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Abstract. The time-dependent matrix Schridinger equation ;1;%%’- = H{t)¥V describing two
bands of an infinite numbef of equidistant states with different energy spacings w. in each band
is §tudied. Both bands-are linearly dependent on time #. The-interaction » = ( /o_wy/m)tanws
between the bands is considered to be equal for any pair of states from each band. Using
the Fourier series transformation the instant eigenvalues E{(f,s) are calculated which reveal
the double periodicity in the enerzy-time plane. The corresponding eigenvalue surface in the
{E, ¢, s)-space, apart from the triple periodicity, shows quite unexpected symumetry properties
relative to the exchange of £ and r, and relative to some inversions in the (E, 1) plane. The latter
one leads to a new equivalence between weak and strong coupling, a new kind of pseudocrossing
and a new concept of antidiabatic states. The Fourier transformation reduces the problem to a
2 x 2 first-order differential operator. The diagonalization of H(¢) for fixed ¢ produces explicit
expressions for the eigenvalues (adiabatic potential curves) and eigenstates (adiabatic basis).
The time evolution operator is calculated both in the diabatic ahd adiabatic representations. The
results are simplified for the special value of the interaction parameter.

1. Introduction

The time-dependent matrix Schrédinger equation is considered. Such operators are used,
for instance, in atomic physics to describe molecule-molecule collisions. A broad class of
quantumn problems of practical importance can be described in terms of the transitions
between two systems (bands) of parallel potential curves. The potential curves are
understood here to be the eigenvalues of the Hamiltonian H(A) which depends on some
parameter A.

In the static aspect of the problem the objects of interest are the peculiarities in A~
dependence of the potential curves and of the related eigenfunctions (adiabatic states). It is
well known that, generally, the potential curves do not cross each other (Neumann—~Wigner
non-crossing rule, see e.g. Landau and Lifshitz [7]) provided that the related adiabatic
state belongs to the same irreducible representation of the exact symmetry group of H(A).
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However, so called avoided crossings (or pseudocrossings) can occur which often have a
solid foundation in the physics of a specific systern.

In the dynamic formulation, A becomes a function of time ¢ defined by the physical
content of the problem. The object of interest is the matrix of the time propagator. In
physical problems the adiabatic states vary rapidly with A in some special regions of A
{near the avoided crossings of two or more potential curves). The alternative choice is the
diabatic basis of states which represents a somewhat loosely defined notion. Generally it is
chosen so that in the generating physical problem the basis functions vary smoothly with
A. The diabatic potential curves are defined as the diagonal elements of the Hamiltonian in
the diabatic basis. These curves can cross each other at certain values of A which indicates
that, in the diabatic approximation, the physical system has higher symmetry than the exact
Hamiltonian.

The simplest model of this type—the Landau—-Zener model [6,11]—describes the
situation when the instantaneous Hamiltonian has only two energy levels. Pseudo-crossing
of these levels is considered. The Demkov—Osherov model [2] describes the crossing of
several parallel energy curves by one particular curve. Some generalizations of the Landau—
Zener model were analysed recently by Brundobler and Elser [1]. An important problem
is the intersection of the two families of potential curves. The complexity of the solution
of this problem grows with the number of levels considered. The case of a Jarge number
of potential curves is interesting in some applications. For example, the interaction of two
Rydberg series of energy levels can be approximated by two equidistant families of potential
curves. This problem is considered in the present paper. It appears that it has a solution
in terms of elementary functions for the limit when the number of curves in each band is
infinite. '

The important and unique property of the model considered here is its double periodicity
in time and energy. Apparently this is the simplest non-trivial model of this kind and,
therefore, it is worth full consideration. Hamiltonians that are periodic in time only have
been considered by many authors and the concept of quasi-energy has been introduced
in this respect. The quasi-energy ¢ and the quasi-energetic states W, are defined by the
condition W@ + Tp) = exp(ieTo) We{t), where T is the period of the Hamiltonian H(t)
(see e.g. Manakov et ol [8]). The energy shift periodicity has also been considered by some
authors [10]. The general properties of systems that are periodic in time and energy can be
understood using the investigating model.

Some examples of the physical realization of the band-crossing problem were discussed
recently by Demkov and Ostrovsky [4]. The general properties of the potential curves were
established and a special model with an infinite number of paraliel and equidistant potential
curves was formulated, A more detailed analysis of the latter model, in both its static and
dynarmnic aspects, constitutes the main object of this paper. The model is generalized to the
case when the curve spacing is different in each band. The dynamical properties of the
model are investigated in this paper. A striking similarity between the time parameter ¢,
interaction parameter s and energy parameter E has been discovered (see formulae (14) and
(15)). The evolution operator is calculated.

It is convenient io formulate the model in the diabatic basis. Each band contains an
infinite number of potential curves. The related diabatic states form the Hilbert space £s.
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- Hence, the model Hamiltonian is defined in £3 & £; space by the infinite matrix

(. U )
. Bt—wy O 0 v v ]
0 B4t 0 v v U
0 0 Bittowy ...]... v v U
H{t) =
v v v ciives Bt —w- O 0
v v v 0 Bt 0
v v v 0 0 Brft+o. ...

