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Abstract. The differential operator—(d?/dx2) — (y/x), y € R, in one dimension is
studied using distribution theory. It is proven that there exists a unique self-adjoint operator
corresponding to the differential expression understood in the principle-value sense. Point
interactions determined by the singular operatgd?®/dx?) — (y /x) + a8 (x) are studied.

1. Introduction

Fischer, Leschke and dler claim in their comment [5] that ‘in one dimension a self-adjoint
Schibdinger operator with a/k or 1/|x| potential cannot be defined without the specification

of a boundary condition at the origin’ (see also [4]). | agree with their statement that
special boundary conditions at the origin are needed to define a self-adjoint operator. These
boundary conditions cannot be specified if one considers self-adjoint operator corresponding
to the formal expression as one of the possible extensions of the symmetric operator defined
on the domain of smooth functions with support separated from the origin. This approach
has been proposed in [5]. The main idea of my paper [9] is the following. The formal
differential expression-(d?/dx?) — (y /x) defines a map from the Hilbert space to the space

of distributions. The corresponding Hilbert space operator can be formed by restriction. It
appears that this operator is self-adjoint and coincides with one of the self-adjoint extensions
suggested in [5], i.e. the boundary conditions at the origin are determined by the formal
differential expression itself if one considers it in the framework of distribution theory.
Maybe it is proper to explain this idea more precisely.

Paper [9] was initiated by the discussion between Newton and Moshinsky on the
penetrability of the potential /& in one dimension (see [13-15]), where the Sclimger
operator
o? 1
a2 )’; (1)
in Lo(R) has been investigated. Point zero is a singular point for the corresponding
differential operator. It was proposed in [9] to study this operator in the framework of
distribution theory with the standard set of test functidhs= C5°(R) [8]. Let us denote
the corresponding set of distributions Y. The operator—(d?/dx?) — (y/x) can be
defined in the generalized sense with the set of test functins: C3°(R\{0}), since the
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set Dy is invariant under the action of the operator. To determine an operator acting from
L,(R) to D’ the potential has to be defined as a distributioDin The function Yx does

not determine a unique distribution i’. In [9] the corresponding distribution has been
defined in the principle-value sensgxl= vp(1/x). The potential 1x is an odd function
homogeneous of order1 and considered distribution is the unique regularization of the
function 1/x, which defines an odd distribution homogeneous of the same order, since the
difference between any two distributions corresponding to the functierisla distribution

with support at the origin. Every odd distribution homogeneous of ordehaving support

at the origin is equal to zero. Therefore, it was proposed that we study the following
operator

Hd—vp<—d2—y) HY: Ly[R) —» D' @)
N dx2  x 2

defined in the distributional sense. The potentidlcl will not be discussed in the current
paper, since the function/[lx| does not determine any bounded functional@i(R) and,
therefore, cannot be studied in the framework of our approach, as has been already shown
in [9].

After paper [9] had been published Professor A Dijksma and B Bodenstorfer drew
my attention to the papers by Boyd, Everitt, Gunson and Zettl (see [2,3,7]), where a
similar differential equation has been studied. The second-order differential operator with
the potential 1x has been studied as a perturbation of the second derivative operator. The
perturbation 1x is not infinitesimally form-bounded with respect to the operatdf/dx?
in one dimension. It was shown that the potentiallyp) is form-bounded with the relative
bound zero perturbation of the second derivative operator ([7]). Therefore, it is possible
to define the operator (2) using the KLMN theorem [16]. The corresponding perturbed
operator coincides with the operatér from [9].

Of course, it is possible to consider different point perturbations at the origin of the
determined self-adjoint operator [1]. Using von Neumann theory, self-adjoint operators
describing penetrable and impenetrable problems can be constructed. The choice of the
boundary conditions at the origin has to be determined by the physical problem which
has to be described. The question discussed in [9] was of mathematical origin: Which
self-adjoint operatorH corresponds to the differential operat&“? This question has
been answered in the framework of the theory of distributions. The differential operator
H? is a natural regularization of the operator (1). The functions from the domain of the
corresponding self-adjoint operatéf possess a remarkable property: the graph of every
such function is given by the€? curve.

The current paper is organized as follows. In section 2, the second derivative operator on
the line is studied in detail. It is shown how to construct point interactions for this operator.
In section 3, the operatad corresponding to the formal expression (1) is calculated. It is
proven that this operator is self-adjoint. Point interactions for the opefétare studied
in section 4. We concentrate our attention on the interactions with support at the singular
point.

2. The operator —d?/dx? and point interactions
To clarify our approach, let us consider first the operator of the second derivati£R).

