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On the Coulomb potential in one dimension

P Kurasov
Department of Mathematics, Ruhr University Bochum, 44780 Bochum, Germany
Department of Mathematics and Computational Physics, St Petersburg University,
198904 St Petersburg, Russia
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Abstract. A mathematically rigorous definition of the one-dimensional Schrödinger operator
−d2/dx2 −γ /x is given. It is proven that the domain of the operator is defined by the boundary
conditions connecting the values of the function on the left and right half-axes. The investigated
operator is compared with the Schrödinger operator containing the Coulomb potential−γ /|x|.

1. Introduction

The one-dimensional Schrödinger operator with a Coulomb potential has been discussed
in the literature. This operator attracts the attention of mathematicians because it contains
the simplest potential with a non-integrable singularity. This potential which depends on
the absolute value of the coordinate−γ /|x| is important in physical applications and is
one of the natural generalizations of the Coulomb potential for the one-dimensional case
[3]. See [2] for an excellent review on the present status of the problem. Recently another
class of Schr̈odinger operators with potentials having a first-order singularity was analysed
by Moshinsky [4]. These operators have potentials with a different sign of the singularity
on the left- and right-hand sides of the singular point. The simplest representative of this
family is the potential−γ /x with the singularity at the origin. Such operators appear in
the problems of nuclear physics (see [4] for references). The Schrödinger operator

− d2

dx2
− γ

x
(1)

can be defined in the principal value sense on the entire line. Boundary conditions
connecting the boundary values of the function from the domain of the operator on the
left- and right-hand sides of the origin were given in [4] but no motivation (physical or
mathematical) has been given. Strong scientific discussion shows that there is a certain
misunderstanding around this point [5, 6]. A mathematically rigorous definition of the self-
adjoint Schr̈odinger operator with this potential can be given using the distribution theory.
It is shown that this operator is ‘penetrable’ in contrast to the even Coulomb Hamiltonian.

A similar analysis can be applied to the Schrödinger operator with the Coulomb potential

− d2

dx2
− γ

|x| . (2)

It is shown that the corresponding operator is symmetric but not self-adjoint (see the
appendix). The Friedrichs extension of the symmetric operator leads to the operator defined
on the functions satisfying the Dirichlet boundary conditions at the origin. One can speak
about the ‘non-penetrability’ of the one-dimensional Coulomb potential.
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2. Potential with an odd singularity

Consider the Schrödinger operator with the odd potential (1). This operator can be defined
in the principal value sense as proposed in [4]. The corresponding operatorH is defined
by the generalized differential expression (1) on the domain

Dom(H) =
{
ψ ∈ L2(R) : PV

(
− d2

dx2
ψ − γ

x
ψ

)
∈ L2(R)

}
. (3)

This domain is contained in the domain of the operatorH ∗
0 , whereH0 is the restriction of

the operatorH on the set ofC∞
0 (R\{0}) functions.

Each function from the domain of the adjoint operatorH ∗
0 has the following asymptotics

at the origin [2, 4]:

ψ(x) = ψ(±0)+ o(1) x → ±0 (4)

ψ ′(x) = −γψ(x) ln(|γ x|)+ b±(ψ)+ o(1) x → ±0. (5)

Each function from the domain of the adjoint operator is bounded in the neighbourhood of
the origin. The derivative has a logarithmic singularity at the origin if the function is not
equal to zero there. The following lemma will be important later.

Lemma 1. Let ψ ∈ Dom(H ∗
0 ), ψ(±0) = 0, thenψ(x) = O(x), ψ ′(x) = O(1) when

x → ±0.

Proof. We are going to prove this lemma for positive values ofx. The negative case can be
treated similarly. For any positivea there existsε > 0 such thatx ∈ (0, ε) ⇒ |ψ(x)| < a.
Then the following estimates are valid for allx ∈ (0, ε)

|ψ ′(x)| 6 |γ a ln(|γ x|)| + O(1).

It follows that

|ψ(x)| 6
∣∣∣∣γ a ∫ x

0
ln(|γ x|) dx

∣∣∣∣ + O(x) = O(x ln |x|).

