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Abstract. The inverse scattering problem for the Schrödinger opera-
tor on the half line is studied for potentials of positon type with long range
oscillating tails at infinity. The inverse problem can be solved for the scat-
tering matrices with arbitrary finite phase shift. Solution of the inverse
problem is unique if the following scattering data are given: scattering ma-
trix, energies of the bound states and corresponding normalizing constants,
zeroes of the spectral density on the real line.

1.Introduction
The Schrödinger operator Hu = −d2u

dx2 +V (x)u defined on the functions
on the half axis satisfying the Dirichlet boundary condition at the origin
u(0) = 0 is investigated in the present paper. We study the inverse scatter-
ing problem for potentials with long range oscillating tails at infinity vio-
lating the Faddeev condition

∫∞
0 (1+x)|V (x)|dx < ∞. Such potentials were

studied first in relation with the positive bound states [1,3,9]. Correspond-
ing solutions of the KdV equation were named positons [11,12]. Uniqueness
results for the inverse problem can be established using the inverse spectral
problem originaly studied by I.M.Gelfand, B.M.Levitan, V.A.Marchenko
and L.D.Faddeev [4,2,13] and recently by F.Gesztesy and B.Simon [5]. The
existence of the potential has been proven only for the scattering matri-
ces S(k) with the negative phase shift on the real axis: arg S(k)|∞−∞ ≤ 0,
which is related to the number of the bound states through the Levinson
theorem. We prove that the inverse problem can be solved for the scatter-
ing matrices with any finite phase shift on the real line (not only negative
one). It is related to the fact that the spectral density coresponding to
long range oscillating potentials can have zeroes on the real axis. See [6,7]
where examples of such potentials are considered. We note, that potentials
considered have only negative bound states. We continue here investigation
carried out in [6-8].

2.Scattering matrices and Jost functions.
Def 1. The set S of scattering matrices consists of all continuous

functions on the real line with the following properties: |S(k)| = S(∞) = 1;
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S(−k) = S(k); S(k)− 1 =
∫∞
−∞ σ(t)eiktdt,

∫∞
−∞ |σ(t)|dt < ∞.

The set of Jost functions for potentials with the finite first momentum
will be denoted by FF . Let F (k) ∈ FF then
1. F (k) is analytical in the open upper halfplane =k > 0;
2. F (k) is continuous in the closed upper half plane =k ≥ 0;
3. limk→∞ F (k) = 1;F (k) = F (−k̄);
4. F (k) has representation F (k) = 1 +

∫∞
0 f(t)eiktdt;

∫∞
0 |f(t)|dt < ∞.

Def 2. The set F is the set of functions F (k) which possess the follow-
ing representation

F (k) =
k + ia0

k




Nsing∏

j=1

k + iaj

k − bj

k + iāj

k + bj


 FF (k), (1)

where function FF (k) ∈ FF , a0 ≥ 0, <aj > 0. If FF (0) = 0, then a0 = 0.

The spectral density ρ(k) = 2
π

k2

|F (k)|2 corresponding to the Jost functions
from F vanishs at the points ±bj .

Def 3. The set D of scattering data consists of the following data:
1. scattering matrix S(k) from S;
2. natural numbers Nbs, Nsing ∈ N and α = −1, 0, 1 such, that arg S(k)|∞−∞ =
−2π(2Nbs − 2Nsing + α);
3. the energies of the bound states and corresponding normalizing constants
Ej < 0, sj > 0, j = 1, 2, ..., Nbs;
4. positions of the zeroes of the spectral density on the real line bj > 0, j =
1, 2, ..., Nsing.

Lemma 1. Let F (k) be any function from F , then the quotient

S(k) =
F (−k)
F (k)

(2)

is a function from S. Let S(k) be any function from S, then there ex-
ists F (k) ∈ F , such that (2) holds. The function F (k) from F is defined
uniquelly by the scattering data from D.

Lemma 2. The scattering data from D and the spectral measures cor-
responding to the Jost functions from F are in one-to-one correspondence.