The differential operatof.¢ = —d?/dx? is defined on the whole Hilbert space in the weak
sense. However, the range of the linear operétodoes not belong to the Hilbert space.
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In order to consider this operator in the framework of the theory of self-adjoint operators
one has to restrict this operator to the following domain:

Dom(L) = {¢ € Lo(R) : LYYy € Lo(R)}. (3)

The operator.? restricted to this domain will be denoted By One can easily show that
the domain Do) coincides with the Sobolev spa&ézz(R). One can also prove that the
operatorL is self-adjoint on the described domain. Therefore, the opelaisrthe unique
self-adjoint operator corresponding to the second derivative differential opdrétomhe
point zero is not a singular point for the differential operatdrbut let us study this point
in more detail. The functions from the domain of the operdtand their first derivatives
are continuous at the origin as elements frW‘ﬁ(R). The latter statement can be written
in the form of boundary conditions at the origin:

¥ (=0) = ¥ (+0) ¥/ (=0) = ¢'(+0). 4

It is true that ‘self-adjointness is the only property of a Hamiltonian required by the
axioms of quantum mechanics’ ([5]). However, a symmetric differential expression can
determine a unique self-adjoint operator as we have already seen. Let us consider point
interactions ([1]) of the described self-adjoint operator. The same differential expression
—d?/dx? defines self-adjoint operatofs; andLj, on the domains of functions iw2(R\{0})
satisfying respectively the following boundary conditions at the origin of one of the types,

(vito)=s(is) == (t )
¢ €[—m/2, /2] a,b,c,d eR ad —bc=1 (5)
or
h§ W' (+0) = hi ¥ (4+0) ho ' (+0) = hy ¥ (+0) h* = (hi, hi) e P* (6)
where P! denotes the projective space (see [10-12]). Each of these operators can be

obtained as a self-adjoint extension of the operdtgmhich is equal to the restriction of
L to the set of functions satisfying the boundary conditions
¥(0) =0 ¥'(0) = 0.

However, these operators in general do not coincide with the restriction of the differential
operatorL? to the corresponding domain. For agye Dom(L;) andg € Dom(L},) the
differences between the ranges of the operatgrg — L4y and L, — L% are given by
certain distributions with support at the origin. Every such distribution is equal to a linear
combination of the delta function and its derivatives. The oper&atisrthe unique operator
which coincides on its domain Dath) with the differential operatoi.?. Therefore, the
operatorL is the correct self-adjoint operator corresponding to the differential expression
—d?/dx? on the real line. Different self-adjoint operatoks and L;, can be considered
as point perturbations of the operatbr It has been shown in [10] that each of these
operators corresponds to a certain singular differential operator, which can be obtained as
a combination of the following three operators:

e the Schodinger operator with the generalized potential

2
Lx,x, = — 47 + X168 + Xo8D (7)

e the regularized Scbdinger operator with the singular gauge field

2

Ly, = i£+X52—(X8)2——d—+iX 255—5@ (8)
X =\ gy 3 30) = T2 3\ “ax
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e the Schodinger operator with the singular density

d d
Ly, =~ (1+Xad) . 9)

The total family of singular differential operators is described by four real paramgters

X,, X3, X4. To obtain the whole family of self-adjoint perturbations of the operdtat

the origin it is necessary to consider even infinite values of the parameters ([10]). Similar
analysis can be carried out for the operatbfdt” in Lo(R) [11].

3. One-dimensional Coulomb Hamiltonian

The differential operatorH? with an internal singularity at the origin has already been
discussed in [9]. In the introduction we have defined this operator acting as follows:
L,(R) — D’. The linear operator acting in the Hilbert space is defined on the domain

Dom(H) = {¢ € L»(R) : H%y € Ly(R)}. (10)

The latter definition is similar to the definition of the domain of the operatagiven by
(3). Following the approach described above, the operAtacting in the Hilbert space
is the restriction of the differential operatéf? to the domain DorgH). To determine the
operatorH it is necessary to describe its domain more precisely.

Lemma 1l If v € Dom(H) then the following inclusion holds,
¥ € WiR\[—€, €]) (11)
for every positivee > 0.

Proof. Let ¢ € Dom(H) and lety be an arbitrary test function fror@5°(R\{0}). The
support of the functionp is separated from the origin. Therefore, the potentiat is
continuous and bounded on the supporpofit follows thaty € W2(R\[—e, €]), since the
function ¢ can be chosen arbitrary. The lemma is proven. O

Lemma 1 implies that every function from the domain of the operatoand its first
derivative are continuous outside the origin.

Lemma 2 Lety € Lo(Ry) and assume that
" y
v+ ;‘// =g € L(Ry).
Then the limitsyr (+-0) exist and the following asymptotic representations hold:

¥ (x) = ¥ (£0) + O(/Ix]) x — £0 (12)
V' (x) = —y ¥ (£0)In|x| + by + o(1) x — +0. (13)

Proof. The assumption implies that = y1 + ¥, wherey] = g € Lo(R;), ¥1(+£0) =0
and vy = —(y/x)¥. ltis clear thaty, and, are inC*(R.) and thaty;(x) has a limit
asx — +0. We present here the proof for the positive half-axis 0 only. The proof for
the negative half-axis is similar. To study the asymptotic behaviou¥,¢f) we write

11
Vo) = v + / ) dy
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l —
Vo) = Y2(1) — (L — 0)Ph(d) — y / %wy) dy. (14)