1
The diakatic potential curves are the diagonal matrix elements of 7 in the chosen basis
E=Dy,=Bst+wgm meZ.

They depend linearly on time t with the slopes A1, with wy the spacings between the
potential curves in each band. The bands are labelled by the subscript . The interaction is
introduced only between the levels from the different bands. We assume that the interaction
(or coupling) does not depend on the distance between the levels. So, in the v = 0 limit the
two infinite equidistant systems of parallel lines crossing each other form, in the (E, ¢)-plane,
an infinite grid of parallelograms with an evident double periodicity.

We are going to study the related dynamical problem

HOF®) = £ FE) @

with the constant ¢ introduced for convenience.
The commeon linear term can be removed from the diagonal of the matrix H(¢) w1th the
help of the phase transformation

F(t) = el HBX AR ().
The function Fy(t) satisfies the equation

_ 1
(H(I) - #I) K = E%Fg(i}

The matrix Ho(t) = H{) — &;ﬁ—‘t is of the same form as (1} but with equal slopes for
the diabatic potential curves. Hence, it is sufficient to consider the operators H{#) with
B+ = —B_ = B only. The same transformation can be used to obtain the equation with
the following linear dependence of the Hamiltonian on time A + Bt with constant matrices
A, B. This problem has been analysed recently by Brundobler and Elser [1].

We are going to use the symmetrical form of the Hamiltonian only. Dividing the
operator 7 by B one obtains the equation of the same form with 8 = 1, and new values of
the parameters wy. and c. Hence, we can restrict our consideration, without losing generality,
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to the operators M (t) with unit slopes for the diabatic potential curves:

( ) : : \
t—ay O 0 v v v
0 t 0 v Y v
|] 0 r+o4 v v v
H() = - @)
v v v —t—w_. 0 0
] v v 0 —t #]
v v v 0 0 —t4e- ...
\ R,

This operator was first analysed {4,9] in the original (diabatic) representation for equal
spacings between the energy levels in both bands, i.e. for @, = w_ only. The energy levels
for the perturbed problem were calculated, and the whole set of the potential curves was
analysed. The system of potential curves is a periodic function in time for this model. The
important features of the time evolution were characterized.

‘We continue this investigation, concentrating our attention on the problem with different
level spacings in the bands. Using a Fourier transformation, the matrix operator (1)
is transformed to a 2 x 2 first-order matrix differential operator over the interval. The
differential form of the operator is independent of the interaction parameter v. The
interaction is introduced by wv-dependent boundary conditions at the end points of the
interval. We show that the operator is self-adjoint. Normalized diabatic and adiabatic
eigenfunctions are obtained (section 2).

The evolution operator, corresponding to the dynamical equation (2), is calculated for
all values of the parameters using the modulated translational invariant form for the solution
of the differential equation. Simplified formulae are derived for the case of equal spacings
in the bands. This common value of the spacing can be assumed to equal unity because
the scaling transformation ¢t — ¢/w transforms the problem with equal spacing w to the
problem with unit spacing. Evolution in this case is investigated in detail. The evolution
operator for the half period is of particular interest. Simplified formulae are presented for
the case when the frequency of the transitions between the levels coincides with the two
inverse periods of the Hamiltonian (section 3).

If the interaction parameter v is equal to w/x, then the system of the adiabatic curves
is independent of the time. It is shown that the evolution operator on the period is also
independent of the initial time and equals the diabatic evolution operator. The evolution
operator over half a period is antidiagonal: the initial data with support on one of the family
of energy levels are transformed during the hali-period to certain initial data with support
on the other family. During the second-half of the period the data are transformed back to
the first family of energy levels. The shift occurs on one level only. The adiabatic evolution
operator is calculated (section 4).

We do not need to separately consider the cases of wy. # w- and St # p—, when
investigating the static eigenvalue problem for a given v, ¢. If the system of energy curves
is not symmetric, then certain linear transformations of the (E, #)-plane can be performed
and the paralielograms can be transformed into squares. Then the problem is reduced to
wy = - =1, By = B_ = 1. The values of w,, w_ are important for the dynamical
problem only. .
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2. Stationary problem

Consider the matrix operator H(z) in £3 @ £3. The representation given by the matrix H(z)
(3) will be referred to as the diabaric representation. The domain of the operator coincides
with the set of all elements ¥ from £ & £;, which are solutions of the equation H(t)W = F
for certain F € £, & £;. More precisely, the element ¥ = (Y;, ) € £, @ £ belongs to
the domain of H(#) if and only if the following conditions are satisfied.

() The sums vP) , ¥ n converge in the principal value sense: VP i, =
limy o Zn——N Wik i

(i) {(£ + moy)em + (VP Y, ¥ra)} € L

‘We define the action of the operator H{z) as

(H(l‘) ("!’+)) _ ( (t -+ mew )Yy m + (VP Y, ¥ k) )
w-_ mn (—I + m&)-)‘([r_‘m + U(VP Z:n ¢+.rz) ’

We are going to use the Fourier transformation

fy=— =2 — f " o Fo) dp.
V2 27

The Fourier transformation of the operator H(t) will be denoted by H(z). This operator
is defined on the two-component functions ¥ = (1,:’f+, 1}/ ) € L2(0,27) & L2(0, 27). The
domain of the operator H(¢) consists of functions ¥ which are Fourier transformations of
the elements fronm £, P £, satisfying conditions (i) and (ii). The second condition is satisfied
only if ¥y € W10, 2x). It follows that the boundary values W (0), ¥ (27) exist and are-
finite and the first condition is fulfilled. For the functions () the second condition is '
equivalent to the conditions

