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Abstract
The inverse spectral problem for the Laplace operator on a finite metric graph is
investigated. It is shown that this problem has a unique solution for graphs with
rationally independent edges and without vertices having valence 2. To prove
the result, a trace formula connecting the spectrum of the Laplace operator with
the set of periodic orbits for the metric graph is established.

PACS numbers: 02.30.Zz, 02.30.Sa, 05.45.Mt

1. Introduction

Differential operators on metric graphs (quantum graphs) are a rather new and rapidly
developing area of modern mathematical physics. Such operators can be used to model
the motion of quantum particles confined to certain low-dimensional structures. This explains
recent interest in such problems due to possible applications to quantum computing and design
of nanoelectronic devices [1].

Quantum graphs are differential (self-adjoint) operators on metric graphs determined on
the functions satisfying certain boundary conditions at the vertices. Therefore, these operators
combine features of both ordinary and partial differential equations. On every edge, the
differential equation to solve is an ordinary differential equation which includes the spectral
parameter. On the other hand, the Cauchy problem on the whole graph is not solvable but for
special values of the spectral parameter and Cauchy data only. The main mathematical tool
used in this paper—the trace formula—supports this point of view. This formula establishes
the connection between the spectrum of the Laplace operator on a metric graph and the length
spectrum—the set of all periodic orbits on the graph. This is in complete analogy with the
semiclassical approach due to Guillemin and Melrose [19, 20] and the relations between the
spectrum of a Laplace operator on certain two-dimensional domains and operators on graphs
established in [6, 7]. Roth [31] has proven trace formula for quantum graphs using the heat
kernel approach. An independent way to derive trace formula using a scattering approach was
suggested by Gutkin, Kottos and Smilansky [21, 24]. We provide a mathematically rigorous
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proof of this result. The trace formula is applied to reconstruct the graph from the spectrum
of the corresponding Laplace operator. This procedure can be carried out in the case when the
lengths of the edges are rationally independent and the graph has no vertices having valence 2.

A rigorous proof of this fact is also provided in the current paper (theorem 2). We decided to
restrict our consideration to the case of the so-called Laplace operator on metric graphs—the
second derivative operator with natural or free boundary conditions at the vertices. The results
proven in the current paper are stronger than those proposed in [21]: it is not required that
the graph is simple, i.e. graphs with loops and multiple edges are allowed. We believe that
our methods can now be extended to prove similar results for arbitrary quantum graphs with
rationally independent edges.

Explicit examples constructed in [3, 21, 27] show that the inverse spectral and scattering
problems for quantum graphs in general do not have a unique solution (if no restriction on the
lengths of the edges is imposed).

The notion of quantum graphs was introduced in the 1980s by Gerasimenko and Pavlov
[17, 18, 30]. Many important examples including graphs with higher dimensional inclusions
were considered by Exner and Seba [13, 16] (see also two conference proceedings volumes
[14, 15] collecting articles on this subject). The extension theory used in the current paper
is similar to the one developed for multi-interval problems in [8–12]. One can find a recent
reference list with historical remarks in the book [2] and volumes [25, 26] devoted entirely to
quantum graphs.

The spectral problem for quantum graphs has been investigated recently by Naimark,
Sobolev and Solomyak [28, 29, 32–35]. The inverse spectral problem was investigated by
Gutkin and Smilansky [21] and for a special class of operators in [5]. The Borg–Levison
theorem for Sturm–Liouville operators on trees was proven in [4]. The direct scattering
problem was investigated by Kostrykin and Schrader [23]. The inverse scattering problem is
discussed in [22, 27].

2. Basic definitions

Consider arbitrary finite metric graph � consisting of N edges. The edges will be identified
with the intervals of the real line �j = [x2j−1, x2j ] ⊂ R, j = 1, 2, . . . , N. Their length will be
denoted by dj = |x2j −x2j−1|. Let us denote by M the number of vertices that can be obtained
by dividing the set {xk}2N

k=1 of endpoints into equivalence classes Vm,m = 1, 2, . . . , M. The
coordinate parametrization of the edges does not play any important role, therefore we are
going to identify metric graphs having the same topological structure and the same lengths of
the edges. More precisely this equivalence is described in [3, 27]. A graph � is called clean
if it contains no vertices of valence 2. In what follows we are going to consider clean graphs
only, since vertices of valence 2 can easily be removed by substituting the two edges joined
at the vertex by one edge with length equal to the sum of the lengths of the two edges. This
procedure is called cleaning [27].

