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Abstract. The differential operator−(d2/dx2) − (γ /x), γ ∈ R, in one dimension is
studied using distribution theory. It is proven that there exists a unique self-adjoint operator
corresponding to the differential expression understood in the principle-value sense. Point
interactions determined by the singular operator−(d2/dx2)− (γ /x)+ αδ(x) are studied.

1. Introduction

Fischer, Leschke and M̈uller claim in their comment [5] that ‘in one dimension a self-adjoint
Schr̈odinger operator with a 1/x or 1/|x| potential cannot be defined without the specification
of a boundary condition at the origin’ (see also [4]). I agree with their statement that
special boundary conditions at the origin are needed to define a self-adjoint operator. These
boundary conditions cannot be specified if one considers self-adjoint operator corresponding
to the formal expression as one of the possible extensions of the symmetric operator defined
on the domain of smooth functions with support separated from the origin. This approach
has been proposed in [5]. The main idea of my paper [9] is the following. The formal
differential expression−(d2/dx2)−(γ /x) defines a map from the Hilbert space to the space
of distributions. The corresponding Hilbert space operator can be formed by restriction. It
appears that this operator is self-adjoint and coincides with one of the self-adjoint extensions
suggested in [5], i.e. the boundary conditions at the origin are determined by the formal
differential expression itself if one considers it in the framework of distribution theory.
Maybe it is proper to explain this idea more precisely.

Paper [9] was initiated by the discussion between Newton and Moshinsky on the
penetrability of the potential 1/x in one dimension (see [13–15]), where the Schrödinger
operator

− d2

dx2
− γ 1

x
(1)

in L2(R) has been investigated. Point zero is a singular point for the corresponding
differential operator. It was proposed in [9] to study this operator in the framework of
distribution theory with the standard set of test functionsD = C∞0 (R) [8]. Let us denote
the corresponding set of distributions byD′. The operator−(d2/dx2) − (γ /x) can be
defined in the generalized sense with the set of test functionsD0 = C∞0 (R\{0}), since the
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setD0 is invariant under the action of the operator. To determine an operator acting from
L2(R) to D′ the potential has to be defined as a distribution inD′. The function 1/x does
not determine a unique distribution inD′. In [9] the corresponding distribution has been
defined in the principle-value sense 1/x ⇒ vp(1/x). The potential 1/x is an odd function
homogeneous of order−1 and considered distribution is the unique regularization of the
function 1/x, which defines an odd distribution homogeneous of the same order, since the
difference between any two distributions corresponding to the function 1/x is a distribution
with support at the origin. Every odd distribution homogeneous of order−1 having support
at the origin is equal to zero. Therefore, it was proposed that we study the following
operator

Hd = vp

(
− d2

dx2
− γ
x

)
Hd : L2(R)→ D′ (2)

defined in the distributional sense. The potential 1/|x| will not be discussed in the current
paper, since the function 1/|x| does not determine any bounded functional onC∞0 (R) and,
therefore, cannot be studied in the framework of our approach, as has been already shown
in [9].

After paper [9] had been published Professor A Dijksma and B Bodenstorfer drew
my attention to the papers by Boyd, Everitt, Gunson and Zettl (see [2, 3, 7]), where a
similar differential equation has been studied. The second-order differential operator with
the potential 1/x has been studied as a perturbation of the second derivative operator. The
perturbation 1/x is not infinitesimally form-bounded with respect to the operator−d2/dx2

in one dimension. It was shown that the potential vp(1/x) is form-bounded with the relative
bound zero perturbation of the second derivative operator ([7]). Therefore, it is possible
to define the operator (2) using the KLMN theorem [16]. The corresponding perturbed
operator coincides with the operatorH from [9].

Of course, it is possible to consider different point perturbations at the origin of the
determined self-adjoint operator [1]. Using von Neumann theory, self-adjoint operators
describing penetrable and impenetrable problems can be constructed. The choice of the
boundary conditions at the origin has to be determined by the physical problem which
has to be described. The question discussed in [9] was of mathematical origin: Which
self-adjoint operatorH corresponds to the differential operatorHd? This question has
been answered in the framework of the theory of distributions. The differential operator
Hd is a natural regularization of the operator (1). The functions from the domain of the
corresponding self-adjoint operatorH possess a remarkable property: the graph of every
such function is given by theC1 curve.