Eﬂ%ﬁﬁﬂehmmy

(:!:r + iw*?i%) Vs + 2708 ()
These conditions are satisfied if and only if
¥x € W10, 27)
and
0 (F20) = F20m)) + 70 (F5(0) + I 2m)) =

The last conditions can be written in the form

7+0) g (2m) ’ ' -
(wf(O)) r (q}f(m) | ®
wrw_ — (7Tv)? 2iw_mv
| oo+ @v)?r  epo.+ (Te)?
F=} ™ 2iw, v wIw_ - (@w? {° ’ )

oo+ ()2 wpe- + (To)?
‘We have proven that the operator ’f-Z(t) is the mat;‘ix differential operator
~ E+ in)+ i 0 .
H{t) = dy . 6
@ ( 0 -+ iw_u—‘;; ©
with the domain of all functions from W)(0,2r7) @ W2I (0, 27) satisfying the boundary
conditions (4).
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We are going to show that the operator HD) is equal to a matrix operator with the
singular interaction at the origin:

v f1Fiwp '2m5(;a))
10~ ("prasir ttio-t) @

The correct mathematical definition of operator (7) can be given in the framework of the
distribution theory for discontinuous test functions (see [5] for details). Operator H(t) is a
matrix first-order differential operator of the form

. 3
H) =iQ—+Vs(@)+T
. do

with the constant matrices

Q=(06+ a.?_) T=((t) _Ot)ZIO"g V=(270w 235”):271’:;0;

where
_ {01 _{r 0
9I=\1 0 %G= o -1

ate the Pauli matrices. The domain of the operator H(t) consists of all vector valued
two-component functions T(p) = (1}.,.((0), 117..(;0)), which are solutions of the equation
H(zy¥ = F for certain functions F € L(0, 27} ® L4(0, 27). Function Y+ is a solution
of the first-order diagonal matrix differential equations with constant coefficients at every
point ¢ # 0, 2: '

iszilir +T¥ = F. 8)
dp

It follows that both components of the solution are continuous functions inside the interval;
moreover, ¥ € WJ(0,27) @ W} (0, 27). Every function from the domain of this operator
is a solution of the equation

) ) L
i3 V) + Vo) ¥(e) + TUe) = Fp). ®)

This equation does not have any solution in the class of continuous functions ¥. The natural
assumption that the §-function is an even function can be used. This assumption leads to a
formula for the delta function, defined on the discontinuous test functions [5]:

+0) + ¥ (2n

spy1 = YO+ 40T
2

‘We then obtain boundary conditions for the function W at the point ¢ = 0, 27 by integrating

equation (9) from 2% — ¢ to +¢ with respect to the variable ¢ and considering the limit
€ — O

(10

U (0) + ¥ (27) _

3 0.

i (\'1'1(0) ~¥om)+v
These conditions can be written in the form
V0 =(Q-iV/2) " (Q+iv/2)¥Cr)

and coincide with the boundary conditions defined by the matrix I (3).
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We note that the differential fomi of the operatot is independent of the interaction
parameter v. Only the boundary conditions contain this dependence. The matrix ™ has a
simpler form if the following notations are used:

Ty

o Oy
cos2ms i,/%= sin2ms
N
- = ' . .
i '/Zﬁ sin2ws cos2ms

If the spacings between the levels in the bands are equal i.e. w; = w_, then the matrix T
is unitary and can be written as an exponential: I' = el where o is the Pauli matrix.

The operator H(t) is self—adjomt for all values of w_, w,. Indeed, the boundary form
of the operator is

(ROT, BY) — (8, AOHD) _
= i[04 {F42md, @m) - F40)6, )]
t+o-{#-@0d-Cn) - F- OO} | =

Here {*,#)) denotes the standard scalar product in Ly(0, 27) @ L2(0, 27). The adjoint
operator H*(z) is defined by the same differential expression on a subset of functions from
W2 0,27y & WI(O 2m). Any element G from this domain defines a continuous form on
the domain of the operator F(#) by the formula ({?:{_F , G} only if this element satisfies the
same boundary conditions (4). Thus, the operator H(t) is self-adjoint.

The operator H(t) has a purely discrete spectrum (the adiabatic potential curves), which
depends on the parameter 7. The related eigenfunctions satisfy the equations

=tanxs —>

R .
1y -+ 1w+@*ff+ = Ey,

5 an
-— t'lz’_ -+ im_—&, = E!If_
dp
with the boundary conditions (4). The general solution of system (11) is
AR o1 . 1 VP
=c.e
Ya=cee (12)
Y= C_e(—-l(t-i-E)gp)/w-

where the constants ci can be calculated by substituting ansatz (I12) into the boundary
conditions (4);

[Lrglml-EN/os cog s sin KB, o~ @r0+E)/0- gin ;s cos ZLEL c
[ [2X8 e R + = 0
( e ¢—EN/or sin g cos EL - [8=e—(in(HEN/e- gos s sin XEHE) ) (C-—)

' (13)

This linear system has solutions if and only if the determinant of the matrix is equal to
zero. This condition defines the adiabatic spectrum of the problem:
an n(t — E) an x(t+ E)
@ @_

+ (tanxs)? = 0. S 14

We first discuss the system of potential curves for the case w— = @, = 1. This will be
referred to as the symmetric case. The dispersion (eigenvalue} equation for this case was
first derived using the diabatic representation by Demkov and Ostrovsky [4]. Ancther form
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of the dispersion equation, in this case, shows the striking similarity between the parameters
¢t and 5:
(tanzs)? + (tan 71)*

2 _
(tan BY = 14 (tanws)2(tan w1)?” (15)

This formula defines a surface in the (E, s, t)-space which is triple periodic along all
three axes with all three periods equal to one. The general shape of this surface is presented
in figure 1. The equi-energy curves are shown by figure 2.