To define the self-adjoint differential operator on � consider the Hilbert space of square
integrable functions on �

H ≡ L2(�) = ⊕
N∑

j=1

L2(�j ) = ⊕
N∑

j=1

L2[x2j−1, x2j ]. (1)

The Laplace operator on � is the sum of second derivative operators in each space L2(�j ),

H = ⊕
N∑

j=1

(
− d2

dx2

)
L2(�j )

. (2)
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This differential expression does not determine the self-adjoint operator uniquely. Two
differential operators in L2(�) are naturally associated with the differential expression (2): the
minimal operator with the domain Dom(Hmin) = ⊕ ∑N

j=1 C∞
0 (�j ) and the maximal operator

Hmax with the domain Dom(Hmax) = ⊕ ∑N
j=1 W 2

2 (�j ), where W 2
2 denotes the Sobolev space.

All self-adjoint operators associated with (2) can be obtained by restricting the maximal
operator to a subspace using certain boundary conditions connecting boundary values of the
functions on � associated with the same vertex.

The functions from the domain Dom(Hmax) are continuous and have continuous first
derivatives on each edge �j . The Hilbert space H introduced above does not reflect the
connectivity of the graph. It is the boundary conditions that connect values of the function
on different edges. Therefore, these conditions have to be chosen in a special way so that
they reflect the connectivity of the graph. See [27] for a discussion on how the most general
boundary conditions can be chosen. In the current paper, we restrict our consideration to the
case of natural, or free, boundary conditions given by{

f (xj ) = f (xk), xj , xk ∈ Vm,∑
xj ∈Vm

∂nf (xj ) = 0,
m = 1, 2, . . . , M, (3)

where ∂nf (xj ) denotes the normal derivative of the function f at the endpoint xj . The functions
satisfying these conditions are continuous at the vertices. In the case of the vertex with valence 2
conditions (3) imply that the function and its first derivative are continuous at the vertex, i.e.
the vertex can be removed as described above.

The Laplace operator H(�) on the metric graph � is the operator Hmax given by (2)
restricted to the set of functions satisfying boundary conditions (3). This operator is self-
adjoint [27] and uniquely determined by the graph �. Therefore, the inverse spectral problem
for H(�) is to reconstruct the graph � from the set of eigenvalues.

The Laplace operator H(�) can be considered as a finite rank (in the resolvent sense)
perturbation of the operator Hmax restricted to the set of functions satisfying Dirichlet boundary
conditions at the vertices. This operator is equal to the orthogonal sum of the second derivative
operators on the disjoined intervals and therefore has pure discrete spectrum. Hence the
spectrum of the operator H(�) is also pure discrete with unique accumulation point at +∞.
The quadratic form of the operator

〈Hf, f 〉 =
N∑

j=1

∫ x2j

x2j−1

(−f ′′(x))f (x) dx =
N∑

j=1

∫ x2j

x2j−1

|f ′(x)|2 dx � 0

is non-negative and therefore the operator H is non-negative. Thus, the spectrum of H
contains an infinite sequence of non-negative real numbers accumulating to +∞. The kernel
of the operator contains only constant functions on � (see lemma 1).

3. Trace formula

In this section, we establish the correspondence between the positive spectrum of the operator
H(�) and the length spectrum of the metric graph �—the set L of lengths of all periodic
orbits of �. Our presentation follows essentially [21, 24], but we were able to correct a few
minor mistakes making the presentation mathematically rigorous.

Let us establish the secular equation determining all positive eigenvalues of the operator
H . Suppose that ψ is an eigenfunction for the operator corresponding to the positive spectral
parameter E = k2 > 0. Then this function is a solution to the one-dimensional Schrödinger
equation on the edges − d2ψ

dx2 = k2ψ . The general solution to the differential equation on the
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edge �j = [x2j−1, x2j ] with the length dj = |x2j − x2j−1| can be written in the basis of
incoming waves as follows:

ψ(x) = a2j−1 eik|x−x2j−1| + a2j eik|x−x2j |, (4)

where am is the amplitude of the wave coming from the end point xm.

a2j−1e
ik|x−x2j−1| a2je

ik|x−x2j|

x2j−1 x2j∆j

The same solution in the basis of outgoing waves possesses a similar representation

ψ(x) = b2j e−ik|x−x2j | + b2j−1 e−ik|x−x2j−1|,

where (
b2j−1

b2j

)
=

(
0 eikdj

eikdj 0

) (
a2j−1

a2j

)
. (5)

The following notation will be useful

ej =
(

0 eikdj

eikdj 0

)
.

If one introduces the 2N -dimensional vectors of amplitudes of incoming and outgoing
waves

a =
{(

a2j−1

a2j

)}N

j=1

; b =
{(

b2j−1

b2j

)}N

j=1

,

relation (5) can be written as

b = Ea, where E =




e1 0 . . .

0 e2 . . .
...

...
. . .


