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Inverse scattering transformation for positons

P Kurasov and K Packah
Department of Mathematics, Stockholm University, 106 91 Stockholm, Sweden

Received 29 May 1998, in final form 15 October 1998

Abstract. The scattering problem for the one-dimensional 8dimger operator with potential
equal to the positon solution of the Korteweg—de Vries (KdV) equation is investigated. Itis shown
that the transition coefficient is equal to zero and different positon potentials can have the same
reflection coefficient, i.e. the inverse scattering problem cannot be solved uniquely. It is observed
that the reflection coefficient calculated for the positon solutions does not change with time in
accordance with the inverse scattering method for KdV.

1. Introduction

The Korteweg—de Vries (KdV) equation

Uy = 6uux — Uxxx (1)
is one of the most well-studied nonlinear partial differential equations. Soliton solutions of this
equation have been known for a long time and therefore this equation has attracted the attention
of mathematicians and physicists. These solutions can be obtained using two different methods.
Both methods use the relation between the KdV equation and the one-dimensional stationary
Schiddinger equation. The first method uses a DarbouxaakBind, transformation [9]. The
second method is based on the inverse scattering transformation [3]. The second method is
more general, since it gives the solution to the KdV equation with arbitrary initial data from
the Faddeev class of functionsatisfying the estimate

/ 00(1 +|xDv(x)|dx < 0. (2)

In[10, 11] the Darboux transformation was used to obtain a new solution to the KdV equation,
it was namegositon solution
16kf{2 sirf kq(x + 4kft +x1) — ki(x + 12kft + x5) sin 2k, (x + 4kft +x1)}
u = .
{Sin 2y (x + 4,2t + x1) — kg (x + 1221 + x2)}2
The positon solution has the following important properties which differentiates it from the
soliton solution.

3)

e The positon solutiom (x, ) has a square singularity at a certain poigtr) on the real
line.
e The positon solution has slow oscillating decay at infinity

Ct Sin(bix +684) (4)
. .

e The positon solution is not a translational solution and changes its form with time.

u(x, 1) ~rstoo
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The solutions of the ordinary differential equations with coefficients having singularities have
been investigated intensively since the studies of Weyl [20]. The asymptotic behaviour of
the positon solution coincides with the one of Wigner—von Neumann potentials providing an
example of the Sclidinger operator with positive eigenvalues embedded into the continuous
spectrum [14, 18]. The latter relation explains why the new solution was called positon
in [10]. We point out that the positon solution is essentially described by three real parameters
x1, x2 € R, k1 € R,. The parameters; andx, define the phase and position of the positon,
respectively. The time parametedescribes the evolution of the positon.

The same function has been obtained independently at the same time by solving the
inverse scattering problem on the half-axis for rational reflection coefficients [4]. The positon
potentials form a family of potentials having the same reflection coefficient and no bound state.
It was proven that the spectral density for the $climger operator with the positon potential on
the half-axis vanishes at the poifit= kZ. To give a unique solution for the inverse scattering
problem the position of the zero of the spectral density (congtaias to be added to the set
of scattering data. The relations between these two approaches have been clarified for the half
axis in [6].

The aim of this paper is to study the scattering problem for thed@ihger operator with
the positon potential on the whole axis. The formal scattering problem for the corresponding
differential equation has already been constructed in [13] and later in [19]. The scattering
matrix associated with the calculated solution is trivial and it was announced that the positon
potential is ‘supertransparent’. However, the obtained scattering solutions are not locally
square integrable and therefore do not represent continuous spectrum eigenfunctions for the
Schibdinger operator. In this paper we calculate such continuous spectrum eigenfunctions.
We show that the positon potential has a limit point property at the singular pgoiné. the
singularity is so strong that the functions from the domain of the correspondingdcer
operator necessarily satisfy the Dirichlet boundary condition at this point. Hence we have
that the total Sclirdinger operator can be decomposed into the orthogonal sum of two self-
adjoint operators acting in the Hilbert spades—oo, xg) and Lz (xg, +00). It follows that
the scattering matrix for such a one-dimensional 8dhmger operator has trivial transition
coefficients, i.e. the positon potential is totally untransparent.

It is proven that the inverse scattering problem for positon potentials cannot be solved
uniguely even on the whole real line. This illustrates the difference between positon potentials
and potentials from the Faddeev class. (The positon potential does not belong to the Faddeev
class, since it has second-order singularity and decays slowly at infinity.)