2.The inverse problem
The following class of potentials will be considered
Def 5. The set V of potentials is the set of all locally integrable poten-

tials V (x) on the half axis having the following representation

V (x) =
∑N

j=1 cj sin 2(bjx + βj)
x + 1

+ V2(x) + VF (x),
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where V2(x) = O( 1
(1+x)2

);
∫∞
0 (1 + x)|VF |dx < ∞ and constants cj , bj , βj

are real.
Lemma 3. Let us assume that potential Ṽ ∈ VF and function S1(k) =∏Nsing

j=1
k−iaj

k+iaj

k−iāj

k+iāj
are given, then there exists potential V1(x) ∈ V, such that

S1(k) is a scattering matrix for the pair of operators H̃ = − d2

dx2 +Ṽ , H1 =
− d2

dx2 + Ṽ + V1. Proof. Solution of the problem is given by the following
formula

V1(x) = −2
∂2

∂x2
log detQ(x) = −2

(detQ)′′ detQ− (detQ′)2

(detQ)2
,

where Q(x) is 2Nsing × 2Nsing matrix with the following elements

Q2l−1,2j−1(x) = 2bji

(a2
l
+b2j )2

W [f(ial, x), ϕ(bj , x)]− i
a2

l
+b2j

W [f(ial, x), ∂ϕ
∂k (bj , x)];

Q2l−1,2j(x) = 1
a2

l +b2j
W [f(ial, x), ϕ(bj , x)];

Q2l,2j−1(x) = −Q2l−1,2j−1(x); Q2l,2j(x) = Q2l,2j−1(x).

The regular solution for potential Ṽ + V1 is equal to

ϕ1(k, x) =
det

∣∣∣∣∣
Q(x) f(x)

β1(k, x) ϕ(k, x)

∣∣∣∣∣
detQ(x)

(3)

with the following vectors

β1,2j−1 = −i

∫ x

0

(
∂

∂k
ϕ(bj , t)

)
ϕ(k, t)dt, β1,2j =

∫ x

0
ϕ(bj , t)ϕ(k, t)dt

(f(x))2l−1 = f(ial, x), (f(x))2l = f(iāl, x).

Functions f(k, x) and ϕ(k, x) denote the Jost and regular solutions for the
potential Ṽ . The scattering matrix is defined by the asymptotics of the
regular solution.

Lemma 4. Let potential V be from the set V, such that the Jost function
FV (k) does not vanish at the origin FV (0) 6= 0 and the operator does not
have zero energy bound state. Then for any positive 0 < a0 <

√−E1 ( E1 is
the energy of the highest bound state ) there exists potential V0 ∈ VC such,
that function S0(k) = k−ia0

k+ia0
is a scattering matrix for the pair of operators

H1 = − d2

dx2 + V, H0 = − d2

dx2 + V + V0.
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Proof. Solution of the inverse problem is given by the following formula

V0(x) = 2a2 f2
1 (ia0, x)ϕ′21 (0, x)− f ′21 (ia0, x)ϕ2

1(0, x) + a2f2
1 (ia0, x)ϕ2

1(0, x)
(f1(ia0, x)ϕ′1(0, x)− f ′1(ia0, x)ϕ1(0, x))2

,

where ϕ1(k, x), f1(k, x) are regular and Jost solutions for the Schrödinger
operator H1. The asymptotics of the potential is equal to V0(x) ∼x→∞

2
(1+x)2

and it is bounded on the real axis. It follows, that V0 ∈ V. The
scattering matrix can be calculated using the regular solution

ϕ0(k, x) = ϕ1(k, x) +
a2

0

k2

W [ϕ1(0, x), ϕ1(k, x)]
W [ϕ1(0, x), f1(ia0, x)]

f1(ia0, x).

Theorem 1. Let the scattering data

S(k); Nbs, Nsing, α; Ej , sj , j = 1, 2, ..., Nbs; bj , j = 1, 2, ..., Nsing

from D bee given, then there exists potential V ∈ V, corresponding to these
scattering data.

Proof. Any function S(k) ∈ S can be presented by a quotient of two
Jost functions from F . The constant a0 in the representation can be chosen
in such a way, that 0 < a0 <

√−E1, where E1 is the highest bound state
of the operator.

The theorem can be proven in three steps. One can construct first
potential VF ∈ VF corresponding to the scattering matrix SF (k) and having
Nbs bound states with the energies Ej and normalizing constants sj , j =
1, 2, ..., Nbs [4,2]. On the second step the inverse problem should be solved
for the scattering matrix S1(k) =

∏Nsing

j=1
k−iaj

k+iaj

k−iāj

k+iāj
, considering potential

VF as a background potential. Solution of this problem - potential V1 ∈ VC

- is given by Lemma 3. In the last step if it is necessary the zero energy
singularity has to be introduced. We note, that the constant a0 is not equal
to zero only if the function SF (k) is equal to one at the origin. Thus Lemma
4 can be applied to find potential V ∈ VC , which solves the inverse problem
for the scattering matrix S0(k) = k−ia0

k+ia0
with the background potential V1.
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