The current paper is organized as follows. In section 2, the second derivative operator on
the line is studied in detail. It is shown how to construct point interactions for this operator.
In section 3, the operatorH corresponding to the formal expression (1) is calculated. It is
proven that this operator is self-adjoint. Point interactions for the operatorH are studied
in section 4. We concentrate our attention on the interactions with support at the singular
point.

2. The operator−d2/dx2 and point interactions

To clarify our approach, let us consider first the operator of the second derivative inL2(R).
The differential operatorLd = −d2/dx2 is defined on the whole Hilbert space in the weak
sense. However, the range of the linear operatorLd does not belong to the Hilbert space.
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In order to consider this operator in the framework of the theory of self-adjoint operators
one has to restrict this operator to the following domain:

Dom(L) = {ψ ∈ L2(R) : Ldψ ∈ L2(R)}. (3)

The operatorLd restricted to this domain will be denoted byL. One can easily show that
the domain Dom(L) coincides with the Sobolev spaceW 2

2 (R). One can also prove that the
operatorL is self-adjoint on the described domain. Therefore, the operatorL is the unique
self-adjoint operator corresponding to the second derivative differential operatorLd . The
point zero is not a singular point for the differential operatorLd but let us study this point
in more detail. The functions from the domain of the operatorL and their first derivatives
are continuous at the origin as elements fromW 2

2 (R). The latter statement can be written
in the form of boundary conditions at the origin:

ψ(−0) = ψ(+0) ψ ′(−0) = ψ ′(+0). (4)

It is true that ‘self-adjointness is the only property of a Hamiltonian required by the
axioms of quantum mechanics’ ([5]). However, a symmetric differential expression can
determine a unique self-adjoint operator as we have already seen. Let us consider point
interactions ([1]) of the described self-adjoint operator. The same differential expression
−d2/dx2 defines self-adjoint operatorsLJ andLh on the domains of functions inW 2

2 (R\{0})
satisfying respectively the following boundary conditions at the origin of one of the types,(

ψ(+0)
ψ ′(+0)

)
= J

(
ψ(−0)
ψ ′(−0)

)
J = eiϕ

(
a b

c d

)
ϕ ∈ [−π/2, π/2] a, b, c, d ∈ R ad − bc = 1 (5)

or

h+0ψ
′(+0) = h+1ψ(+0) h−0ψ

′(+0) = h−1ψ(+0) h± = (h±0 , h±1 ) ∈ P 1 (6)

whereP 1 denotes the projective space (see [10–12]). Each of these operators can be
obtained as a self-adjoint extension of the operatorL0 which is equal to the restriction of
L to the set of functions satisfying the boundary conditions

ψ(0) = 0 ψ ′(0) = 0.

However, these operators in general do not coincide with the restriction of the differential
operatorLd to the corresponding domain. For anyψ ∈ Dom(LJ ) andϕ ∈ Dom(Lh) the
differences between the ranges of the operatorsLJψ − Ldψ andLhϕ − Ldϕ are given by
certain distributions with support at the origin. Every such distribution is equal to a linear
combination of the delta function and its derivatives. The operatorL is the unique operator
which coincides on its domain Dom(L) with the differential operatorLd . Therefore, the
operatorL is the correct self-adjoint operator corresponding to the differential expression
−d2/dx2 on the real line. Different self-adjoint operatorsLJ andLh can be considered
as point perturbations of the operatorL. It has been shown in [10] that each of these
operators corresponds to a certain singular differential operator, which can be obtained as
a combination of the following three operators:
• the Schr̈odinger operator with the generalized potential

LX1X2 = −
d2

dx2
+X1δ +X2δ

(1) (7)

• the regularized Schrödinger operator with the singular gauge field

LX3 =
(

i
d

dx
+X3δ

)2

− (X3δ)
2 = − d2

dx2
+ iX3

(
2

d

dx
δ − δ(1)

)
(8)
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• the Schr̈odinger operator with the singular density

LX4 = −
d

dx
(1+X4δ)

d

dx
. (9)

The total family of singular differential operators is described by four real parametersX1,
X2, X3, X4. To obtain the whole family of self-adjoint perturbations of the operatorL at
the origin it is necessary to consider even infinite values of the parameters ([10]). Similar
analysis can be carried out for the operator dn/dxn in L2(R) [11].