This paper is organized as follows. Firstwe recall some well known properties of positons.
In section 3 we study the asymptotic behaviour of the positon solution and the corresponding
scattering solution. We give a mathematically correct definition for thedsiiger operator
with the positon potential. The regular scattering solutions are constructed and the scattering
matrix is calculated. In the last section we give an example of the modeb@olger operator
which has the same scattering matrix as the &dinger operator with the positon potential.

2. Darboux transformation and positon

Let us study in more detail the positon solution given by (3)
32k2(sinT — kig cosT) sinT

ux, 1) = (Sin2T' — 2k, g)?

)
where

T:kl(x+4kft+x1) g:x+12kft+xz.
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The aim of this paper is to study the scattering problem for the one-dimensional
Schibdinger operator with the potential given by (5). The scattering solution, or the continuous
spectrum eigenfunction for the Sdldinger operator is a generalized solution of the following
stationary equation

—y" +ulx, )y = Ey —00 <X <00 (6)

whereE = k? > 0 is the energy parameter. The following solution to the latter equation has
been obtained in [13] using the Darboux transformation

dikk, SiIP T 5 SIN2T + 2k1g ) gikxHaikcs

. 7
Sin2T — 2k;g  sin2T — 2k;g "

vk, x, 1) = (—k2+

The functiony is a solution to the stationary Sduinger equation but it depends on the time
parameter, since the potentiak(x, r) is a function oft. The solutionyr has the following
asymptotic behaviour

l/f(k, X, t) ~x—doo (_kz + k%)eikx+4ik3z (8)
asx — oo. The function
fx,k,t) = (—k*+ k%)ill//(k, x, t)e’4ik3’

has the asymptotic behavioyr~, _, +.€%*. This behaviour coincides with the plane wave
€k and it was concluded in [13, 19] that the positon potential is super-reflectionless, i.e. that
the corresponding scattering matrix is trivial

T.(k,t) =Ti(k,t) =1
R.(k,t) = Ri(k,t) =0

whereT}, T,, R;, R, denote the left and right transition and reflection coefficients. But the
functionsy (k, x, t) and f (k, x, t) have first- or second-order singularities located at the point
xo = xo(¢), which is the unique solution to the equation

Sin 2k (x + 4k2r + x1) = 2k (x + 1231 + x). (10)

This is due to the fact that the positon potential has a second-order singularity at this point. It
follows that the functiongr and f are not locally square integrable and therefore cannot be
equal to the continuous spectrum eigenfunctions of the correspondingdialjer operator.
Regular solutions to the Sddtinger equation, i.e. solutions which are locally square integrable,
will be calculated in section 4. First we are going to study the behaviour of the positon potential
and the solutiony at the singular point.

©)

3. Singularity of the positon

Let us describe first the asymptotic behaviour of the positon solution at the singular point.

Lemma 3.1. Letxg = xo(¢) be the unique solution of (10) for some choice of the parameters
X1, X2, k1 and¢, then the asymptotic behaviour of the functidmw, t) asx — xo, is given by

1
x(x, 1) = G _O‘xo)z + O<| ) X — Xxg (11)

x — xo|

whereq is the real number determined as follows.

(1) If sinky(xo + 4k?t + x1) # 0, thena = 2.
(2) If sinky(xo + 4k?t + x1) = 0, thena = 6.
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Proof. Let us consider the two possible cases separately.

(1) Let sink (xo+4k?t +x1) # 0. The numerator and the denominator are infinitely many
times differentiable functions, therefore using Taylor expansion around pgine get the
following representations for the square root of the denominator
sin 2k (x + 4kft +x1) — 2k1(x + 12kft +x2)

= 2k1(COS Z1(xo + 43t + x1) — 1)(x — x0) + O(|x — x0[%) x—xo (12)
and for the numerator
16k2(2 Sirf ky (x + 4k3t + x1) — ky (x + 12k31 + x) Sin 2y (x + 4k21 + x1))
= 16k2(2 sirf ky(xo + 4k2t + x1) — k(xo + 1221 + x2) Sin 2y (xo + 4k2t + x1))
+O(|x — xol) X — Xo.
Using (10) we get the following representation for the numerator

