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Abstract. The mathematical analysis in 1996J. Phys. A: Math. Gen.29 1767, is not sufficient
to decide whether in one dimension the singularities of the potentials−γ /x and−γ /|x| split
the corresponding one-particle quantum systems at the origin into two completely decoupled
subsystems. In fact, it is argued that this question cannot be answered by mathematical
considerations alone.

In [1] Pavel Kurasov constructed quantum Hamiltonians as self-adjoint Schrödinger
operators on the Hilbert space L2(R) for a point particle moving along the real lineR
under the influence of the potential−γ /x or −γ /|x|, whereγ, x ∈ R. Employing physical
units in which twice the mass of the particle equals the square of Planck’s constant, these
operators are formally given by the differential expressions

− d2

dx2
− γ
x

(1)

− d2

dx2
− γ

|x| . (2)

The question whether the non-integrable singularities of the potentials make the origin
of the real line ‘impenetrable,’ that is, whether they split the corresponding quantum
systems into two completely decoupled subsystems associated with the two half-lines, has
been lively debated, see for example [2] and the references 11–24 in [3]. Theorem 1
in [1] establishes the self-adjointness of the operatorH given by the action of (1) in
the distributional sense with a principal-value prescription at the origin on the domain
Dom(H) := {ψ ∈ L2(R) : PV(−d2/dx2−γ /x)ψ ∈ L2(R)}. This domain contains functions
which yield a non-zero probability current density at the origin, and it is concluded that the
quantum system with the odd potential−γ /x is ‘penetrable’ at the origin. According to
theorem A1 in [1] the operatorH c given by the distributional action of (2) on the domain
Dom(H c) := {ψ ∈ L2(R) : (−d2/dx2 − γ /|x|)ψ ∈ L2(R)} is only symmetric and has
deficiency indices(2, 2). By taking the Friedrichs extensionH c

D of H c, which amounts
[4] to imposing a Dirichlet boundary condition at the origin, it is concluded in [1] that the
quantum system with the even potential−γ /|x| is ‘impenetrable’ at the origin.

The purpose of this comment is to prevent the reader from getting the wrong impression
that the self-adjoint operatorsH andH c

D, as correctly constructed in [1], are the only self-
adjoint operators which can be associated with (1) and (2), respectively. Moreover, we
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would like to point out that the mere knowledge of the operatorsH andH c
D does not allow

one to decide upon the ‘penetrability’ of a quantum-physical situation in the presence of a
1/x- or 1/|x|-potential.

In fact, rather than resorting to the theory of distributions as in [1], one can also
apply von Neumann’s extension theory to the operatorH0 given by (1) on the domain
Dom(H0) := C∞0 (R\{0}), respectively to the operatorH c

0 given by (2) on the same domain
Dom(H c

0) := C∞0 (R\{0}) of smooth functions compactly supported away from the origin.
This yields, as noted by Kurasov [1] himself, for each case a four-parameter family of
self-adjoint operators among which there are ones describing ‘penetrable’ quantum systems
and others describing ‘impenetrable’ quantum systems. The family for the even potential
has been studied explicitly in [3], see also the recent relativistic generalization [5]. The odd
case can be treated analogously. Note that the above operatorsH andH c

D are members of
the respective four-parameter family.

Self-adjointness is the only property of a Hamiltonian required by the axioms of quantum
mechanics. Therefore mathematics alone cannot tell which particular member of the four-
parameter family of self-adjoint operators should be chosen to model a given experimental
situation. Accordingly, there is no justification for claiming that the ‘natural’ self-adjoint
extension ofH0 is the one which can also be constructed in the framework of the theory of
distributions. Instead of personal mathematical preferences one needs additional physical
information to serve as a guideline, since different self-adjoint extensions describe different
physics [6].

The multitude of possible Hamiltonians offered by these four-parameter families are not
taken into account in [1] because Kurasov considers them to model a 1/x- or 1/|x|-potential
plus a point interaction at the origin. However, this interpretation has to be discarded
because—unlike in three dimensions [7]—in one dimension a self-adjoint Schrödinger
operator with a 1/x- or 1/|x|-potential cannot be defined without the specification of a
boundary condition at the origin. The singularity of the potential itself necessarily demands
it. It is only in the limit of vanishing coupling constantγ → 0 that a certain point
interaction emerges as a relic of the singularity. This effect goes under the name Klauder
phenomenon [8].

To summarize, we have argued that von Neumann’s extension theory provides a four-
parameter family of Hamiltonians as candidates for modelling a one-dimensional quantum-
physical situation with a 1/x- or 1/|x|-potential. In both cases the respective four-parameter
family contains some members describing ‘penetrable’ quantum systems and other members
describing ‘impenetrable’ quantum systems. The question, which member is the most
adequate one, cannot be answered by mathematical considerations alone, but only along
with experiment. This remains true, even if one or another member out of the family
may also be obtained as the unique restriction of a suitably chosen distribution-valued
differential operator [1] or—as favoured by some other authors [9]—through a resolvent
limit of a sequence of Hamiltonians with regularized potentials [4, 9].
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