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Abstract. The difference between the resolvents of two selfadjoint exten-
sions of a certain symmetric operator A is described by Krein’s resolvent
formula. We will prove an analog of Krein’s formula in a general framework,
apply it to extensions theory, and give a straightforward proof of Krein’s
formula including the case that A is not necessarily densely defined. We
will also present a modification of Krein’s formula adjusted to perturbation
theory and prove the corresponding resolvent estimate.
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1. INTRODUCTION

In the theory of selfadjoint extensions of symmetric operators Krein’s resolvent
formula describes the difference between the resolvents of two selfadjoint exten-
sions H0 and H of a closed symmetric (or Hermitian) operator A. The original
Krein’s formula was derived by M. Krein and M. Naimark for the case where A
has deficiency indices (1, 1) ([8], [9], [11], [15]). It was then generalized to the
case of general finite deficiency indices ([1], [10]) and finally to the case of arbi-
trary (including infinite) deficiency indices by S.N. Saakjan ([17]). F. Gesztesy,
K.A. Makarov, and E. Tsekanovskii ([5]) stressed the importance of Saakjan’s re-
sult, studied its consequences and, among other things, supplied a detailed proof
and an extensive list of references on this problem ([5]). We remark, however, that
[17] and [5] deal only with the case that A is densely defined. In the present paper,
among other results, we present a proof of Krein’s formula which includes the case
that A is not densely defined. (The main difference between the densely defined
and non densely defined cases concerns with the additional admissibility condition
on the (operator) parameter which can be neglected in the former case.) Some
of the results from the present paper have already appeared as a preprint ([12]).
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The proofs are improved considerably and several new results are presented, in
particular Theorems 3.2 and 4.2. We would like to emphasize that our research in
this area was inspired by studies of singular perturbations of selfadjoint operators
which attracted much attention in the recent years ([2], [3], [4], [6], [16], [18]).

We will prove an analog of Krein’s formula in a framework more general than
the extension theory. More specifically, we fix a selfadjoint operatorH0 in a Hilbert
space H and consider pairs {M,γ} of a closed subspace M of H and a selfadjoint
operator γ in M. Then, we will give a simple bijective correspondence between all
selfadjoint operators H in H and pairs {M,γ} which satisfy a condition we call
an admissibility condition. The correspondence is given by the difference between
the resolvents at point i (Theorem 2.1). We will then derive a general formula
connecting the resolvents for arbitrary nonreal values of the spectral parameter
(see Theorem 2.3). This is our analog of Krein’s formula. We will then apply it to
the extension theory. In Krein’s extension theory one considers a densely defined
Hermitian operator A and one particular extension H0 of A. Then, Krein’s formula
(in the form given in [17]) characterizes all other selfadjoint extensions H of A via
Krein’s resolvent formula. By taking H0 to be our fixed operator we will show
that our resolvent formula gives in this case exactly Krein’s formula from [17].
We believe that our approach gives a rather straightforward and simple proof of
original Krein’s formula. We would like to emphasize once again that our method
applies to the case that A is not necessarily densely defined. It is surprising
that this non-densely defined case has not been dealt with in the literature. The
necessity of the admissibility condition was discovered first by M. Krasnosel’skii
([7]) during the studies of selfadjoint extensions of Hermitian not densely defined
operators. This condition is fulfilled automatically if the restricted operator is
densely defined (see Theorem 2.11).

In the perturbation theory one describes selfadjoint operator H in relation
to one fixed unperturbed, or free operator H0. The difference between the two
operators is described by a certain operator V. In many applications the operator
V can be chosen as an additive perturbation of H0 so that formula

(1.1) H = H0 + V

holds. In this way one cannot describe all selfadjoint operators H in relation to
H0, and natural generalization of (1.1) is a certain resolvent formula like it has
been suggested in [13] and [14].

Another point discussed in the paper is a certain modification of Krein’s
resolvent formula adjusted to perturbation theory. The operator γ appearing in
conventional Krein’s formula cannot be considered as a perturbation parameter,
since in general the difference between the resolvents of H and H0 increases as
the norm of γ decreases, the operators H and H0 do not coincide if γ = 0. Trying
to obtain the described generalization of Krein’s formula we discovered a one-
parameter family of resolvent formulas which contains Krein’s formula as a special
case (described in Section 4). Among these formulas one new correspondence
appears for us to be important. Like in the conventional case H is described by
a closed subspace N and a selfadjoint operator β in N, but in a different way
(see (3.2) and (3.3)). With β we can estimate the difference of the resolvents
(see (3.9)). It is natural to believe that this type of resolvent formulas can have
important applications. As a corollary of (3.9) we found an interesting estimate
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(3.10). With 2 on the right hand side it is well known, but it is curious that (3.10)
has not been widely recognized.