16k2(2 SirP ky (x + 4k3t + x1) — kq(x + 1231 + x) Sin 2y (x + 4k31 + x1))
= 322 sin’ ky (xo + 4k3t + x1) + O(|x — xol) x — Xo. (13)

Hence (12) and (13) imply (11) and that the constaig equal to two.
(2) Let sinky (xo +4k?t +x1) = 0. Again, using the Taylor expansion we get the following
estimates for the numerator of (5)

16k2(1 — €S &y (x + 42t + x1) — ky(x + 1221 + x2) Sin 2y (x + 4k2t + x1))
= 2k (x —x0)* + O(lx = x0l>)  x = xo
and for the square root of the denominator
SiN 2k (x + 4k3t + x1) — 2ky(x + 12k2t +xp) = —2k3(x — x0)® + O(|x — x0|*) x — Xo.
The latter two formulae imply that (11) holds and the consgaistequal to six. a

The latter lemma shows that the positon solution can have singularities of different
magnitude in contrast to what was claimed in [8]. The 8dimger operator with the potential
having second-order singularity{“— a € R has been investigated by Friedrichs [2],

—x0)? "’

Sears [17], Kurss [7], Weinholtz [21] and Nilsson [15]. It was proven that if % then
the differential equation has the limit point singularity at the painti.e. only one solution
of the differential equation is locally square integrable in a neighbourhood of this point (see
also [16]). Lemma 3.1 implies that the constaris equal to six or two both greater th@n
and the Schidinger equation has a limit point singularity in both cases.

We canillustrate this phenomena by considering the homogeneous soltioris —xg)”?
of the Schédinger equation with zero energy

" o
Vo e =0

Substituting the homogeneous functign= (x — xo)? into the equation we easily get the
following quadratic equation for the parameger

1+ 1+ 4
> .
Fora = 6,2 we getg = 3, —2 andp = 2, —1, respectively. The solutions — xo)~2 and
(x — xo)~* are not locally square integrable in a neighbourhood of the singular point. We see
that only one of the solutions for eaeh= 2, 6 is locally square integrable.
This prompts us to further investigate the behaviouyah a neighbourhood ofy.

—BB-D+a=0=p =



Inverse scattering transformation for positons 1273

For convenience we re-writg (given by (7)), as follows
2ikk1(1— cos2I') — 4k3g ki
SiN2T — 2k1g '

The asymptotic behaviour of the solutigrk, x, ) at the singular point is described by the
following lemma.

Yk, x, 1) = (—kz —kZ+ (14)

Lemma 3.2. Lety (k, x, t) be the singular solution (14) of the Séliinger equation (6) with
the positon potential.

(1) If sinkq(xo + 4k?t + x1) # O, theny (k, x, ¢) has the following asymptotic behaviour at
the singular point

w:

ai

+ O(|x — xol) X — Xo (15)
X — X0

where
ay = (—ik + ki COtky (xg + 421 + x1)) o4k (16)

(2) If sinky(xo + 4kft + x1) = 0, then the singular solutiony (k, x, t) has the following
asymptotic behaviour at the singular point

Y= —2 +d+O0(x—xl) x> x (a7)
(x — x0)
where
ap = 3ékx0+4ik3t
kK2 8k2\ sz (18)
do = — Ak § elkxo+4lkr.
=-(3+%)

Proof. Let us introduce the following notations
To = ka(xo + 43t + x1)
go=ki(xo+ 12kft +x2).
We begin by considering the first case, i.e. whegtis a solution to (10), but
To# n n=0,+1 42, ....

Let us denote by (x) andg (x), respectively, the numerator and the denominator in the third
term of (14) as follows

w(k3 X, t) — (_kZ _ k% + %) eikx+4ik3t' (19)

These two functions are infinitely many times differentiable and using the Taylor expansion
we get the following estimates for these functions

f(x) = 4k SinTy(ik sin Ty — cosTp) + 4k2(ik sin 2Ty — k1) (x — x0)* + O(lx — x0[?)
q(x) = —8k; Sir® To(x — x0) — 2k? sin 2l(x — x0)% + O(|x — x0|*).