Figure 1. The system of potential surfaces for the symmetric case & = .. = 1. All properties
considered in cases (1)-{%) can be seen,
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Figure 2. Equi-energy curves E =0.5, 0,15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45 for ey = - = 1.
Transitions from the ellipse in the vicinity of the degenerate points to the rectangles in the iso-
energetic region can be easily seen.

Let us consider the intersections of this surface with the planes defined by the equations
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tanzs, tan ¢ and tanw E equal to 0, 1 or infinity.

01 =
tanms 1 2 3
tanzt 4 5 6
tanxE 7 8 9

(1) Purely diabatic case E = =t +n. Rectangular grid of two mutually crossing infinite
equidistant parallel straight lines in the (E, #)-plane.

D E=n+ %, iso-energetic case, all lines are ¢ independent parallel with the distance
1/2. .
(3) Antidiabatic case E =n + —é— =+ %. The rectangular grid with the crossing points in
the centres of the diabatic grid (case (1)).

(4) E = %5 -+ n. The energy curves form a rectangular grid in the (E, s) plane. If 5 is
small, then this formula indicates the pseudocrossing splitting AE = 2s. -

(3ytanm E = X1, The energy E=n + % is independent of 5. These lines correspond
to the stationary points in the (E, ¢) plane. All E(s, #) cross at these points.

(6) tanw E = Zcotms = E = x5+ n+ % Rectangular grid in the (E,s) plane
between the grid in case (4).

(7} (a) tanmws = 0 and tanm¢ = 0. The diabatic degeneration points. In the vicinity
of these points the surface is close to a circular cone, which is the demonstration of the
Neumann—Wigner theorem; (b) cotrrs = 0,cotmt =0 = s =n+1,¢ =m + . These
points form a square—centred grid in each plane E = n.

(8) Either s = n :I: sort=m :I: . The rectangular grid in the (s, #) plane with the
(2 2) size squares.

(%) Either tansws = 0(s = ») and cotwt = 0(t = m + 2), or tanmt = 0( = n) and
cotws =0(s =m + 2) These are the adiabatic crossing points or the antidiabatic comc
intersections in the (E, ¢, s)-space. The points form a square centred grid shifted by 7 in
the ¢ or s direction relative to case (7).

In the symmetric case the Hamiltonian is_periodic with period one. More precisely,
Hamiltonians corresponding to different ¢ and ¢',t — ' = m € Z are unitary equivalent.
The unitary transformation connecting these operators is the translation of the + and —
components on the m units in the opposite directions. Note that in the diabatic basis this
periodicity is hidden, but in the adiabatic representation it appears explicitly.

The system of the energy curves is invariant with respect to the shift of the parameters
(5.0 > (X1/2, e £1/2)

E(s+1/2,t£1/2) = E{s,1). ]
Note that a shift of the parameter 5 on 1/2: 5§ — 5+ 1/2 corresponds to the ransformation
of the parameter v : v — m2/v. The system of the energy levels is doubly periodic in the
(¢, E}-plane with the invariant translation vectors (3, &3):

¢.E)y—> (¢+1LE+D

(t, E)—>(t+2.E——§)

The structure of the potential curves in the non-symmetric case wy # @_ is s1rmlar (see

figure 3). It is invariant under the translations by the vectors (w—/2, @-/2), (w4+/2, —w+f2):

tHE)= (t+w- /2, E+w_[2)
¢ E)—> (t+wi /2 E—wp/2),
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Figure 3. The system of potential curves for wy =1, 0. = 1.7,

The system of energy levels for all values of the interaction parameter v (or 5) contains
the points (¢, E) of both of the types

o (92,82 (220 o (22, -2
oB=(F. )+ (G F)n(F-F)  Lmez
(% 2 O o (O, 22

(r,E)_(4, 4)+z ,2)+m(2, 2) ILmeL.
‘We show that the dispersion (eigenvalue) equation is satisfied at the point {(w_ /4, . /4) for
all values of the interaction parameter v(s):
J’E’ —
sin ¢-£ sin 7@+ E)
Wi (473

2
@-
2

t—E t
(coss)? + (sinms)? cos ﬂ(m ) cos e+ E)
) +

L
. . . b2
= sin Osin 5 (cos 7s)? + (sinzs)? cos 0 cos 5= 0.

The other points from this lattice can be considered in the same way. These will be referred
to as stationary points. They are important for further considerations of the dynamical
problem.