The two correspondences H ↔ {M,γ} and H ↔ {N, β} (and corresponding
resolvent formulas) are in fact particular cases of the family of correspondences
parameterized by θ ∈ [0, 2π), so that the cases θ = 0 and θ = π coincide with
the case of H ↔ {M,γ} and H ↔ {N, β}, respectively. In Section 4 we write
down the general case. The proof is similar and will be omitted. Logically, we
could have started with general θ and applied the results to the case of θ = 0 and
π. Nevertheless, fearing that it would mar the simplicity of our proof of original
Krein’s formula, we preferred to deal with the case of θ = 0 first.

Notation and terminology. Throughout the present paper we shall use the
following notation. We shall work in a fixed Hilbert space H. We denote by L(H)
the set of all bounded linear operators in H. (The domain of T ∈ L(H) is equal
to H.) For brevity of the exposition we put

Csa(H) = {the set of all selfadjoint operators in H},(1.2)
M = {the set of all closed subspaces of H}.(1.3)

For M ∈ M we denote by M⊥ the orthogonal complement of M and by PM the
orthogonal projection onto M .

For a closed operator A in H the resolvent set of A is denoted by ρ(A).
We express resolvents and related operators by fractions: (H − z)−1 = 1

H−z ,
(H −w)(H − z)−1 = H−w

H−z . The following simple relations are rather useful in our
discussion:

H − z′

H − z
= 1 +

z − z′

H − z
, z ∈ ρ(H), z′ ∈ C,(1.4)

1
H − z

=
1

z − z′

{
H − z′

H − z
− 1

}
, z ∈ ρ(H), z′ ∈ C.(1.5)

We list now up some terminology we use in this paper.
(a) For two selfadjoint operators H and H0 we denote by H∧H0 the maximal

common restriction of H and H0:

(1.6) Dom (H ∧H0) = {u ∈ Dom(H) ∩Dom(H0) : Hu = H0u}
and (H ∧H0)u = Hu = H0u, u ∈ Dom(H ∧H0).

(b) Following F. Riesz and M. Krasnosel’skii we call an operator A in H
Hermitian if

〈Af, g〉 = 〈f,Ag〉
for all f, g ∈ Dom(A) without assuming that Dom(A) is dense in H.

(c) Let A be a closed Hermitian operator. The closed subspace MA = [(A−
i)Dom (A)]⊥ is called the deficiency subspace of A (at point i).

(d) Let A be a closed Hermitian operator. Two selfadjoint extensions H
and H0 of A are called relatively prime if A coincides with the maximal common
restriction of H and H0:

(1.7) H ∧H0 = A.

We also say that H is relatively prime to H0.
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2. REPRESENTATION OF SELFADJOINT OPERATORS AND KREIN’S FORMULA

2.1. The resolvent formula. In this subsection we are going to prove that an
analog of Krein’s resolvent formula, which with the complex parameter z being at
one particular value, say z = i, will describe all selfadjoint operators H in com-
parison with the (fixed) selfadjoint operator H0 and in terms of a closed subspace
M and a selfadjoint operator γ acting in M (Theorem 2.1). In Theorem 2.3 we
prove that analog of Krein’s formula for general z.

For M ∈M and γ ∈ Csa(M) we introduce the condition

(2.1) Ker
{

1
H0 + i

− 1
γ + i

PM

}
= {0},

and call it admissibility condition. A pair {M,γ} satisfying this condition will be
called admissible, for H0. When we use the admissibility condition, H0 is always
fixed so that we do not refer to H0 in the notation.

Theorem 2.1. Let H0 be fixed. Then for any selfadjoint operator H there
exists a unique admissible pair {M,γ}, such that

(2.2)
1

H − i
=

1
H0 − i

− H0 + i
H0 − i

1
γ + i

PM .

The correspondence H ↔ {M,γ} is a bijection between Csa(H) and the set of all
admissible pairs {M,γ}.