It follows that

<—k2—k§+ ﬂx)) _ ( Uik a)+ O —x0|)) T = xo (20)

g(x) X — X

where

a’l = ky cotky(xg + 4kf[ +x1) — k.
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The series expansion of the exponential function gives us (15) and (16).
The second case can be investigated using similar methods. O

The latter lemma implies that the solutigrik, x, ) of the stationary Sclidinger equation
is not locally square integrable on the real axis. This solution has exactly the same singularity
as the homogeneous solution to the $climger equation with zero energy. We conclude that
the solution has the singularity of a different power due to the different value of the constant
a defining the singularity of the positon potential.

4. The regular solution

Since the solutiong’ andv/ of the Schodinger equation (6), are linearly independent, every
solution to the differential equation (6) is equal to a linear combination of these two functions.
The following function is a regular solution to the Saétinger equation with the positon
potential

Wk, x) =@y — an¥ (21)
wherea, corresponds to cases 1 and 2 in lemma 3.2ah.e= (k1 COtky(xg + 4kft +x1) —
ik)gkxot4ik’t andg, = 3dkxot4ik respectively.

Lemma 4.1. The regular solutionl (k, x, #) satisfies the Dirichlet boundary conditions at the
pointxo, i.e.

W(k, xo(t), 1) = O. (22)

Proof. We start from the first case of lemma 3.2. Formula (21) implies that

Wk, x) =a—1( Nt o —xo|>) —a (x B+ o(x —xo|)>

X — Xo X0

= O(lx — xol) X = Xo

and it follows that¥ (k, x(¢), t) satisfies (22).
The second case can be investigated similarly. O

Formula (8) implies that the functiod (k, x, t) has the following asymptotic behaviour
for largex

Wk, X, 1) ~isioo (K2 +K2) (@Fe* — ae ) (23)

where wherez* are given bya; = (ky COtky(xo + 4k3t + x1) — ik)é* anda; = 3eko,
respectively.

On each half-axis < xq, resp.x > xg the functionW (k, x, r) is the unique (up to a
multiplication constant) regular solution to the Saflinger equation. Therefore, the scattering
solutionsF_ and F, are necessarily given by

) 1V X < Xg
F_(k,x,t) = (24)
coV X > Xo
v >
ﬂwJJyz{Q r = (25)
ca W X < Xo
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wherecy, co, cz andcy are certain constants

. These solutions should satisfy the following
asymptotic conditions [1]:

&k + R (k)e ** X — —00
F-tx, 0~ { T,(k)e”‘i( ) X — +00 (26)
—ikx
S F s
It follows from (24), (25) and (23) that the constants are given by

c1= (@ [—k*+ kD7

c3 = (—ay[-k* +KkD~* (28)
Cop = C4 = 0.

This gives us the following asymptotic behaviour for the regular scattering solution

eikx+ _Cl_: e—ikx
F_(k, x)~ ar

0
and

0

Fi(k, x) ~ e ikx 4 (_@) gk

: X — —00 (29)
X = 00
X — —00
X — 00. (30)
a,

The coefficients of the stationary scattering matrix can now be calculated

*
&

Ri(k) = —

n

R(k) =~

*
a,

T.(k) = T (k) = 0.

We have almost proven the following theorem.

Theorem 4.2. The scattering matrix for the one-dimensional Stinger operator with the
positon potential (5) is given by

_ 0 Rk
S(k)_(R,(k) 0 >

(31)
where
_ k+ih' ikxo
Ri(k) = (mez )
R (k) = (—k — ih/eZi’%) (32)
" k+in'

B’ = ky cotky(xo + 4kt + x1).

For sinky (xo + 4k2t + x1) = Owe haveh’ = co and R; = —€?*%o, R, = g=2ikxo,

Proof. We start by considering the case &ilxo + 4kft +x1) # 0. In this case we have
a’|n=1 = (ki cotki(xo + 4kft +x1) — ik)é*, hence a direct calculation gives us

*

a k+ih'
Ri(k) = —-2 _ 1 ikxo 33
1 ail,_g  k—il (33)
ar k—ih'
R. (k) = __n — _ —2ikxo
“ a1 kK FIR

(34)
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whereh’ = ky COtky(xo + 4kt + x1) = ky cotTo.
In the second case= 2 we have

* .
Ri(k) =~ — _gPko (35)
a, n=2
R(k)=—2n| = _g2ikn, (36)
Cl: n=2

If we try to calculate the scattering matrix using (32) we get that the paraifageequal to
infinity 2’ = oo and considering the limit oR; (k) and R, (k) whenh’ approaches the infinity
we get exactly (35) and (36). |

One can now readily see that each half-axis, on both sides of the singularxpoist
independent of each other. Hence we hayg) = 0 as opposed t® (k) = 1, which was the
claimin[12,13,19].