3. One-dimensional Coulomb Hamiltonian

The differential operatorHd with an internal singularity at the origin has already been
discussed in [9]. In the introduction we have defined this operator acting as follows:
L2(R)→ D′. The linear operator acting in the Hilbert space is defined on the domain

Dom(H) = {ψ ∈ L2(R) : Hdψ ∈ L2(R)}. (10)

The latter definition is similar to the definition of the domain of the operatorL given by
(3). Following the approach described above, the operatorH acting in the Hilbert space
is the restriction of the differential operatorHd to the domain Dom(H). To determine the
operatorH it is necessary to describe its domain more precisely.

Lemma 1. If ψ ∈ Dom(H) then the following inclusion holds,

ψ ∈ W 2
2 (R\[−ε, ε]) (11)

for every positiveε > 0.

Proof. Let ψ ∈ Dom(H) and letϕ be an arbitrary test function fromC∞0 (R\{0}). The
support of the functionϕ is separated from the origin. Therefore, the potential 1/x is
continuous and bounded on the support ofϕ. It follows thatψ ∈ W 2

2 (R\[−ε, ε]), since the
functionϕ can be chosen arbitrary. The lemma is proven. �

Lemma 1 implies that every function from the domain of the operatorH and its first
derivative are continuous outside the origin.

Lemma 2. Let ψ ∈ L2(R±) and assume that

ψ ′′ + γ
x
ψ = g ∈ L2(R+).

Then the limitsψ(±0) exist and the following asymptotic representations hold:

ψ(x) = ψ(±0)+O(
√
|x|) x →±0 (12)

ψ ′(x) = −γψ(±0) ln |x| + b± + o(1) x →±0. (13)

Proof. The assumption implies thatψ = ψ1+ψ2, whereψ ′′1 = g ∈ L2(R+), ψ1(±0) = 0
andψ ′′2 = −(γ /x)ψ . It is clear thatψ1 andψ2 are inC1(R±) and thatψ ′1(x) has a limit
asx →±0. We present here the proof for the positive half-axisx > 0 only. The proof for
the negative half-axis is similar. To study the asymptotic behaviour ofψ2(x) we write

ψ ′2(x) = ψ ′2(1)+ γ
∫ 1

x

1

y
ψ(y) dy
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ψ2(x) = ψ2(1)− (1− x)ψ ′2(1)− γ
∫ 1

x

y − x
y

ψ(y) dy. (14)

Sinceψ is integrable over (0,1) and 0< (y−x)/y < 1, the Lebesque dominated convergence
theorem implies that the last term tends to

−γ
∫ 1

0
ψ(y) dy

as x → +0. Then the limx→+0ψ2(x) exists. Using the fact thatψ ∈ L2(R+) we can
improve this argument and prove (12) as follows:

|ψ2(x)− ψ2(+0)| 6 x|ψ ′2(1)| + |γ |
∫ x

0
|ψ(y)| dy + x|γ |

∫ 1

x

1

y
|ψ(y)| dy.

Sinceψ is bounded, the last term is less thanCx| ln x| 6 C1
√
x, and by the Schwarz

inequality ∫ x

0
|ψ(y)| dy 6

{∫ x

0
1 dy

∫ x

0
|ψ(y)|2 dy

}1/2

6 C
√
x.

This proves (12). Plugging the representation (12) into (14) gives (13). �
The following lemma is similar to theorem 1 from [9].

Lemma 3. If ψ ∈ Dom(H) then the boundary valuesψ(±), b±(ψ) determined by (12)
and (13) satisfy the following boundary conditions:

ψ(−0) = ψ(+0) b−(ψ) = b+(ψ). (15)

Proof. This coincides with the proof of theorem 1 from [9]. �
The graph of each function from the domain Dom(H) is continuous at the origin.

Moreover, the corresponding curve isC1. If ψ(0) 6= 0 then the tangent line to the graph at
the origin is vertical.

The three lemmas imply the following theorem.