Definition 2.2. The operator H = H(M,γ) is the unique selfadjoint oper-
ator determined by an admissible pair {M,γ} via (2.2).

The next theorem will give a resolvent formula satisfied by H(M,γ) and H0.
We put

(2.3) Q(z) = PM
1 + zH0

H0 − z

∣∣∣
M
∈ L(M), z ∈ ρ(H0),

where A|M denotes the restriction of A to M .

Theorem 2.3. Let H0 be fixed and let H = H(M,γ), where {M,γ} is an
admissible pair. Then the resolvent of H is given by

1
H − z

=
1

H0 − z
− H0 + i
H0 − z

1
1− i−z

γ+iPM
H0+i
H0−z

1
γ + i

PM
H0 − i
H0 − z

(2.4)

=
1

H0 − z
− H0 + i
H0 − z

1
γ +Q(z)

PM
H0 − i
H0 − z

, z ∈ ρ(H) ∩ ρ(H0).(2.5)

In (2.4) the operator in the denominator of the big fraction is boundedly invertible
in H, and in (2.5) γ + Q(z) is boundedly invertible in M if and only if z ∈
ρ(H) ∩ ρ(H0). (We say that a bounded operator A in H (or M) is boundedly
invertible in H (or M) if A has an everywhere defined bounded inverse in H (or
M).)
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Proof of Theorem 2.1. (i) We prove first the existence of an admissible pair
{M,γ} satisfying (2.2). By (1.5) with z = i and z′ = −i we see that formula (2.2)
is equivalent to

(2.6)
H + i
H − i

=
H0 + i
H0 − i

(
1− 2i

γ + i
PM

)
=
H0 + i
H0 − i

(
PM⊥ +

γ − i
γ + i

PM

)
.

Given H ∈ Csa(H), we put

(2.7) U =
H0 − i
H0 + i

H + i
H − i

,

which is the ratio of the Cayley transforms of H0 and H. U is a unitary operator
in H. Let K = {ψ ∈ H : Uψ = ψ} be the eigenspace of U corresponding to the
eigenvalue 1 and put M = K⊥. Then, K and M reduce U and the part U |M of U
in M is a unitary operator in M which does not have 1 as an eigenvalue. Hence,
by the theory of Cayley transform there exists a unique γ ∈ Csa(M) such that
U |M = γ−i

γ+i . Equation (2.6) follows from this observation and (2.7).
It is not difficult to see that M and γ given above satisfy (2.1). Indeed, the

operator on the left hand side of (2.6) does not have 1 as an eigenvalue. By the
first equality of (2.6) this means that

(2.8) Ker
{

1− 2i
γ + i

PM − H0 − i
H0 + i

}
= {0}.

This is equivalent to (2.1).
(ii) The uniqueness of {M,γ} is an immediate consequence of (2.2). In fact,

from (2.2) it follows that M is the orthogonal complement of Ker
{

1
H−i − 1

H0−i

}

and hence is uniquely determined. Then, for any u ∈ M , 1
γ+iu is determined by

(2.2), so that γ is unique.
(iii) Finally, we prove that the correspondence H 7→ {M,γ} is onto. Given

a pair {M,γ}, the right hand side of (2.6) defines a unitary operator in H. As is
mentioned above, the admissibility condition is equivalent to (2.8), which in turn
implies that the operator on the middle member of (2.6) does not have 1 as an
eigenvalue. Hence, there exists H ∈ Csa(H) such that (2.2) holds. This completes
the proof of Theorem 2.1.

For the proof of Theorem 2.3 we shall use some simple relations satisfied
by the difference of resolvents. For brevity of the exposition we use the following
notation:

(2.9) ∆(z) =
1

H − z
− 1
H0 − z

, z ∈ ρ(H0) ∩ ρ(H).

Proposition 2.4. ∆(z) satisfies the following relations:

∆(z) =
1

z − z′

(H − z′

H − z
− H0 − z′

H0 − z

)
,(2.10)

H − z

H − z′
∆(z) = ∆(z′)

H0 − z′

H0 − z
,(2.11)

(z − z′)∆(z)∆(z′) = ∆(z)
H0 − z

H0 − z′
− H0 − z′

H0 − z
∆(z′),(2.12)
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where, in (2.10), z ∈ ρ(H0) ∩ ρ(H), and z′ ∈ C, z′ 6= z, while in (2.11) and (2.12)
z, z′ ∈ ρ(H0) ∩ ρ(H).

