1

3

〈

δ,
L

L+ β2
1

λ+ β2

(L− λ)(L + β2)
δ
〉

L2(R3)
+

γ

−β2
1 − k2

(10.17)

=
1

12π

{

ik +
β2

1

ik − β1
+ β +

β2
1

β + β1

}

+
γ

−β2
1 − k2

.

Then the resolvent formula (9.13) must be modified as follows

1

Aθ − λ
=

(

1
L−λ 0

0 1
−β2

1
−λ

)

− 1

Q(λ) + cot θ

×
3
∑

i=1







〈

1
L−λ̄

∂iδ, ·
〉

L2(R3)

1
(L+β2

1
)(L−λ)

∂iδ
γ

β2

1
+λ

〈ei, ·〉C3
1

(L+β2

1
)(L−λ)

∂iδ
〈

1
L−λ̄

∂iδ, ·
〉

L2(R3)

1
β2

1
+λ

ei
γ

β2

1
+λ

〈ei, ·〉C3
1

β2

1
+λ

ei






,

where ei ∈ C3, i = 1, 2, 3, are standard basis vectors in C3 and the first term on the
right hand side is the resolvent of A0 = L ⊕ (−β2

1). Using vector notation, we can
write the resolvent as
(10.18)

1

Aθ − λ
=

(

1
L−λ

1
−β2

1
−λ

)

− 1

Q(λ) + cot θ

×





−h(k,|x|)−h(iβ1,|x|)
β2

1
+λ

xt∇∇∇
(

1
−∆−λ ·

)

(0) γ
β2

1
+λ

h(k,|x|)−h(iβ1,|x|)
β2

1
+λ

xt·
−1

β2

1
+λ

∇∇∇
(

1
L−λ ·

)

(0) γ
(β2

1
+λ)2

·



 .

The same formula can be written using the function representation as
(10.19)

(Aθ − λ)−1(U + h(iβ1, |x|)xtu1)

=
1

−∆ − λ
U +

1

−β2
1 − λ

h(iβ1, |x|)xtu1

− 1

Q(λ) + cot θ

h(k, |x|)
λ+ β2

1

xt
(

−∇∇∇
( 1

−∆ − λ
U
)

(0) +
γ

β2
1 + λ

u1

)

.

As in the general case, it appears natural to consider the restriction of this
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resolvent to the infinite dimensional component U ∈W 1
2 (R3) ⊂ H

(10.20) (Aθ − λ)−1U =
1

−∆ − λ
U

− 1

(λ+ β2
1)(Q(λ) + cot θ)

(∫

R3

(ik|y| − 1)eik|y|

4π|y|3 ytU(y)d3y

)

(ik|x| − 1)eik|x|

4π|x|3 x.

It is hard not to notice the striking similarity of this form of the resolvent formula to
Krein’s original resolvent formula (2.11). Krein’s Q-function should be replaced
by the function appearing in the denominator of the last formula

Q1(λ) = (λ+ β2
1)(Q0(λ) + cot θ)

= (λ+ β2
1)
( 1

12π

{

i
√
λ+

β2
1

i
√
λ− β1

+ β +
β2

1

β + β1

}

+
γ

−β2
1 − λ

+ cot θ
)

.

This function does not belong to the Nevanlinna class, since it grows like λ3/2

as λ → ∞. But it is a generalized Nevanlinna function, being the product of the
Nevanlinna function Q(λ) + cot θ with the polynomial λ+ β2

1 [13].

The operator Aθ is a finite rank perturbation (in the resolvent sense) of the
operator A0 = −∆ ⊕ −β2

1 . Therefore, the spectrum of Aθ contains the branch
[0,∞) of the absolutely continuous spectrum (inherited from the Laplacian in
W 1

2 (R3)). In addition, the spectrum may contain several negative eigenvalues. The
negative eigenvalues correspond to zeros of the Q-function on the negative axis.
Let λ0 < 0 be a solution of the equation

(10.21) Q(λ0) + cot θ = 0.