 (6)

is a block matrix composed of matrices ej on the diagonal.
Consider any vertex Vm = {xl1 , xl2 , . . . , xlvm

} of valence vm = val(Vm) connecting exactly
vm edges (counting multiplicities). Then knowing the amplitudes blj , j = 1, 2, . . . , vm

of all waves blj e−ik|x−xlj
| approaching the vertex Vm, the amplitudes alj , j = 1, 2, . . . , vm

of all waves alj eik|x−xlj
| going out from the vertex can be calculated from the boundary

conditions (3).
We introduce the notation

am =




al1

al2

...

alvm


 , bm =




bl1

bl2

...

blvm


 .
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Then the relation between the vectors am and bm is described by a certain vertex scattering
matrix σm determined by the boundary condition

am = σ mbm. (7)

For natural boundary conditions the vertex scattering matrix does not depend on the
energy

σm
jk =




2

vm

, j 	= k,

2 − vm

vm

, j = k,

vm 	= 1. (8)

Observe that for vm = 2 and vm = 1 the scattering matrices are trivial and equal to3

σ = (
0 1
1 0

)
and σ = 1, respectively, which explains the reason to call the boundary conditions

(3) free or natural (and the operator H the Laplace operator). For the same reason, we have to
exclude vertices with valence 2 from our consideration and consider clean graphs only, since
one cannot ‘distinguish’ vertices of valence 2 with natural boundary conditions from the other
internal points of the edges. In the case vm = 1 (loose endpoint), the boundary condition
coincides with the Neumann condition.

The connection between the amplitudes b and a given by the vertex scattering matrices
appears in a simple way if one considers the basis associated with the vertices


a1

a2
...

aM


 = �




b1

b2
...

bM


 , where � =




σ 1 0 . . .

0 σ 2 . . .
...

...
. . .


 . (9)

Then formulae (6) and (9) imply that the amplitudes a determine an eigenfunction of H(�)

for E > 0 if and only if a = �Ea, i.e. the matrix

U(k) = �E(k) (10)

has eigenvalue 1 and a is the corresponding eigenvector. Observe that the matrices � and E have
simple representations in different bases associated with the vertices and edges respectively.
Thus, the non-zero spectrum of the operator H can be calculated as zeroes of the following
function:

f (k) = det(U(k) − I ) = 0 (11)

on the positive axis. Let us denote the eigenvalues of the Laplace operator H in non-decreasing
order as follows:

E0 = k2
0 = 0 < E1 = k2

1 � E2 = k2
2 � . . . .

Then the zeroes of the function f (k) are situated at the points

k = 0,±
√

E1,±
√

E2, . . . .

(Lemma 1, see below, implies that E0 = 0 has multiplicity 1). Together with the secular
equation (11), we are going to consider the corresponding linear system

(U(k) − I )a = 0, (12)

which has non-trivial solutions if and only if (12) is satisfied.

3 Observe that in our parametrization, the scattering matrix (0 1
1 0) corresponds to zero reflection coefficient and unit

transition coefficient—no scattering occurs in that case.
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Let us call by spectral multiplicity the multiplicity of the eigenvalue E of the operator H
and by algebraic multiplicity the dimension of the linear space of solutions to equation (11).

The spectral and algebraic multiplicities of all non-zero eigenvalues of H coincide, since
for E 	= 0 there is a one-to-one correspondence between a and ψ(x) (see (4)).

Let us study the point E = 0 in more detail.

Lemma 1. Let � be a connected metric graph with N edges. Then the point E = 0
is an eigenvalue for the Laplace operator H with the spectral multiplicity 1 and algebraic
multiplicity N + 1.

Proof. If E = 0 then the corresponding eigenfunction should satisfy the following equation
− d2ψ

dx2 = 0 on each edge. The solution to this equation is just a linear function. In addition, the
function should satisfy the boundary conditions (3). To prove the first part of the lemma, it is
enough to show that the unique eigenfunction is constant (having equal values on all edges).
Assume that there is an eigenfunction which is not constant. Since such a function is linear
on the edges it attains its maximum and minimum at the end points of the edges, i.e. at the
vertices. Consider the vertex being the global maximum point for the function. Then the sum
of the normal derivatives at this vertex is a sum of non-positive numbers but it is equal to
zero. Therefore, all normal derivatives are equal to zero and the function is constant on all
edges meeting at the vertex in question. It follows that the eigenfunction attains a maximum
at all neighbouring vertices. Proceeding with the same argument and taking into account the
continuity condition, we conclude that the function is constant on the whole graph since it is
connected.