Proof. (2.10) follows from (2.9) and (1.4) at once. Using (2.10) twice, we
obtain

H − z

H − z′
∆(z) =

1
z − z′

H − z

H − z′

(
H − z′

H − z
− H0 − z′

H0 − z

)

=
1

z − z′

(
H0 − z

H0 − z′
− H − z

H − z′

)
H0 − z′

H0 − z
= ∆(z′)

H0 − z′

H0 − z
,

which is (2.11). Multiplying (2.10) by ∆(z′) from the right and using (2.11) with
z and z′ interchanged, we readily obtain (2.12). The proof is complete.

Remark 2.5. We could have used the notation ∆ in (2.2), (2.4), and (2.5),
but we preferred the explicit form of expressing the resolvent of H in terms of the
resolvent of H0 and other relevant quantities.

Proof of Theorem 2.3. Suppose z ∈ ρ(H)∩ ρ(H0). We start from (2.11) with
z′ = i:

(2.13)
H − z

H − i
∆(z) = ∆(i)

H0 − i
H0 − z

.

Use (1.4) on the left hand side, express 1
H−i and ∆(i) by (2.2), and apply H0−i

H0+i

from the left. Then, we obtain

(2.14)
(H0 − z

H0 + i
− i− z

γ + i
PM

)
∆(z) = − 1

γ + i
PM

H0 − i
H0 − z

.

We modify this relation as

(2.15)
(

1− i− z

γ + i
PM

H0 + i
H0 − z

)
H0 − z

H0 + i
∆(z) = − 1

γ + i
PM

H0 − i
H0 − z

.

We note that the process from (2.13) to (2.15) guarantees that the operator in
parentheses on the left hand side of (2.15) is boundedly invertible in H. Hence we
obtain (2.4).

In order to prove the converse, we denote S(z) = 1 − i−z
γ+iPM

H0+i
H0−z . As is

mentioned above, S(z) is boundedly invertible in H for all z ∈ ρ(H) ∩ ρ(H0) and
in particular for all non-real z. Suppose that S(z0) is boundedly invertible in
H for a real z0 ∈ ρ(H0). Then, so is S(z) in a neighborhood of z0 and S(z)−1

is continuous there. This and (2.4) shows that 1
H−z is bounded in a complex

neighborhood of z0. This shows that z0 ∈ ρ(H).
Next, we prove (2.5). Let S0(z) = S(z)|M be the restriction of S(z) to

M . It is obvious that S0(z) maps the domain of γ onto itself. Then, we see
easily that the operator S1(z) ≡ (γ + i)S0(z) (with the same domain as γ) is
boundedly invertible in M and 1

S1(z) = 1
S0(z)

1
γ+i . Now, it is a simple computation

to show that S1(z) = γ+Q(z). Thus, (2.5) is derived from (2.4), and the proof of
Theorem 2.3 is complete.
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Remark 2.6. In the first preprint version ([12]) of this paper, the resolvent
relation (2.5) was proved by showing that:

(i) the operator appearing on the right handside of (2.5), call it R(z), is a
pseudo-resolvent, and

(ii) R(z) is a resolvent if and only if admissibility condition (2.1) is met.
The method based of (2.11), which we found recently, has the advantage

that it can serve to discover what expression should be on the right hand side of
resolvent relation for general z, once the relation was found for z = i.

2.2. Application to extension theory. Krein’s formula. In this sub-
section we describe the relations between the correspondence established in The-
orem 2.1 and the extension theory of symmetric operators. In particular, Krein’s
resolvent formula connecting the resolvents of two (different) selfadjoint extensions
of one symmetric operator will be reconsidered in relation to resolvent formulas
(2.4) and (2.5).

Theorem 2.7. Let A be a closed Hermitian operator in a Hilbert space H
and let MA be the deficiency subspace of A. Let H0 be a (fixed) selfadjoint extension
of A and let H(M,γ) be the selfadjoint operator as defined by Definition 2.2 in
reference to this H0. Then:

(i) H = H(M,γ) is a selfadjoint extension of A if and only if M ⊂MA;
(ii) H = H(M,γ) is a selfadjoint extension of A which is relatively prime

to H0 if and only if M = MA.

By virtue of (ii) of the above theorem and the results of Subsection 2.1, we
can restate the main results of the extension theory as follows.