The last estimate can be substituted into the representation for the derivative

|ψ ′(x)| 6 O(x ln2 |x|)+ O(1) = O(1).

It follows that

ψ(x) =x→+0 O(x). �

Deficiency indices of the symmetric operatorH0 are equal to(2, 2). All self-adjoint
extensions of the operatorH0 can be constructed with the help of the von Neumann theory.
All these extensions are parametrized by the boundary conditions at the origin.

Theorem 1. OperatorH is the self-adjoint operator−d2/dx2 −γ /x defined on the domain
of functions from Dom(H ∗

0 ), satisfying the following boundary conditions at the origin:{
ψ(−0) = ψ(+0)

b−(ψ) = b+(ψ).
(6)
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Proof. Calculation of the expressionPV(−(d2/dx2)ψ − (γ /xψ)) in the principal value
sense gives the following result for any test functionϕ ∈ C∞

0 (R)

PV

(
− d2

dx2
ψ − γ

x
ψ

)
(ϕ) = PV

∫ +∞

−∞

(
− ψϕ′′ − γ

x
ψϕ

)
dx

= lim
ε→+0

{ ∫ −ε

−∞

(
− ψϕ′′ − γ

x
ψϕ

)
dx +

∫ +∞

ε

(
− ψϕ′′ − γ

x
ψϕ

)
dx

}
= lim

ε→+0

( ∫ −ε

−∞

(
− ψ ′′ϕ − γ

x
ψϕ

)
dx +

∫ +∞

ε

(
− ψ ′′ϕ − γ

x
ψϕ

)
dx

+[ψ(ε)ϕ′(ε)− ψ(−ε)ϕ′(−ε)] + {−ψ ′(ε)ϕ(ε)+ ψ ′(−ε)ϕ(−ε)}
)
.

The integrals in the last expression converge to a finite limit whenε → +0 becauseψ is
from the domain of the adjoint operatorH ∗

0 . The expression in the square brackets has a
limit due to the asymptotics (4) and continuity of the functionϕ at the origin. The expression
in the curly brackets converges to a finite limit only if the functionsψ(x) are continuous at
the origin: ψ(+0) = ψ(−0). Applying lemma 1 to the functionψ(x)− ψ(−x) vanishing
at the origin we obtain the following limit:

lim
ε→+0

(ψ ′(ε)− ψ ′(−ε)) = lim
ε→+0

(2γ (−ψ(ε)+ ψ(−ε)) ln(|γ ε|)+ b+(ψ)− b−(ψ)

= b+(ψ)− b−(ψ).

Thus the distributionPV(−(d2/dx2)ψ − (γ /x)ψ) has the following singularity at the origin

(b+(ψ)− b−(ψ))δ.

It follows thatPV(−(d2/dx2)ψ−(γ /x)ψ) is contained inL2(R) if and only if conditions (6)
are satisfied. These conditions together with the differential expression (1) define a self-
adjoint operator. This is a unique self-adjoint operator corresponding to the odd Coulomb
potential. The theorem is proven. �

This operator was investigated in [4] without discussing the definition. The scattering
matrix and eigenvalues were calculated.

3. Conclusions

We have shown that Schrödinger operators with the potentials−γ /x and −γ /|x| possess
different properties. The operator with the even potential cannot be defined correctly in the
framework of the theory of self-adjoint operators (see the appendix)—the corresponding
operator is only symmetric, but not self-adjoint. The self-adjoint operator can be defined
by the Friedrichs extension, but it can be presented by the orthogonal sum of the operators
defined on the positive and negative half-axes. One can speak about the ‘non-penetrability’
of the even Coulomb potential. In contrast, the Schrödinger operator with the odd potential
is perfectly defined in the framework of the theory of self-adjoint operators. The boundary
conditions corresponding to this operator glue together the values of the functions on
the positive and negative half-lines. The one-dimensional potential−γ /x is ‘penetrable’.
Using the extension theory for symmetric operators other ‘penetrable’ and ‘non-penetrable’
Schr̈odinger operators with these potentials can be constructed but all these self-adjoint
perturbations should be considered to be Hamiltonians with point interactions [1]. This
family of self-adjoint perturbations for the even potential was analysed in [2]. A similar
analysis can be carried out for the odd potential.
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Appendix. Potential with an even singularity