The general solutions to equation (12) are given by (4) on each edge. Now if E = 0
then k = 0 and using continuity of the eigenfunction at the vertices, the amplitudes aj have to
fulfil the relation a2j−1 + a2j = a2k−1 + a2k where j, k are indices such that the edges �j and
�k are connected. When the graph is connected there is always a path from �1 to any other
edge �j . This system of equations is equivalent to the following system of N − 1 linearly
independent equations: a1 + a2 = a2j−1 + a2j , where j = 2, . . . , N. Thus, the number of
linearly independent solutions to (12) is equal to 2N − (N − 1) = N + 1. Hence the algebraic
multiplicity is N + 1. �

Thus, the secular equation (11) gives all non-negative eigenvalues of H(�) with correct
multiplicities except for the point E = 0.

The function f is analytic in C, because all elements of the finite matrix U(k) are analytic
functions of the variable k. Zeroes of this function cannot accumulate to any finite point, since
f is analytic and it is not identically equal to zero. This gives another proof of the fact that
the spectrum of the operator H is discrete.

Let us introduce the distribution u connected with the spectral measure

u ≡ δ(k) +
∞∑

n=1

(δ(k − kn) + δ(k + kn)).

For any test function ϕ ∈ C∞
0 (R), the value of the distribution u[ϕ] can be calculated using

the function f as follows:

u[ϕ] = lim
ε→0

1

2π i

∫ ∞

−∞

(
f ′(k − iε)

f (k − iε)
− f ′(k + iε)

f (k + iε)

)
ϕ(k) dk − Nϕ(0), (13)

where the correction term −Nϕ(0) appears due to the difference between the spectral and
algebraic multiplicities at E = 0.
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Since the function ϕ has compact support, say the interval [a, b], the sum is in fact finite
and thus it is sufficient to study the case when the support of ϕ contains only one zero of f ,
say a simple zero kj . In this case we have∫ ∞

−∞
δ(k − kj )ϕ(k) dk = lim

ε→0

1

2π i

∫ b

a

(
f ′(k − iε)

f (k − iε)
− f ′(k + iε)

f (k + iε)

)
ϕ(k) dk

= lim
ε→0

1

2π i

(∫ kj −χ

a

+
∫ kj +χ

kj −χ

+
∫ b

kj +χ

)
(. . .)ϕ(k) dk,

where χ � 1. The first and the third integrals have trivial limits

lim
ε→0

(∫ kj −χ

a

+
∫ b

kj +χ

)
(. . .)ϕ(k) dk = 0,

since f ′(k)

f (k)
ϕ(k) is a continuous function outside (kj − χ, kj + χ). We can split the middle

integral into two as follows:

lim
ε→0

1

2π i
ϕ(kj )

∫ kj +χ

kj −χ

(. . .) dk + lim
ε→0

1

2π i

∫ kj +χ

kj −χ

(. . .)(ϕ(k) − ϕ(kj )) dk.

The integrand in the second integral is uniformly bounded, and therefore its absolute value is
less than a constant times χ. The first integral can be transformed to the integral over a small
circle around kj , due to residue calculus equal to ϕ(kj ). Therefore we have

lim
ε→0

1

2π i
ϕ(kj )

∫ ∞

−∞

(
f ′(k − iε)

f (k − iε)
− f ′(k + iε)

f (k + iε)

)
dk = ϕ(kj ) = δ(k − kj )[ϕ].

If the support of ϕ contains several zeroes of f , then the following formula holds:

u[ϕ] = 1

2π i

∫ ∞

−∞
[(ln f (k − i0))′ − (ln f (k + i0))′]ϕ(k) dk − Nϕ(0). (14)

For any diagonalizable non-singular matrix A, the following equation holds modulo 2π i:

ln det A = Tr ln A. (15)

In the case when all entries of the matrix function A = A(k) are differentiable we get the
equality:

(ln det A(k))′ = (Tr ln A(k))′. (16)

The matrix A(k) = U(k) − I is diagonalizable for real k, since U(k) = �E(k) is unitary
there. This property holds true in a certain neighbourhood of the real line, since the entries of
E(k) are analytic functions.

Moreover, the matrix U(k)− I = �E(k)− I is non-singular outside the real axis because

(i) for Im k > 0, ‖U(k)‖ = ‖E(k)‖ < 1, this implies that det(U − I ) 	= 0,
(ii) for Im k < 0, ‖U−1(k)‖ = ‖E−1(k)‖ < 1, this implies that det(U − I ) = det(U(I −

U−1)) = det U · det(I − U−1) 	= 0.

Formula (16) holds for A(k) = U(k) − I and for k 	= kn from the neighbourhood of the real
line.