Theorem 2.8. Let A be a closed symmetric operator and let H0 be a self-
adjoint extension of A. Let MA = [(A− i)Dom(A)]⊥ be the deficiency subspace of
A and put Q(z) = PMA

1+zH0
H0−z

∣∣
MA

. Then, selfadjoint extensions H of A which
are relatively prime to H0 are characterized by selfadjoint operators γ in MA

satisfying the admissibility condition (2.1). More precisely, the correspondence
γ → H = H(MA, γ) determined by (2.2) is a bijection from the set of all such
γ to the set of all selfadjoint extensions of A which are relatively prime to H0.
Furthermore, for H(MA, γ) and H0 the following resolvent formula holds:

(2.16)
1

H(MA, γ)− z
=

1
H0 − z

− H0 + i
H0 − z

1
γ +Q(z)

PMA

H0 − i
H0 − z

.

Formula (2.16) is the Krein’s formula in the extension theory.

Proof of Theorems 2.7 and 2.8. It suffices to prove Theorem 2.7. We first
note the following relation holds for any selfadjoint operators H and H0:

(2.17) Ker
(

1
H − i

− 1
H0 − i

)
= (H0− i)Dom (H∧H0) = (H− i)Dom (H∧H0).

From (2.2) and (2.17) it follows that

(2.18) M = [(H0 − i)Dom (H(M,γ) ∧H0)]⊥.
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(This means that M⊥ is the deficiency subspace of H(M,γ) ∧H0, or the latter is
equal to M⊥, irrespective of γ.)

On the other hand, since H0 is an extension of A, we have

(2.19) MA = [(A− i)Dom (A)]⊥ = [(H0 − i)Dom (A)]⊥.

(2.18) and (2.19) show that M ⊂MA (or M = MA) if and only if Dom (H∧H0) ⊃
Dom(A) (or Dom (H ∧H0) = Dom (A)). Since H0 is an extension of A, this last
relation is equivalent to H ∧H0 ⊃ A (or H ∧H0 = A.) Theorem 2.7 follows from
this at once.

The bounded operator Q(z) defined by (2.3) depends analytically on z /∈ R
and has positive imaginary part in Im z > 0. Indeed,

ImQ(z) = Im z PM
H2

0 + 1
(H0 − Re z)2 + Im z2

PM > 0.

This operator is a generalization of Krein’s Q-function. In the literature this
function is usually defined up to a certain real constant (selfadjoint operator)
([1]). We find it more convenient to determine it uniquely using the normalization
condition

Q(i) = iIM .

2.3. Some remarks.

More on admissibility condition.

Theorem 2.9. Let H0 be a selfadjoint operator and let M ∈ M. Then the
following alternative (i) and (ii) holds:

(i) M ∩ Dom(H0) = {0}. In this case, {M,γ} is admissible for all γ ∈
Csa(M) and the domain Dom(H(M,γ) ∧H0) is dense in H.

(ii) M ∩ Dom(H0) 6= {0}. In this case there exist both admissible {M,γ}
and non-admissible {M,γ}. The domain Dom(H(M,γ) ∧ H0) is not dense for
any admissible {M,γ}.

In the proof of Theorem 2.9 we use the following simple lemma.

Lemma 2.10. Let M be a Hilbert space.
(i) Let ϕ, ψ ∈M , ϕ 6= 0, and assume that (ϕ,ψ) is real. Then there exists

a selfadjoint operator γ such that ϕ ∈ Dom(γ) and γ ϕ = ψ.

(ii) Let B be a Hermitian operator in M . Then there exists a selfadjoint
operator γ such that u ∈ Dom(γ) ∩Dom (B) and γu = Bu imply u = 0.

Proof. (i) It suffices to construct such an operator in the two-dimensional
space containing ϕ and ψ. Then the proof is elementary.

(ii) We may assume that B is closed. Then γ = Pker B satisfies the require-
ment.
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Proof of Theorem 2.9. Suppose first that {M,γ} is admissible and put H =
H(M,γ). Since (H0 − i)Dom (H ∧ H0) is a closed subspace, we see from (2.18)
that (H0 − i)Dom (H ∧H0) = M⊥. From this it follows that

(2.20) u ∈ Dom(H ∧H0)⊥ ⇔ 1
H0 + i

u ∈M.