We would like to point out that the scattering matrix depends on the time parameter
since the singular pointy = xo(¢) is moving and the parametét = 1'(¢) varies with time.
The scattering matrix does not evolve, however, in accordance with the standard KdV rule:

S(k, 1) = 8K S(k, 0).

We observe that this unusual behaviour is due to the strong singularity of the potential at the
singular pointxg, as well as at infinity.

5. The Schidinger operator with point interactions

In this section we consider the relations between the &fihger operator with the positon

potential and the Schdinger operator with point interactions. The latter operator, with the

interaction atxg, can be defined by certain boundary conditions at the point of interaction.
Let us consider the following operator

Ly=-— (37)

dx2
defined on the domain
d
Dom(Ly) = (¥ € WER\{xo)) : %(k, w00 = hyk o0}  (38)

wherenh is a certain real constant. The operakgris self-adjoint on the domain Dofh,).
This operator is equal to the orthogonal sum of the operdtﬁracting in the Hilbert spaces
La(—00, x0) and L (xo, 00):

Ly=L;, ®Lj.

The operatorsL,f are defined by the same differential expression (37) on the domains

d
Dom(L;) = (¥ € W2(—oo, x0) %(xo —0) = hy(xo — 0))

2 dy (39)
Dom(L;) = {¢ € W (x0, o0) : a(xwo) = hyr(xo +0)}.
The free Schidinger equation
d2
—— P =Ed E=k>>0 (40)

dx?
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has the following two solutiong’& and e**. Any function® satisfying equation (40) outside

the singular poinkg is given by
o€+ g_ekx X < Xg
a+e|kx +[3+e—|k)c X > Xo

Ok, x) = {

wherex. andgB.. are certain constants. If we now take into accountthatthe boundary conditions
in (38), must be satisfied at the poi,

d
d—qD(k,xoiO):hq)(k,xOﬂ:O) (41)
X
we have
ikaieikxo _ ikﬂiefikxo — h(aieikxo + ﬂiefikxo).

The latter equalities imply that

a_i — ik+h —2ikxo (42)
Be ik—h
hence we can see that
k+ih o,
Ri(k) = mez'm
- 43)

R, (k) = K=ok

k+ih
The transition coefficient, andT; are equal to zero and the stationary scattering matrix for
the operatorL, coincides with the scattering matrix for the Sgtiinger operator with the
positon potential if we také = k', whereh' is the real parameter defined by (32). So we see
that the scattering matrix defined by the positon potential is not equal to the unit matrix but
coincides with the scattering matrix for the Sgtlinger operator with the point interaction at
point xo.

A similar problem has been considered in [4] where the scattering problem for the
Schibdinger operator with the positon potential on the half-line has been studied. Only the
case where the singularity of the positon is situated on the other half-axis has been considered.
It was shown that the scattering matrix for the positon potential coincides in that case with
the scattering matrix of the extended Saffinger operator acting in a certain extended Hilbert
space. The codimension of the original Hilbert space in the extended space was not trivial. In
the case under consideration in this paper we were able to construct the operator with point
interactions acting in the original Hilbert space and having the same scattering matrix as the
operator with the positon potential.

The above analysis shows that the inverse scattering problem for the scattering matrix
determined by the positon cannot be solved uniquely. The solution of such a problem includes
Schibdinger operators with positon potentials having different valugs bfand the second
derivative operator with the boundary conditions given by (38) at the pgirinother type
of solution can be called a half-positon, that is, a solution to the KdV equation that coincides
with the original positon solution on one side of the singularity but which is identically zero
on the other. These solutions cannot be obtained via Darboux transformation, since they are
not meromorphic. This is in contrast to the positon solution which is a meromorphic function
of the parametex. An interesting problem is to study the interaction between half-positons
as it has been done for positons and solitons in [11-13]. This question will be discussed in a
future publication.

T Hence one should includg in the set of scattering data in order to ensure the uniqueness of the solution to the
scattering problem in the class of functions including positons, as it has been done in [5] for the scattering problem
on the half-axis.
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