With the function f (k) = det(U(k) − I ) we have then

u[ϕ] + Nϕ(0) = 1

2π i

∫ ∞

−∞
{(ln det(U(k − i0) − I ))′ − (ln det(U(k + i0) − I ))′}ϕ(k) dk

= 1

2π i

∫ ∞

−∞
{(Tr ln(U(k − i0) − I ))′ − (Tr ln(U(k + i0) − I ))′}ϕ(k) dk
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= 1

2π i

∫ ∞

−∞
{Tr(ln(U(k − i0) − I ))′ − Tr(ln(U(k + i0) − I ))′}ϕ(k) dk

= 1

2π i

∫ ∞

−∞

{
Tr

U ′(k − i0)

U(k − i0) − I
− Tr

U ′(k + i0)

U(k + i0) − I

}
ϕ(k) dk.

Since ‖E(k+iε)‖ < 1, the norm ‖U(k+iε)‖ is also less than 1 and the geometric expansion
can be used

Tr
U ′(k + iε)

I − U(k + iε)
= Tr((I + U(k + iε) + U 2(k + iε) + · · ·)U ′(k + iε)).

In the lower half-plane Im(k − iε) < 0, ‖U−1(k − iε)‖ < 1 and we get

Tr
U ′(k − iε)

U(k − iε) − I
= Tr

1

U(k − iε)

U ′(k − iε)

I − U−1(k − iε)

= Tr U(k − iε)−1((I + U−1(k − iε) + U−2(k − iε) + · · ·)U ′(k − iε))

= Tr((U−1(k − iε) + U−2(k − iε) + · · ·)U ′(k − iε)).

Putting together the last two expansions we have

u[ϕ] + Nϕ(0) = 1

2π i
lim
ε→0

∫ ∞

−∞
[Tr((I + U(k + iε) + · · ·)U ′(k + iε))

+ Tr((U−1(k − iε) + U−2(k − iε) + · · ·)U ′(k − iε))]ϕ(k) dk.

Taking into account that the matrix � is independent of the energy one gets

U ′ = �E iD = iUD,

whereD = diag[d1, d1, d2, d2, d3, d3, . . .] (in the basis associated with the edges). Substitution
into the previous formula implies

u[ϕ] + Nϕ(0) = 1

2π i
lim
ε→0

∫ ∞

−∞
[Tr((I + U(k + iε) + U 2(k + iε) + · · ·)U(k + iε)iD)

+ Tr((U−1(k − iε) + U−2(k − iε) + · · ·)U(k − iε)iD)]ϕ(k) dk. (17)

In the last formula one can exchange the limε→0 and the integral sign, since the sum under
the integral is absolutely converging. To prove that one can use the fact that the test function
ϕ has compact support and is infinitely many times differentiable and therefore its Fourier
transform decays faster than any polynomial, i.e. in particular the following estimate holds∣∣∣∣

∫ ∞

−∞
ei(k+iε)dϕ(k) dk

∣∣∣∣ � C

dN+1
, |d| > 1,

where C is a certain positive constant. Entries of the matrices U(k) are exponential functions
ei(k+iε)dj . Therefore, the entries of the matrix Um(k + iε) are equal to sums of exponentials
ei(k+iε)

∑m
j=1 dαj , where 
α = (α1, α2, . . . , αm) is an m-dimensional vector with non-negative

integer coordinates less or equal to N. The number of all such vectors is less than mN−1. Then
the product of matrices Um(k)D can be written as a finite sum with less than mN−1 items

Um(k + iε)D =
∑


α
B
α ei(k+iε)

∑m
j=1 dαj ,

where the norms of the constant matrices B
α are not greater than the norm of the matrix
Um(k + iε)D equal to max{dj }. Therefore, the traces | Tr B
α| are less than 2N max{dj }. Then
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every item containing positive powers of U can be estimated as∣∣∣∣
∫ ∞

−∞
Tr[Um(k + iε)D]ϕ(k) dk

∣∣∣∣ =
∣∣∣∣∣
∫ ∞

−∞
Tr

[∑

α

B
α ei(k+iε)
∑m

j=1 dαj

]
ϕ(k) dk

∣∣∣∣∣
�

∑

α

2N max{dj }
∣∣∣∣
∫ ∞

−∞
ei(k+iε)

∑m
j=1 dαj ϕ(k) dk

∣∣∣∣
� mN−12N max{dj } C

mN+1(min{dj })N+1
� K

m2
, (18)

where K is another constant. Estimating the sum of negative powers of U in a similar way
the following formula is now proven

u[ϕ] = 1

2π i

∫ ∞

−∞
Tr((· · · + U−1(k) + I + U(k) + . . .)iD)ϕ(k) dk − Nϕ(0),

i.e.

u = 1

2π i
Tr[(. . . + U−1(k) + I + U(k) + . . .)iD] − Nδ(k). (19)