In the case (i) 1
H0+iu ∈M is possible only for u = 0, because 1

H0+iu ∈ Dom(H0).
Hence, Dom (H ∧H0) is dense. In the case (ii) take 0 6= v ∈ Dom(H0) ∩M and
put u = (H0 + i)v. Then, 1

H0+iu ∈ M and u 6= 0. Hence, Dom (H ∧ H0) is not
dense by (2.20).

Next, we consider the admissibility condition. It is easy to see that (2.1) is
equivalent to

(2.21) [v ∈ Dom (γ) ∩Dom(H0) and γv = PMH0v] ⇒ v = 0.

In the case (i) v ∈ Dom(γ)∩Dom(H0) alone implies v = 0, so that all {M,γ} are
admissible. Let us proceed to the case (ii). To prove the existence of admissible
pair, let B = PMH0|M . Then B is a Hermitian operator in M . Hence, (ii) of
Lemma 2.10 guarantees the existence of γ satisfying (2.21). To prove the existence
of non-admissible γ, let 0 6= ϕ ∈ M ∩ Dom(H0) and put ψ = PMH0ϕ. Then,
(ϕ,ψ) = (ϕ,H0ϕ) is real. Then, by (i) of Lemma 2.10 there exists γ such that
γ ϕ = ψ. It is clear that this γ does not satisfy (2.21). The proof is complete.

Consider two extreme cases M = {0} and M = H. When M = {0}, the
only selfadjoint operator in M is the zero operator and the admissibility condition
(2.1) is satisfied. We have H({0}, 0) = H0. Next let M = H. A pair {H, γ}
satisfies (2.1) if and only if Dom (H0 ∧ γ) = {0} (see (2.17)). In particular, if
Dom (H0) ∩Dom(γ) = {0}, then (H, γ) is admissible.

We next apply Theorem 2.9 to the extension theory.

Theorem 2.11. Let A and H0 be as in Theorem 2.7.
(i) If Dom(A) is dense in H, then MA ∩Dom(H0) = {0} (alternative (i)

in Theorem 2.9) and the admissibility condition can be neglected.
(ii) If Dom(A) is not dense, then MA ∩ Dom(H0) 6= {0} (alternative (ii)

in Theorem 2.9) and the admissibility condition is relevant.

Proof. (i) is clear from Dom (H(M,γ) ∧H0) ⊃ Dom(A).
(ii) By Theorem 2.9 an admissible pair {MA, γ} exists irrespective of (i) or

(ii) of Theorem 2.9 holds for MA. Then, H(MA, γ) is relatively prime to H0 by
Theorem 2.7 and hence Dom (H(MA, γ) ∧ H0) = Dom (A) is not dense, that is
alternative (ii) in Theorem 2.9. The proof is complete.

Limit of large γ. The resolvent formula proven in Section 2.1 is not
suitable for perturbation theory, since the operator γ appearing in (2.2) cannot
be considered as a perturbation parameter: ”the difference between the resolvents
of H and H0 decreases as the norm of γ increases”. For example, we have the
following theorem.
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Theorem 2.12. Let γ ∈ Csa(H) be such that Dom(γ) ∩ Dom(H0) = {0}
and zero is not an eigenvalue of γ. Then, the pair (H, tγ) is admissible for any
real t 6= 0. Furthermore, as t → ±∞, H(H, tγ) converges to H0 in the sense of
strong resolvent convergence.

Proof. Consider any element f of the Hilbert space. Then, by (2.2) with
M = H, the difference of the resolvents can be written using the spectral measure
µf (λ) for the operator γ and the element PMf as follows

∥∥∥
( 1
H(H, tγ)− i

− 1
H0 − i

)
f
∥∥∥

2

=
∫

R

∣∣∣ 1
tλ+ i

∣∣∣
2

dµf (λ) →
t→±∞

0,

since zero is not an eigenvalue of the operator γ. The theorem is proven.

3. RESOLVENT FORMULA FITTED TO PERTURBATION THEORY

3.1. The resolvent formula. In view of Theorem 2.12, effective resolvent
formula (useful in perturbation theory) can be obtained if one substitutes the
operator γ by its inverse, for example β = −γ−1. (Of course, the described trans-
formation can be considered only formally, since the operator γ is not necessarily
invertible.) In this subsection we are going to derive such resolvent formula. Our
second resolvent formula describes any selfadjoint operator H in comparison with
the (fixed) selfadjoint operator H0 and in terms of a closed subspace N (different
from M) and a selfadjoint operator β acting in N. The admissibility condition for
the pair {N, β}, N ∈M, β ∈ Csa(N) is

(3.1) Ker
{ H0

H0 + i
− i
β + i

PN

}
= {0}.