The Schr̈odinger operatorHc with the Coulomb potential is defined by the differential
expression (2) on the domain:

Dom(Hc) =
{
ψ ∈ L2(R) : − d2

dx2
ψ − γ

|x|ψ ∈ L2(R)
}
. (7)

Let us consider the symmetric operatorHc
0 and restriction of the operatorHc on the

set of functionsC∞
0 (R\{0}). Then the operatorHc coincides with one of the restrictions of

the adjoint operatorHc∗
0 . The symmetric operatorHc

0 has deficiency indices(2, 2). Self-
adjoint extensions of this operator have been studied recently in [2]. It was shown that every
functionψ from the domain of the adjoint operatorHc∗

0 has the following representation in
the neighbourhood of the origin:

ψ(x) = ψ(±0)+ o(1) x → ±0 (8)

ψ ′(x) = ∓γψ(x) ln(|γ x|)+ b±(ψ)+ o(1) x → ±0. (9)

Theorem A1. OperatorHc = −d2/dx2−γ /|x| is a symmetric, but not self-adjoint operator
in the Hilbert spaceL2(R).

Proof. Calculations similar to those used during the proof of theorem 1 can be carried out:(
− d2

dx2
ψ − γ

|x|ψ
)
(ϕ) =

∫ +∞

−∞

(
− ψϕ′′ − γ

|x|ψϕ
)

dx

= lim
ε+,ε−→+0

( ∫ −ε−

−∞

(
− ψϕ′′ − γ

|x|ψϕ
)

dx +
∫ +∞

ε+

(
− ψϕ′′ − γ

|x|ψϕ
)

dx

)
= lim

ε+,ε−→+0

( ∫ −ε−

−∞

(
− ψ ′′ϕ − γ

|x|ψϕ
)

dx +
∫ +∞

ε+

(
− ψ ′′ϕ − γ

|x|ψϕ
)

dx

+[ψ(ε+)ϕ′(ε+)− ψ(−ε−)ϕ′(−ε−)]+{−ψ ′(ε+)ϕ(ε+)+ψ ′(−ε−)ϕ(−ε−)}
)
.

(10)

The expression in the curly brackets has a finite limit if and only if the derivatives ofψ

has finite limits on both sides of the origin. It follows that functionsψ from the domain
Dom(Hc) satisfy the Dirichlet conditions at the origin:

ψ(−0) = ψ(+0) = 0. (11)

It follows from lemma 1 that the derivative ofψ has finite limits from the right- and
left-hand sides of the origin. For everyψ ∈ Dom(Hc∗

0 ), ψ(0) = 0 the distribution
−(d2/dx2)ψ − (γ /|x|)ψ belongs toL2(R) if and only if the derivative ofψ is continuous
at the origin

ψ ′(−0) = ψ ′(+0). (12)
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Boundary conditions (11), (12) define a symmetric, but non-self-adjoint restriction of the
operatorHc∗

0 . Each function from the domain of the adjoint operatorHc∗
0 is an element

of the Sobolev spaceW 2
2 (R\[−ε, ε]) for any positiveε. Thus integrating by parts one can

prove that operatorHc is symmetric on the domain, defined by the boundary conditions
(11), (12). The theorem is proven. �

We would like to make two comments. One can try to define the considered operator in
the principal value sense, but such calculations do not define a self-adjoint operator such as
used for the operator with an odd potential. The limit (10) is finite only ifψ(−0) = −ψ(0),
but distribution−(d2/dx2)ψ−(γ /|x|)ψ is fromL2(R) only if the function and its derivative
are continuous at the origin. These conditions coincide with the conditions (11), (12) and
the corresponding operator is not self-adjoint.

It is natural to define a self-adjoint operator, corresponding to the linear operator (2),
by the Friedrichs extension of the symmetric operatorHc. This self-adjoint extension is
defined by the Dirichlet boundary conditions at the origin. This operator has been studied
rigorously in [3]. The same operator was obtained in [2] with the help of the functional-
integral approach.
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