To calculate the trace, let us introduce the orthonormal basis of incoming waves to be
e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, . . .), . . . , e2N = (. . . , 0, 0, 1). By a periodic orbit we
understand any oriented closed path on �. Note that the orbit so defined does not have any
starting point. With any such (continuous) periodic orbit p one can associate the discrete
periodic orbit consisting of all edges that the orbit comes across. Also let:

• P be the set of all periodic orbits for the graph �,
• l(p) be the geometric length of a periodic orbit p,
• n(p) be the discrete length of p—the number of edges that the orbit comes across,
• Pn

m be the set of all periodic orbits going through the point xm into the interval �[ m+1
2 ],

where [·] denotes the integer part, and having discrete length n,
• prim(p) denotes a primitive periodic orbit, such that p is a multiple of prim(p)

• d(p) = n(p)/n(prim(p)) is the degree of p.

The geometric length of an orbit is equal to the sum of lengths of the edges composing
the orbit (with multiplicities of course). When the orbit goes from one edge to another it
passes through a vertex and we will need to take into account the corresponding scattering
coefficients. Then let us denote by T (p) the set of all scattering coefficients along the orbit p.

The right-hand side of (19) can be divided into three parts: identity, all positive powers
of U and all negative powers of U. The first part gives

1

2π
Tr(ID) = 2L

2π
= L

π
,

where L = d1 + d2 + · · · + dN is the total length of the graph �.
The contribution from all other terms can be calculated using corresponding periodic

orbits. Let us consider for example the contribution from U 4:

1

2π
Tr(U 4D) = 1

2π

2N∑
n=1

〈U 4Den, en〉.

Using that Den = d[ n+1
2 ]en and definition (10), the trace can be calculated

1

2π
Tr(U 4D) = 1

2π

2N∑
n=1

d[ n+1
2 ]〈U 4en, en〉

= 1

2π

2N∑
n=1

d[ n+1
2 ]

∑
p∈P4

n


 ∏

σm
ij ∈T (p

σm
(ij))


 eikl(p).
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Now we will sum all positive powers

1

2π
Tr[(U 1 + U 2 + U 3 + · · ·)D] = 1

2π

∞∑
s=1

2N∑
n=1

〈UsDen, en〉

= 1

2π

∞∑
s=1

2N∑
n=1

d[ n+1
2 ]

∑
p∈Ps

n


 ∏

σm
ij ∈T (p)

σm
ij


 eikl(p)

= 1

2π

∑
p∈P

l(prim(p))


 ∏

σm
ij ∈T (p)

σm
ij


 eikl(p).

Similarly we have for negative powers

1

2π
Tr[(· · · + U−3 + U−2 + U−1)D] = 1

2π

∑
p∈P

l(prim(p))


 ∏

σm
ij ∈T (p)

σm
ij


 e−ikl(p).

For the sake of simplicity one can introduce

Ap = l(prim(p))


 ∏

σm
ij ∈T (p)

σm
ij


 , A∗

p = l(prim(p))


 ∏

σm
ij ∈T (p)

σm
ij


 . (20)

Thus we have proved the following trace formula (21), which is a rigorous counterpart of
the formula derived by Gutkin, Kottos and Smilansky in [21, 24].

Theorem 1 (trace formula). Let H(�) be the Laplace operator on a finite connected metric
graph �, then the following two trace formulae establish the relation between the spectrum{
k2
j

}
of H(�) and the set of periodic orbits P, the number of edges N and the total length L:

u(k) ≡ δ(k) +
∞∑

n=1

(δ(k − kn) + δ(k + kn))

= −Nδ(k) +
L
π

+
1

2π

∑
p∈P

(Ap eikl(p) + A∗
p e−ikl(p)), (21)

and

û(l) ≡ 1 +
∞∑

n=1

(
e−iknl + eiknl

) = −N + 2Lδ(l) +
∑
p∈P

(Apδ(l − l(p)) + A∗
pδ(l + l(p))) (22)

where Ap,A∗
p are independent of the energy complex numbers given by (20).

The second formula (22) is just a Fourier transform of (21). If the graph is not clean, then
the coefficients Ap containing reflections from the vertices of valence 2 are equal to zero. If
the graph is clean, then (8) implies that all coefficients Ap are different from zero, but it may
happen that the singular support of û(l) does not contain lengths of all periodic orbits (see the
following section).