The system of energy levels is symmetric with respect to the stationary points. Consider,
© for example, point (w_/4, w_/4). Let (¢, E) be a solution of the dispersion equation (14).
Then, the symmetric point (¢, E') = (—t + w.-/2, —E + @_/2) is also a solution of the
dispersion eguation:

T ) ’ !
tan:.'r(r E)tan:rr(t 4+ E")

+ (tan ws)?
Wy ..
— __tf — r _
= tan?r( t+E) tanjr( E+to )+(tan7rs)2
Wy w_

an w(t— E) tan n{t + E)

+ (tanms)® = 0.
[/ X% w_
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Figure 4. The potential curves in the main parallelogram forws. = 1, w_ =17, s =n/24,n =
1,2,..., 11, Transition from the diabatic case (s = 0) through the iso-energetic (linear) (s = ﬁ
case to the antidiabatic case {s = £) can be seen.

Let us denote the solution of equation (14) inside the parallelogram with the vertices
10, 0), (w_/4, w_/4), (=04 /4, @4/4), (0= — 0:)/4, @= + @)/} by E4 (). Let the
potential curve be known in this cell for a fixed value of the interaction v {see figure 4).
Then, the potential curves in the whole (¢, E) plane can be restored using the invariance
transformations described above. Firstly, we can continue this potential curve symmetrically
with respect to the point {(@_/4, w_/4) and it can then be continued using translations by
the vectors #({w-. + wy)/2, (w— — w4)/2), n € Z. Another curve is symmetric with respect
to the point ((w- + wy)/4, (0_ — w,)/4):

' w_+ @ w_ —
E_o(t) =—~Eyo|—t+ - =
. 2 2
Two series of solutions of the dispersion equation can be introduced:
o_ — w.. + @
Eynt) = Bag(t —n—5— | +n—
2 2
In the case of the weak interaction v — 0, the solutions E.. , approach the diabatic curves
Dypn(t) =2t +moy med&. .

For v = 0 {no interaction occurs) we obtain the standard diabatic levels E = D, ,, with the
crossing points

(%) +n (3 2)mme]

The infinite interaction (v = 00) defines the potential curves
E=2t+(m+ Dos mel

with the crossings at the points

nek.

(2525 o0 (5. 5) #m (35 )imm e,

The curves (actually the straight lines) obtained in the limit of superstrong interaction were
named antidiabatic by Demkov and Ostrovsky ([4]) . For the small interaction v — 0, one




4372 Yu N Demkov et al

observes avoided crossings of the adiabatic curves in the neighbourhood of the crossings
of the diabatic curves. For the large interaction v — ©o, a similar picture can be observed
close to the crossings of the antidiabatic curves, These antidiabatic avoided crossings were
also obtained for the finite number of states within both bands (see [4]).

The linear dependence of the adiabatic curves on the parameter ¢ occurs in the case
vr/Jorw_ =1, (s = 1/4). Solutions of the dispersion equation form the straight lines
passing through the stationary points:

w_ — Wy _ 1 w_y
Eipym —Sr 4+ (2n 4 ) —mm .
T o+ oy +@nky) 2w- + o)
We have, in this case,

tamrt—Emﬂ_r+E=wn(_a;‘_i_ Zr—w_jz) tan(?.r—w_ﬂ) g

Wy w_ W Wi We - wy

and the dispersion equation is satisfied. The potential lines are horizontal in the symmetric
case w_ = @y = w and the spectrum of the Hamiltonian does not depend on ¢. This is
referred to as the isospectral case: '

Ein() = co(:l:% +n) nelk.
Another set of lines passing through the stationary points

W + W4

ey PO D s
corresponds to the complex values of the interaction parameter tanws = i. These lines
become vertical in the limit of equal spacing w_ = w,.

As in the original Landau—Zener model, if the interaction is not equal to zero or infinity,

1.e. s # 0, 1/2, then the energy curves intersect at the complex values of the time parameter
t. These branching points of the £ function in the complex z-plane play an important role
in the calculations of the non-diabatical transitions when the factor in front of the time
derivative tends to zero.

__ ),
Ein(t) = <

Consider the symmetric case for simplicity ie. w; = @w_ = 1. The intersection
occurs at the points with the same values of the energy parameter E, as the intersection
of the diabatic and antidiabatic curves, i.e. at the points with £y = 0,%1,42,,,.. or

Es =31/2,£3/2,45/2,.... Let|s| < 1, then the first set of the energy values corresponds
to the time parameter with real part Rez = n, n € Z. The imaginary part of ¢ is defined by
the equation

(tan7s)? + (tanwt)® = 0.
The solution is given by

tanh ! (tan s
tanh~ tans)

t =i nelZ.

A numerical solution for this equation is presented in figure 5. Solutions from the second
set are defined by the values of ¢ with real part Ret = 1/2+4-n, n € Z. The corresponding
equation

(cotmt)? + (tanms)® =0
defines the solution

tanh™! (tan
t=:l:i+m+1/2+n nel.
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Figure 5. Complex intersection of the energy surfaces for the symmetric case @) = w_ = 1.
These intersections tend to infinity, approaching the iso-energetic case,

The same phenomenon is observed close to the intersection of the antidiabatic curves,
Suppose that the interaction is strong, i.e. [s — 1/2| <« 1. The energy curves intersect at the
same values of the energy parameter. The corresponding equations for the parameter ¢ are

(cotms)* + (tannr)? =0
and

(cotmws)* + (cotmr)® =0.
The solutions are equal to

tanh~!cotms
1-———-—.——

t=+ +1/2+n

and

-1
= :':itanh {cotms) n

All the branching points tend to infinity in the isospectral case when all eigenenergies are
independent of time. .