The functionQ(λ) is piecewise increasing with just a single singularity at λ = −β2
1 ,

and Q(λ) →λ→−∞ −∞. It follows that the Q(λ) + cot θ has either one or two zeros
on R−, depending on whether Q(0) + cot θ = 1

12π
β2

β+β1

− γ
β2

1

+ cot θ is less than or
greater than zero, respectively. The corresponding eigenfunctions are given by

(10.22) Vλ0
= h(k0, |x|)xta =

ik0|x| − 1

4π|x|3 eik0|x|xta, λ0 = k2
0 , ik0 ∈ R−,

where a = (a1, a2, a3)
t ∈ C3 is the vector parametrizing the three-dimensional

space of eigenfunctions. Let us verify that this function is an eigenfunction for Aθ

provided Q(λ0) + cot θ = 0. First we show that Vλ0
possesses the representation
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(10.10)

(10.23)

ik0|x| − 1

4π|x|3 eik0|x|xta

= − β1|x| + 1

4π|x|3 e−β1|x|xta

+ (λ+ β2
1)

1

β2
1 − β2

−(β|x| + 1)e−β|x| + (β1|x| + 1)e−β1|x|

4π|x|3 xta

+ (λ+ β2
1)

{

1

β2
1 + k2

0

(ik0|x| − 1)eik0|x| + (β1|x| + 1)e−β1|x|

4π|x|3

− 1

β2
1 − β2

−(β|x| + 1)e−β|x| + (β1|x| + 1)e−β1|x|

4π|x|3
}

xta.

It follows that the boundary values of Vλ0
are given by



















lv1 = a

v = (λ0 + β2
1)a

−∇∇∇Vr(0) = (λ0 + β2
1) 1

12π

{

ik0 +
β2

1

ik0−β1

+ β +
β2

1

β1+β

}

a,

where Vr denotes the last term in formula (10.23). It is easy to see that the boundary
values satisfy the boundary conditions (10.12) due to (10.21). Since the action of
the operator coincides with the action of the Laplacian, Vλ0

solves the equation
−∆Vλ0

(x) − λ0Vλ0
(x) = 0, x 6= 0, and clearly belongs to H, we conclude that Vλ0

is an eigenfunction for Aθ. To recapitulate, the operator Aθ has either one or two
negative eigenvalues having multiplicity 3, with eigenfunctions given by (10.22).

In a similar way, continuous spectrum eigenfunctions may be calculated. We
start from the following Ansatz

(10.24) V(λ,k/k,x) = eikt
x +

ik|x| − 1

4π|x|3 eik|x|xta(k), λ > 0,

where k ∈ R3, |k| = k =
√
λ, determines the direction of the incoming plane wave

and the scattering amplitude a(k) ∈ C
3 has to be calculated from the boundary

conditions. Substituting the boundary values of V(λ)

(10.25)



















v1 = a

v = (λ + β2
1)a

−∇∇∇Vr(0) = −ik + (λ+ β2
1) 1

12π

{

ik +
β2

1

ik−β1

+ β +
β2

1

β1+β

}

a

into (10.12), we calculate the scattering amplitude a to be

(10.26) a =
i

Q1(λ)
k,
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which leads to the formula

(10.27) V(λ,k/k,x) = eiktx +
i

Q1(λ)

ik|x| − 1

4π|x|3 eik|x|xtk

for the generalized eigenfunction corresponding to the absolutely continuous spec-
trum. Note that eigenfunctions constructed are not locally square integrable. The
scattering matrix corresponding to this eigenfunction depends only on the energy
and the angle between the directions of the incoming and outgoing waves, which
shows yet again that the model is spherically symmetric. The model determines
nontrivial scattering in the p-channel, since the scattering amplitude depends on
the angle between the vectors k and x. Rigorous proof of the eigenfunction expan-
sion and spectral theorem for Aθ can be carried out by integrating the jump of the
resolvent at the real axis. The extended resolvent formula leads to a new family of
eigenfunction expansions described, for example, in [24].

This model can be generalized to include point interactions in any other channel
or a combination of such interactions in different channels. We plan to return to
this question as well as to the spectral analysis of the operator Aθ in the future. It
might be interesting to study the relations between the model presented here and
that suggested by Yu. Karpeshina [18].
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