4. The inverse spectral problem

In this section we are going to apply formula (22) to prove that the inverse spectral problem
has a unique solution for clean finite connected metric graphs, provided the lengths of the
edges are rationally independent.
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The set L of lengths of all periodic orbits is usually called the length spectrum. In
principle, formula (22) allows one to recover the length spectrum (of periodic orbits) from
the energy spectrum (of the Laplace operator H ). But this relation is not straightforward and
we are able to prove it in certain special cases only (see the following section). Formula (22)
implies directly that the spectrum of a graph allows one to recover the lengths l of all periodic
orbits from the reduced length spectrum L′ ⊂ L defined as

L′ =


l :


 ∑

p∈P
l(p)=l

Ap


 	= 0


 . (23)

Lemma 2. Let � be a connected finite clean metric graph with rationally independent lengths
of edges. The reduced length spectrum L′ contains at least the following lengths:

• the shortest orbit formed by any interval �j only (i.e. dj or 2dj depending on whether
�j forms a loop or not);

• the shortest orbit formed by any two neighbouring edges �j and �k only (i.e.
2(dj + dk), dj + 2dk, 2dj + dk, dj + dk depending on how these edges are connected to
each other).

Proof. Note that if the graph is clean and there is a unique periodic orbit p0 of a certain length
l(p0) then the corresponding sum degenerates and is different from zero:∑

p∈P
l(p)=l(p0)

Ap = Ap0 	= 0. (24)

If there are several, say r, orbits having the same length as p0 and all A-coefficients are equal,
then the sum is different from zero:∑

p∈P
l(p)=l(p0)

Ap = rAp0 	= 0. (25)

• In the case �j is a loop, there are two orbits of length dj with equal coefficients A. If �j

does not form a loop, then the shortest orbit is unique and has length 2dj .
• Suppose that neither �j nor �k forms a loop and they do not form a double edge. Then

the shortest possible length of an orbit formed by �j and �k is 2(dj + dk) and such orbit
is unique.
Suppose that exactly one of the two neighbouring edges, say �j, forms a loop. Then
there are two orbits having the shortest possible length dj + 2dk and the corresponding
A-coefficients are equal.
Suppose that �j and �k form a double edge. Then there are two orbits with the shortest
possible length dj + dk and the corresponding A-coefficients are equal.
Suppose that both �j and �k form loops. Then the number of orbits having the shortest
length dj + dk is four and the A-coefficients are equal.

All possible cases have been considered. �

We are going to show now that the knowledge of the reduced length spectrum together
with the total length of the graph is enough to reconstruct the graph. The first step in this
direction is to recover the lengths of the edges from the total length of the graphs and the set
L′. The following result can be proven by refining the method of Gutkin–Smilansky [21].
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Lemma 3. Let the lengths of the edges of a clean finite connected metric graph � be rationally
independent. Then the total length L of the graph and the reduced length spectrum L′ (defined
by (23)) determine the lengths of all edges and whether these edges form loops or not.

Proof. Consider the finite subset L′′ of L′ ⊂ L consisting of all lengths less than or equal
to 2L

L′′ = {l ∈ L′ : l � 2L}.
This finite set contains at least one of the numbers dj or 2dj . Therefore, there exists a basis
s1, s2, . . . , sN , such that every length l ∈ L′′ (as well as from L) can be written as a half-integer
combination of sj

l = 1

2

N∑
j=1

nj sj , nj ∈ N.

Such a basis is not unique, especially if the graph has loops. Any two bases {sj } and {s ′
j }

are related as follows: sj = nj s
′
ij
, nj = 1

2 , 1, 2, where i1, i2, . . . , iN is a permutation of
1, 2, . . . , N. Then among all possible bases, consider a basis with the shortest total length∑N

j=1 sj .

The total length of the graph L can also be written as a sum of sj with the coefficients
equal to 1 or 1/2

L =
N∑

j=1

αj sj , αj = 1, 1/2. (26)

The coefficients in this sum are equal to 1 if sj is equal to the length of a certain edge �j , i.e.
when the edge forms a loop. The coefficient 1/2 appears if sj is equal to double the length of
an edge. In this case the edge does not form a loop. Therefore, the lengths of the edges up
to permutation can be recovered from (26) using the formula dj = αj sj , j = 1, 2, . . . , N. To
check whether an edge �j forms a loop or not it is enough to check whether dj belongs to L′

or not. �

Once the lengths of all edges are known, the graph can be reconstructed from the reduced
length spectrum. Lemma 2 implies that looking at the reduced length spectrum L′ one can
determine whether any two edges �j and �k are neighbours or not (have at least one common
end point): the edges �j and �k are neighbours if and only if L′ contains at least one of the
lengths dj + dk, 2dj + dk, dj + 2dk, or 2(dj + dk).

Lemma 4. Every clean finite connected metric graph � can be reconstructed from the set
D = {dj } of the lengths of all edges and the reduced length spectrum L′—the subset of all
periodic orbits determined by (23), provided that dj are rationally independent.