The time-dependent adiabatic basis {&*}, which diagonalizes the operator H(¢), can
be calculated using the solutions of equation (13). The formulae are presented below for
the symmetric case w_ = wy = 1 only, to avoid complicated expressions. The structure
of the formulae corresponding to the general case is essentially the same, although no
periodicity with respect to the time variable occurs in the general case. The upper index
(£, n) corresponds to the energy level Ei ,, but the lower index denotes the first and the
second components of the vector valued function. The matrix H(t} is real in the diabatic
representation. Hence, the basis can also be chosen real in the diabatic representation. We
shall use this property to fix the phase of the eigenfunctions. Such a normalized adiabatic
basis is

sign(sin (¢ & 1/4)) sinm (t & E4. o)) cos wse ™7 (F Lol
V27 \/ (cosms)*(sinm (t = E o(1)))2 + (sinws)*(cos (s F Eto(t))?
R el tFEr0()-nlp

P () =
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sign(sinzr (¢t & 1/4)) cos w(¢ F By o(2)) sin s sef? (L)

727 Jcos wSV(Sin 7t & B 0@))? + G 7103 7 F Br al)?
cel0EE oty (16)

TE" (@) =

The adiabatic basis is periodic with period two, but the period of the Hamiltonian is
equal to one in the symmetric case under consideration. This means that Berry’s phase in
this case is equal to 7. Note that the coefficients in front of the exponentials are independent
of the index n.

In the adiabatic representation this basis has the form

PES = ({#ff, ez {T/Ti'? }jez)

o sign{sinr (¢ = 1/4))(— cos 2nt + cos 2w E, o (1))
+J = = L
274/ (cos )2 (sin m(t £ Eq o)) + (sinmws)2(cosw(t T E4 ot |
. COS TS
tFEsot)—n+j
Tffi'? _ sign(sin (¢ £ 1/4))(sin 2zt & sin2x B o(2))

2m/(cos s)2(sinz (¢ £ E4 o(t))? + (sinws)2(cos m(t F Ey o(1)))?
sins
X E B Fr—]

This last formula is valid for all #, such that r & E4o(t) € Z, and is equivalent to the
equations (2.1)—(2.6) from the [4] up to the normalization factor, which was not considered
there. We obtain this formula using the definition of the delta function (10). This shows
again that the chosen definition of the delta function is natural. The existence of a sign
factor makes the time periodicity of the i— equal fo two instead of one.

The adiabatic basis has the simplest form at the stationary points ¢t = 1/4+n/2, n € Z.
The basis vectors have a Fourier representation in the form

- I COSTS i
+.n = . ingp
W+ (174, @) Wz (isin:rse”"’"’z) ©

17

Tr(1/4, g) = SEREID27S) (-—i sin st/ 2) o
2 —COosS TS
7, __ sign(sin2xs) (—isinx seiq’f'z g
Wrt(3/4, @) = 7= | —cosnse=® )°
7 -1 — cos wsel? ,
e = —_ i —ing_
vTeAe) V27 (—i sin wse~ ¢/ 2) © (18)

Although the potential curves are s— independent at the stationary points, the adiabatic
states explicitly depend on the interaction. They can be compared with the diabatic states,
e.g. at the point t = 1/4 we obtain

- 1 o { ~
TR /4 0 = —= (é) TG4 9) = (?) &,

3. Time evolution
We now consider the time evolution governed by the operator H{¢):

HFQ) = %%F(t). (19)
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This equation corresponds to the differential equation in the Fourier representation

(r + ii) Aot o)+ iw+3-f"+(r, 0) =0
20)
(—r+ ——) e, ¢)+1w_——f o) =

with the boundary conditions

e, 0)) r (f+(r, zm) '
2 . - 21
( Fo iz, 0) F-{t, 2m) 2l
Both equations are decoupled and do not depend on the interaction v (or s) except for the

boundary conditions at ¢ = 0, 2. Therefore, the general solution of equation (20) has the
modulated translational invariant form

Felt, 9) = ga (r - ﬁ;) oHe/2, . @)

Thus, the initially prepared, arbitrary wave packet g shifts as time increases in the positive
direction along the ¢ axis. Note that the 4+ and — components are moving with different
speeds. The component shapes are not changed but additional phases are gained which
- differ for 4 and — components. At the boundaries the components are mixed by the discrete
transformations. Substitution into the boundary conditions gwes a functional equation on
the functions gi:

g+ _ (e 0 \ (¥ ¢ g4(t — 27 [coy)
(3i<f))_( 0 éc"’z)r( 0 el gi{t—Zar/ca:) : @3)

The time-dependent problem can be solved in the following way. From the initial data
at time ¢, one can define functions g+ on the intervals (¢ —2x fewy, t) and (¢ — 27 few_, 1);
then using the functional equation (23) these functions can be calculated on the whole half-
axis (f, 00). The functional equation connects the values of the 4 and — components of the
function g at different points. The solution procedure can be simplified in the symmetric
case when the functional equation is solvable by iterations. Letw_ = w; = w, T = 27 /cw.
Iterating equation (23) we cbtain a formula which connects the values of the functions g ()
at points ¢t 4 nt and #:

gt +nre)\ _ g+
(6im)=mo (36)
Wt} =G +art)G@+(n—17)--- G +1)

e--i.::2/2 0 eicﬂfz 0
G(t) =5 ( 0 eicrz,v’Z) 1—‘ ( 0 ] e—ictl/Z) . (24)