Sincey is integrable over (0,1) andQ (y—x)/y < 1, the Lebesque dominated convergence
theorem implies that the last term tends to

1
—)/fo ¥ (y) dy

asx — +0. Then the lim_, o ¥2(x) exists. Using the fact that € Lo(R,) we can
improve this argument and prove (12) as follows:

x 1 1
[¥2(x) — Y2(+0)| <X|1ﬂé(1)|+|l/|/o Iw(y)ldy-i-xwlf ;llﬂ(y)ldy-

Since ¥ is bounded, the last term is less thax|Inx| < Ci4/x, and by the Schwarz
inequality

x x x 1/2
| ey < {/ 1oy |w<y>|2dy} < CYx.
0 0 0
This proves (12). Plugging the representation (12) into (14) gives (13). |

The following lemma is similar to theorem 1 from [9].

Lemma 3 If v+ € Dom(H) then the boundary valueg(+), b+ () determined by (12)
and (13) satisfy the following boundary conditions:

¥ (=0) = ¥ (+0) b_() = by (). (15)

Proof. This coincides with the proof of theorem 1 from [9]. O

The graph of each function from the domain D@i) is continuous at the origin.
Moreover, the corresponding curveds. If v (0) # 0 then the tangent line to the graph at
the origin is vertical.

The three lemmas imply the following theorem.

Theorem 1 The operatorH is the self-adjoint operator-(d?/dx?) — (y/x) defined on
the domain of functions fronW2(R\[—e, €]) for every positivee > 0 possessing the
representation (12) and (13) and satisfying the boundary conditions (15).

Proof. To finish the proof of the theorem one needs to show that every function from
the described domain is mapped by the oper&6rto an element from the Hilbert space.
This follows from the proof of theorem 1 from [9]. This operator is self-adjoint, since it is
closed, symmetric and has zero deficiency indices. The theorem is proven. O

Thus, we have shown that there exists a unique self-adjoint operator corresponding to
the differential operatoid?. The domain of this operator is determined by the boundary
conditions connecting the boundary values of the functions on the left- and right-hand sides
of the origin. Therefore, it is natural to speak about the penetrability of the poteptial 1
Different boundary conditions at the origin determine operators which can be considered
as self-adjoint point perturbations of the original operatbr Let us illustrate the latter
statement by considering singular differential operator with the delta interaction at the origin.
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4. Point interactions for Coulomb Hamiltonian

We are going to study in this section the following singular differential operator:

Py
H, =vp (— — ) + ad(x). (16)
x

The delta functiors(x) has support at the singular point of the differential operator. Point
perturbations with support outside the origin can be considered following the main lines
of section 2, since the potentia)/A is a bounded function at every pointx # 0. The
perturbationad(x) is a form-bounded perturbation with the relative bound zero of the
operatorH. Lemmas 1 and 2 are valid even for the functions from the domain of the
operatorH,. In fact the operatoiH, is equal to a certain self-adjoint extension of the
operatorHyp, which is the restriction of the operatéf on the set ofCg°(R\{0}) functions.

The operatoiHy has deficiency indices (2, 2) and its self-adjoint extensions can be described
by a certain unitary Z 2 matrix using von Neumann theory.

Theorem 2 The operatorH, is the self-adjoint operator(d?/dx?) — (y/x) defined on
the domain of functions fronW2(R\[—e, €]) for every positivee > 0 possessing the
representation (12) and (13) and satisfying the boundary conditions

1
V(=0 =y (H0) = — (0 () = b-(¥). (17)

Proof. The proof of the theorem is similar to the proof of lemma 3 and theorem 1. The
distribution vig—(d?y/dx?) — (v /x)¥) is equal to the sum of a delta function and a square
integrable function if and only if the functiog is continuous at the origigr (—0) = v (+0).

The singular part of the latter distribution at the origin is equat-tay (0)§(x) if and only

if the following condition is satisfied:

—b (Y) +b_(¥) = —ay(0).

Hence we have proven that every function from the domain of the opeftseatisfies the
boundary conditions (17).

The self-adjointness of the operatdf, follows from the fact that the boundary
conditions (17) describe a self-adjoint extension of the operAtoand the operatorsl,
and Hg coincide on this domain. The theorem is proven. O

One can consider the operatfl, even for the infinite value of the parameter The
operatorH,, is defined by the Dirichlet boundary conditions at the origin

¥(+0) = ¥(~0) = 0.

This operator can be decomposed into the orthogonal sum of two self-adjoint operators
defined on the positive and negative half-axes. The physical problem described by this
self-adjoint operator has an impenetrable singularity at the origin. However, the nature
of the impenetrability is not related to the singularity of the potentjal &t the origin.

It is due to the special boundary conditions. Fischer, Leschke aileMare right in
saying that ‘penetrable’ and ‘impenetrable’ quantum systems can be described by choosing
different boundary conditions at the origin. Certain physical problems can force us to
use ‘impenetrable’ boundary conditions, but the boundary conditions corresponding to the
differential operator7¢ has been determined in a unique way.
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