Proof. Let us introduce the set of edges E = {�j }Nj=1 uniquely determined by D = {dj }. We
shall prove the lemma for simple graphs first. A graph is called simple if it contains no loops
and no multiple edges. From an arbitrary graph one can obtain a simple graph by cancelling
all loops and choosing only one edge from every multiple one:

(i) If dk ∈ L′ then the corresponding edge is a loop. Then remove �k from E and all lengths
containing dk from L′.

(ii) If dk + dj ∈ L′ then there exists a double edge composed of �j and �k (since the loops
have already been removed). Then remove either �j or �k from E and also all lengths
containing the chosen length from L.
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The new subsets E∗ ⊂ E containing N∗ � N elements and L∗ ⊂ L′ obtained in this way
correspond to a simple subgraph �∗ ⊂ � which can be obtained from � by removing all loops
and reducing all multiple edges. One obtains different �∗ by choosing different edges to be
left during the reduction.

The reconstruction will be done iteratively and we will construct an increasing finite
sequence of subgraphs such that �1 ⊂ �2 ⊂ · · · �N∗ = �∗. The corresponding subsets of
edges will be denoted byEk.

For k = 1 take the graph �1 consisting of one edge, say �1. By looking at L′ pick up any
edge, say �2, which is a neighbour of �1. Attach it to any endpoint of �1 to get the graph �2.

Suppose that connected subgraph �k consisting of k edges (k � 2) is reconstructed. Pick
up any edge, say �k+1, which is a neighbour of at least one of the edges in �k. Let us denote by
Enbh

k the subset of Ek of all edges which are neighbours of �k+1. We have to identify one or two
vertices in �k to which the new �k+1 is attached. Every such vertex is uniquely determined by
listing the edges joined at this vertex, since the subgraph �k is simple, connected and contains
at least two edges. Therefore, we have to separate Enbh

k into two classes of edges attached to
each endpoint of �k+1. (One of the two sets can be empty, which corresponds to the case that
the edge �k+1 is attached to �k at one vertex only.)

Take any two edges from Enbh
k , say �′ and �′′. The edges �′ and �′′ belong to the same

class if and only if:

• �′ and �′′ are neighbours themselves and
• d ′ +d ′′ +dk+1 /∈ L′, i.e. the edges �′,�′′ and �k+1 do not build a cycle. Note that if �′,�′′

and �k+1 form a cycle, then there are two periodic orbits having length d ′ + d ′′ + dk+1 and
the corresponding A-coefficients are equal, which implies that d ′ + d ′′ + dk+1 ∈ L′.

In this way we either separate Enbh
k into two classes of edges or Enbh

k consists of edges
joined at one vertex. In the first case the new edge �k+1 connects the two unique vertices
determined by the subclasses. In the second case �k+1 is attached by one endpoint to �k at
the vertex uniquely determined by Enbh

k . Since the graphs with different orientations of the
edges are equivalent it does not matter which particular end point of the interval �k+1, x2k+1

or x2k+2, is attached to the chosen vertex of �k .
Denote the graph obtained in this way by �k+1.

Since the graph �∗ is connected and finite after N∗ steps one arrives at �N∗ = �∗.
It remains to add all loops and multiple edges to reconstruct the initial graph �. Suppose

that the reconstructed subgraph �∗ is not trivial, i.e. consists of more than one edge. Then
every vertex is uniquely determined by listing all edges joined at it. Check first to which
vertex the loop �n is connected by checking if periodic orbits of the length dn + 2dj belong
to L′ or not. All such edges �j determine the unique vertex to which �n should be adjusted.
To reconstruct multiple edges check whether dm + dj is from L′, where �j ∈ E∗. Substitute
all such edges �j with corresponding multiple edges.

In the case �∗ is trivial, the proof is an easy exercise. �

Our main result can be obtained as a straightforward implication of lemmas 3 and 4.

Theorem 2. The spectrum of a Laplace operator on a metric graph determines the graph
uniquely, provided that

• the graph is clean, finite and connected,
• the edge lengths are rationally independent.

Proof. The spectrum of the operator determines the left-hand side of the trace formula (21).
Formula (22) shows that the spectrum of the graph determines the total length of the graph and
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the reduced length spectrum. Lemma 3 implies that the lengths of all edges can be extracted
from these quantities under the conditions of the theorem. It follows from lemma 4 that the
whole graph can be reconstructed provided that its edges are rationally independent and it is
clean, finite and connected. �

One can easily remove the condition that the graph is connected. The result can be
generalized to include more general differential operators on the edges and boundary conditions
at the vertices. Rigorous proofs of these results will be a subject of a forthcoming publications.
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pp 161–81

[34] Solomyak M 2003 On approximation of functions from Sobolev spaces on metric graphs J. Approx. Theory 121
199–219

[35] Solomyak M 2004 On the spectrum of the Laplacian on regular metric trees. Special section on quantum graphs
Waves Random Media 14 S155–71