‘We shall calculate the evolution operator U (¢, t + T) for the positive values of T > 0.
The following notations will be used: T =mt +a, m € Z, 0 €.a < 7. Firstly we shall
define the values of the functions g+ (s) on the intefval (z + T —7,t 4+ T) from their values
on the interval (¢t — 7, t): ’

g+ +T -0\ _ _ _ gt —b+a—r1)
(gt(r+T—b))“{x"<“Wm+l(t bta r)(gi(r—b+a—r})

' _ g+t —b+a)
'i")(b;vawm(t b"'a)(g_(t_b_l_a))]' (25)

where
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Here y denotes the characteristic function
l,b<a _ 1 0b<a
Xb<a(s)—{ 0, b>a Xb:-a(s)—{ Lb>a ogb<rT.

Now the evolution operator acts in the Fourier representation:
fe+T, ;o)) st T (f.z_(r,‘;é))
(f-(t+ 1,9)) = VT O Eieg)

eZn'i(I+T)2 0 ?
( 0 e—2Jri(:+TJ2) {x;o/cw-ca Wit (t - Z +a— 'L')

e~ filt, 0 —cw(@a — 7)) ¢
X ( 0 ez:mz) (f-'_-(t, p —cowla — r))) + Xofcwsa W (t T ew + a)

e 0\ (falt, 0 = co)
% ( 0 &\ fto—car))|. (26)
Using the shift operator Ty £z, ¢) = f(¢, 9 — 6) the evolution operator can be written in
the form

- -ez:rri(t+T)" 0 [
U(L t+ T) - ( 0 e_z;q-i(g.'_j")z) [X(—%qa Wm+1 (t - Ec—"; +a-— T)

—27is
e 0 o
X ( 0 e2=fir1> Tewta— + X252 Wn (t ~ —I—a)

—2nis?
0
x (e 0 ez,,i,z)'rm}. @mn

The form of the evolution operator for zero values of a is of particular intefest. The
expression for the evolution operator can be simplified in this case:

. e?.rri(t-i-n'rr)2 0 @ e—zmﬁ 0
U@, t+mr) = ( 0 e—:z:ci(:+mr)2) Won (f - E) ( 0 ez:mz) - (28)

The spacing between the levels can be chosen to be equal io unity, ie. @ = 1. The
parameter T = 27 /e has a simple meaning: this is the period related to the level spacing w
in the bands. The other period is also intrinsic for the system: the period of the Hamiltonian.
As shown in section 2, this period is equal to one assuming that the time scaling is performed
to fix @ = 1. The presence of two periods makes the dynamics quite complicated as formula
(27) shows. Even the propagator over an integer number of periods (28) is not expressed
in simple terms.

Considerable simplification is achieved in the case when the periods differ by a rational
factor. We choose ¢ = 4o, then T = 1. The evolution operator on the half period and on
the period is equal, respectively, to

. s 2rrit —ig? A g (1 /D) =it 3
ie™ cos2ms g /AT g a0 ) sin2ms
Ut e +1/2) = ( — ¥ [Am g =2ip(t+1/2) g2mit i I g —ie~%¥ co52ms (29)

4mit 2 4 i 2
- e (cos 2w s)* + e¥(sin 27 5)
Ui, t+1)= (_iei;azm.- e~BPEHI) (] _ gt g=if)sin drrs /2

—je—igtfAm RoE1/2) (] — g—4witeivygin 4 /2
—d4zit 2 1 amipra ) (30
e (cos2ms)* + e~ ®(sin 21 5)
The evolution operator between the stationary points is of particular interest:
B P —cos2ms —je—i¥’/An 30 /2 gin s
U(1/4,3/4) = ( —iel¥" /4 g=3iv/2 gin I rs —cos2ms @1
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—(cos2ms)? + e¥(sin 2rs)?  ~ie /4T edY oog @/2sin4xs ) (32)

Ua/4,5/4 = ( —iel#*/*m =29 cos /2 sindmws  ~(cos 2ws)? + e~ (sin 27 s)>

One can see that the evolution operator for the half-integer T with respect to the shift
of variables s — s+ 1/2,t — t < 1/2 has the property

- givi2 0 e /2
Ge+r12+12+40= (% Sp)Tner+D (0 2n). o9

4. Isospectral case

‘We now consider the special case when v =1, @ = 1, ¢ = 4x. The energy spectrum of
the Hamiltonian H () is independent of the parameter ¢ in this case. The energy curves are
horizontal and equidistant.

The evolution operator for T =1 (i.e. over the system period) is also independent of ¢:

U t+1) = (e: 3’29,) . (34)

In the original diabatic representation this evolution operator has a very simple form:

010 00 0
0.0 1 00 0
00 0 0 0
Ui, t 4= |—— & - - - ] 39)
00 0 000
00 0 1 0 0
.. 000 ...|...010 ..