Theorem 1. The operatorH is the self-adjoint operator−(d2/dx2) − (γ /x) defined on
the domain of functions fromW 2

2 (R\[−ε, ε]) for every positiveε > 0 possessing the
representation (12) and (13) and satisfying the boundary conditions (15).

Proof. To finish the proof of the theorem one needs to show that every function from
the described domain is mapped by the operatorHd to an element from the Hilbert space.
This follows from the proof of theorem 1 from [9]. This operator is self-adjoint, since it is
closed, symmetric and has zero deficiency indices. The theorem is proven. �

Thus, we have shown that there exists a unique self-adjoint operator corresponding to
the differential operatorHd . The domain of this operator is determined by the boundary
conditions connecting the boundary values of the functions on the left- and right-hand sides
of the origin. Therefore, it is natural to speak about the penetrability of the potential 1/x.
Different boundary conditions at the origin determine operators which can be considered
as self-adjoint point perturbations of the original operatorH . Let us illustrate the latter
statement by considering singular differential operator with the delta interaction at the origin.
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4. Point interactions for Coulomb Hamiltonian

We are going to study in this section the following singular differential operator:

Hα = vp

(
− d2

dx2
− γ
x

)
+ αδ(x). (16)

The delta functionδ(x) has support at the singular point of the differential operator. Point
perturbations with support outside the origin can be considered following the main lines
of section 2, since the potential 1/x is a bounded function at every pointx, x 6= 0. The
perturbationαδ(x) is a form-bounded perturbation with the relative bound zero of the
operatorH . Lemmas 1 and 2 are valid even for the functions from the domain of the
operatorHα. In fact the operatorHα is equal to a certain self-adjoint extension of the
operatorH0, which is the restriction of the operatorH on the set ofC∞0 (R\{0}) functions.
The operatorH0 has deficiency indices (2, 2) and its self-adjoint extensions can be described
by a certain unitary 2× 2 matrix using von Neumann theory.

Theorem 2. The operatorHα is the self-adjoint operator−(d2/dx2) − (γ /x) defined on
the domain of functions fromW 2

2 (R\[−ε, ε]) for every positiveε > 0 possessing the
representation (12) and (13) and satisfying the boundary conditions

ψ(−0) = ψ(+0) = 1

α
(b+(ψ)− b−(ψ)). (17)

Proof. The proof of the theorem is similar to the proof of lemma 3 and theorem 1. The
distribution vp(−(d2ψ/dx2)− (γ /x)ψ) is equal to the sum of a delta function and a square
integrable function if and only if the functionψ is continuous at the originψ(−0) = ψ(+0).
The singular part of the latter distribution at the origin is equal to−αψ(0)δ(x) if and only
if the following condition is satisfied:

−b+(ψ)+ b−(ψ) = −αψ(0).
Hence we have proven that every function from the domain of the operatorHα satisfies the
boundary conditions (17).

The self-adjointness of the operatorHα follows from the fact that the boundary
conditions (17) describe a self-adjoint extension of the operatorH0 and the operatorsHα
andH ∗0 coincide on this domain. The theorem is proven. �

One can consider the operatorHα even for the infinite value of the parameterα. The
operatorH∞ is defined by the Dirichlet boundary conditions at the origin

ψ(+0) = ψ(−0) = 0.

This operator can be decomposed into the orthogonal sum of two self-adjoint operators
defined on the positive and negative half-axes. The physical problem described by this
self-adjoint operator has an impenetrable singularity at the origin. However, the nature
of the impenetrability is not related to the singularity of the potential 1/x at the origin.
It is due to the special boundary conditions. Fischer, Leschke and Müller are right in
saying that ‘penetrable’ and ‘impenetrable’ quantum systems can be described by choosing
different boundary conditions at the origin. Certain physical problems can force us to
use ‘impenetrable’ boundary conditions, but the boundary conditions corresponding to the
differential operatorHd has been determined in a unique way.
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[8] Hörmander L 1983The Analysis of Linear Partial Differential Operatorsvol I (Berlin: Springer)
[9] Kurasov P 1996J. Phys. A: Math. Gen.29 1767–71

[10] Kurasov P 1996J. Math. Anal. Appl.209 297–323
[11] Kurasov P and Boman J Finite rank singular perturbations and distributions with discontinuous test functions

Proc. AMSto be published
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