A pair {N, β} satisfying this condition will be called admissible throughout this
section.

Theorem 3.1. Let H0 be fixed. For any H ∈ Csa(H) there exists a unique
admissible pair {N, β} (satisfying (3.1)) such that

1
H − i

− 1
H0 − i

=
H0 + i
H0 − i

(
iPN⊥ +

iβ
β + i

PN

)
(3.2)

=
H0 + i
H0 − i

(
i +

1
β + i

PN

)
.(3.3)

The correspondence H ↔ {N, β} is a bijection between Csa(H) and the set of all
admissible pairs {N, β}.

Theorem 3.2. Let H0 be fixed and let H be the selfadjoint operator deter-
mined by {N, β} via (3.2). Then the resolvent of H is given by

(3.4)

1
H−z =

1
H0 − z

+
H0 + i
H0 − z

1

1+(i− z)
(
i+ 1

β+iPN

)
H0+i
H0−z

(
i +

1
β + i

PN

)H0 − i
H0 − z

.
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In (3.4) the operator in the denominator of the big fraction is boundedly invertible
in H if and only if z ∈ ρ(H) ∩ ρ(H0).

Proof of Theorem 3.1. The proof is similar to that of Theorem 2.1. By (1.5)
with z = i and z′ = −i we see that the formula (3.2) is equivalent to

(3.5)
H + i
H − i

= −H0 + i
H0 − i

(
1− 2i

β + i
PN

)
= −H0 + i

H0 − i

(
PN⊥ +

β − i
β + i

PN

)
.

Given H ∈ Csa(H), we put

(3.6) U = −H0 − i
H0 + i

H + i
H − i

.

Let N be the orthogonal complement of the eigenspace of the unitary operator U
corresponding to the eigenvalue 1. Since U |N is unitary in N and does not have 1
as an eigenvalue, there exists a unique selfadjoint operator β in N such that

(3.7) U = PN⊥ ⊕ β − i
β + i

PN .

It is straightforward to see that this pair satisfies (3.5) and the admissibility condi-
tion (3.1). The uniqueness follows from (3.7) at once. The proof of onto property
is similar and we omit the details.

Proof of Theorem 3.2. The proof proceeds in the same way as in the proof
of (2.4) of Theorem 2.3. We use (3.3) instead of (2.2). Then, instead of (2.14) we
obtain

(3.8)
(H0 − z

H0 + i
+ (i− z)

(
i +

1
β + i

PN

))
∆(z) =

(
i+

1
β + i

PN

)H0 − i

H0 − z
.

The rest of the proof is the same and we do not repeat it.

Remark 3.3. In Theorem 3.2 we have derived only (3.4) which corresponds
to (2.4) in Theorem 2.3. We have not been able to derive a formula corresponding
to (2.5) in the case of Theorem 3.2.

3.2. Resolvent estimates. Parameterization of the selfadjoint operators as
perturbations of a given selfadjoint operator H0 using the pair {N, β} leads to
efficient estimates of the difference between the resolvents of the perturbed and
unperturbed operators. Let us denote by H ′(N, β) the unique selfadjoint operator
determined by an admissible pair {N, β} via (3.2) or (3.3).

Theorem 3.4. The difference between the resolvents of the unperturbed op-
erator H0 and the perturbed operator H = H ′(N, β) determined by the admissible
pair {N, β} can be estimated as follows

(3.9)
∥∥∥ 1
H − i

− 1
H0 − i

∥∥∥
H

=

{
1 if N 6= H,

‖β‖√
‖β‖2+1

6 min{‖β‖, 1} if N = H;

where the right hand side is understood to be 1 when β is not bounded.

Proof. The difference between the resolvents at point i is given by (3.2). To
estimate the norm of the operator iPN⊥ + i β

β+iPN we note first that this sum is
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orthogonal. Therefore the norm of this operator is equal to the maximum of the
norms of the summands. The norm of the operator i β

β−iPN is equal to ‖β‖√
‖β‖2+1

.