Only the subdiagonal and superdiagonal are not equal io zero. This form of the evolution
operator defines shifts of the + and — components of the function in the negative and
positive directions of the index n respectively. As a result, the system evolves along the
adiabatic potential curves, i.e. along the horizontal straight lines.

We now consider the evolution in the adiabatic basis, associated with the matrix H(z),
which in this case has the form

7 1 - (L)~ S S e o ,
%] — 2 - =+, — 1 —
'gllf_'_ = me i (1518 o1t § Yo g ~ing Ea mem(rilﬂt)e W(tE)p g ~ing (36)
We use the notation for the operator U(¢, ¢ + 1} in this basis given by
uZh(t,f + 1) = (U, ¢+ DWPR (), W47t + 1))

where o, B denote + or —. This infinite matrix can be easily calculated using the Fourier
representation for the functions W= and operator U(z, t + 1):

wid et +1) e+ DY _ (-1 0
w1 wipte+n) T\ 0 1)

Operator u does not depend on the parameter ¢.
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Now we are going to calculate the evolution operator for the half-period Uz, 7 4 1/2)
in the Fourier representation which depends on #:

—i{? /47 )+ 2ot hp—2rit
0 e ) 37)

Ut t+1/2) = (_ei(gp3/47r)—2igot—i¢+2nfir 0

It can be written in the form

. e—i;az,r‘Srr 0 0 et 2iprip—2ait ;,“i
Uit,t+1/2) = ( 0 Big) ( —Digt—ip+2uis 0 ) (eo e‘?é)
e—ig?/en 28 0
= ( 0 tqasz:r) Q(t t+1/2) ( e-irp2/8n') . (38)

This form of the evolution operator shows that during half of the period the initial data
which have a zero ‘+’ component (fy ,(0) = 0) are transformed into the function with the
zero ‘—’ component (f_. ,(1/2) = 0) and vice versa. If one starts from the localized initial
data, for example f_,(0) = &§(n), then, after the half-period, it will be delocalized in the
original diabatic representation

1 = N L
f+,m (1/2) = .2_;{_'/‘0 e—1(¢2l47r)+21qat+lrp-—-2:'me-—t(n—-m)ga do.

After the second half of the period the function will be localized and the ‘4’ component
will again be equal to zero.

We shall calculate the evolution operator in the adiabatic basis for ¢+ = 1/4.
Corresponding bases are

[~ i
it (1/4, @) = m (1 —wlz) —ing
1. 1 iel®/2
w4 ) = m ( ) —inp
(. 1 —jple/2 —in
G 3/a,9) = ( s )
4 e | (39)
‘I’" "(3/4,9) = W (___ie-iwlz) e,

We are now going to calculate the operator @ in the adiabatic bases. It is possible to
consider a new Fourier transformation, associated with the adiabatic basis. A variable,
conjugated to the index n, will be denoted by p, and the operator Q in this Fourier
representation will be denoted by 4. Operator § corresponding to the evolution between the
stationary points is the operator of multiplication by the matrix

- e _ icosp/2  —ie~"2sinp/2
3(1/4,3/4) = g(3/4,5/4) = (—ie”"sz sinp/2  —icos p/2

) R 1)
One can easily verify that

Q(3/4,5/HQ(1/4,3/4) = U(1/4,5/4)

due to the diagonal form of the evolution operator in the diabatic Fourier basis.
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5. Conclusions

The presence of two periods js characteristic for the model under consideration. In the non-
symmetric case, the periods are 7, = 2z few, and 1_ = 27 /cew_. The adiabatic potential
curves and the Hamiltonian are not periodic in 2, '

In the symmetric case @ = e_ these periods coincide, but 2 new period appears, ie.
that of the adiabatic potential curves. Alternatively, it could be said that in the symmetric
case the adiabatic potential curves are symmetric both in translations over time and energy.
In the non-symmetric case the translational symmetry is somewhat more complicated: the
elementary cell is a parallelogram on the (¢, E)-plane.

In the dynamic problem the periods do not appear on the same footing, as is seen, for
instance, from formula (20). The explicit expression for the evolution operator generally
looks quite complicated and deserves further analysis. Physically, it could be expected that
in the general double periodic case the time propagation does not follow a regular pattern.

The formulae are much more transparent when the periods are in a simple ratio. The
evolution pattern is particularty lucid and regular in the isospectral case. The latter represents
a regime with an interaction of intermediate strength. The more detailed analysis of
the physically important adiabatic and antidiabatic limits could be the object of further
consideration. .

It is rather interesting that the solution of the dynamic problem can be “expressed
- through trigonometric functions only. For a two-state Landan—Zener case, which seems
to be simpler, the propagator can be expressed only through the functions of a parabolic
cylinder., Hence, the periodization of the model simplifies the problem considered to that
which could be expected from other examples.

The model considered here presents a kind of quantization of (1 + 1) spacetime and
allows ‘continualization’ when the periods of time and energy (which then plays the role of
the space coordinate) tend to zero. If the coupling constant v is equal to zero, then we come
to the wave equation case when propagation of the signal proceeds with constant velocities
in both directions. The propagation becomes more complicated for the non-zero coupling.
The unexpected feature is the s— symmetry and the antidiabatic limit which returns us to
the zero coupling case when the coupling tends to infinity. These additional symmetries
need further investigation.
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