The orthogonal projector PN⊥ has norm 1 if N 6= H. The norm of the Cayley
transform H0+i

H0−i is equal to 1 and formula (3.9) is proven.

In the course of our investigation we found the following estimate (3.10) as
an easy corollary of the last theorem. We decided to include this estimate in the
paper since we could not trace it in the literature and believe that it could have
interesting applications. The proof given below, however, is more direct.

Proposition 3.5. Let H and H0 be two arbitrary selfadjoint operators in
the Hilbert space H. Then the difference between the resolvents at point i satisfies
the estimate

(3.10)
∥∥∥ 1
H − i

− 1
H0 − i

∥∥∥ 6 1.

Proof. Using formula (1.4), we argue as follows:
∥∥∥ 1
H − i

− 1
H0 − i

∥∥∥ =
1
2

∥∥∥H + i
H − i

− H0 + i
H0 − i

∥∥∥ 6 1.

Remark 3.6. Equations (3.9) and (3.10) show that N 6= H (or N = H ) if
and only if the equality (or the inequality) holds in (3.10). In the case N = H the
operator β serves as a perturbation parameter.

Example 3.7. Let the original operator H0 be equal to zero H0 = 0 with
the domain Dom (H0) = H. Then the pair {N, β} is admissible only if the subspace
N coincides with H. Then any operator β is admissible. The formula (3.2) reads
as follows

1
H − i

=
1

−β − i
.

The perturbation operator β coincides with the operator −H in this case.

4. GENERAL CORRESPONDENCE

The two resolvent formulas proven in the previous sections are particular cases of
the family of correspondences described here. This family can be parameterized
by θ ∈ [0, 2π), so that the cases θ = 0 and θ = π coincide with the correspondences
described in Sections 2 and 3 respectively. For M ∈M and γ ∈ Csa(M) we intro-
duce the condition

(4.1) Ker
{

1− 2i
γ + i

PM − eiθH0 − i
H0 + i

}
= {0},

and call it admissibility condition. We also call a pair {M,γ} satisfying condition
(4.1) an admissible pair. This condition coincides with the conditions (2.1) and
(3.1) if θ = 0 and θ = π, respectively.

The main result in this section is the following theorem, which we give with-
out proof, since the proof is similar to the proofs of Theorems 2.1 and 2.7.
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Theorem 4.1. Let θ and H0 be as above. Then, for any H ∈ Csa(H) there
exists an admissible pair {M,γ} such that the following equivalent relations (4.2)–
(4.5) hold:

H + i
H − i

= e−iθH0 + i
H0 − i

(
1− 2i

γ + i
PM

)
(4.2)

H + i
H − i

= e−iθH0 + i
H0 − i

(
PM⊥ +

γ − i
γ + i

PM

)
,(4.3)

1
H − i

− 1
H0 − i

=
H0 + i
H0 − i

(e−iθ − 1
2i

− e−iθ

γ + i
PM

)
(4.4)

1
H − i

− 1
H0 − i

=
H0 + i
H0 − i

(e−iθ − 1
2i

PM⊥ +
1
2i

[
e−iθ γ − i

γ + i
− 1

]
PM

)
.(4.5)

The correspondence H ↔ {M,γ} is a bijection between Csa(H) and the set of all
admissible pairs {M,γ}.

Let us denote by H(M,γ; θ) the unique selfadjoint operator determined by
any admissible pair {M,γ} and parameter θ. With θ = 0 formula (4.4) coincides
with (2.2), and with θ = π it is (3.3) (N = M ;β = γ). In other words

H(M,γ; 0) = H(M,γ), H(M,γ;π) = H ′(M,γ).

The following theorem is a generalization of Theorem 2.3 and can be proven
using the same method.

Theorem 4.2. Let H0 be fixed and let H be the selfadjoint operator deter-
mined by {M,γ; θ} via (4.4) or (4.5). Then the resolvent of H is given by

1
H − z

− 1
H0 − z

=
H0 + i
H0 − z

1

1 + (i− z)
(

e−iθ−1
2i − e−iθ

γ+i PM

)
H0+i
H0−z

(e−iθ − 1
2i

− e−iθ

γ + i
PM

)H0 − i
H0 − z

.

In the above formula the operator in the denominator of the big fraction is bound-
edly invertible in H if and only if z ∈ ρ(H) ∩ ρ(H0).
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