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Spectrum of the second-order differential operator with periodic point interac-
tions in L2�R� is investigated. Classes of unitary equivalent operators of this type
are described. Spectral asymptotics for the whole family of periodic operators are
calculated. It is proven that the first several terms in the asymptotics determine the
class of equivalent operators uniquely. It is proven that the spectrum of the oper-
ators with anomalous spectral asymptotics (when the ratio between the lengths of
the bands and gaps tends to zero at infinity) can be approximated by standard peri-
odic “weighted” operators with step-wise density functions. It is shown that this
sequence of periodic weighted operators converges in the norm resolvent sense to
the formal (generalized) resolvent of the periodic “Schrödinger operator” with cer-
tain energy-dependent boundary conditions. The operator acting in an extended
Hilbert space such that its resolvent restricted to L2�R� coincides with the formal
resolvent is constructed explicitly.  2002 Elsevier Science

Key Words: point interactions; spectral asymptotics; self-adjoint extensions.

1. INTRODUCTION, DEFINITION OF THE OPERATOR

Differential and pseudodifferential operators with point interactions
are widely used in applications to quantum and atomic physics to pro-
duce exactly solvable models of complicated physical phenomena [3� 4� 10].
Applications of this method to solid-state physics is of particular interest,
since these models reproduce the geometry of the problem extremely well.
The first model of this type is due to Kronig and Penney [20] and can be
described by a Hamiltonian in L2�R�,

H = − d2

dx2 + ∑
n∈Z

αnδ�x − n��
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where δ is the Dirac’s delta function and αn are real coupling constants
describing each of the point interactions. If all coupling constants are equal
αn = α, one obtains a periodic operator modeling a particle moving in
a one-dimensional periodic potential. This model, known as the Kronig–
Penney model, became classical and is included in many textbooks on quan-
tum mechanics. One can prove that the functions from the domain of the
operator H satisfy the following boundary conditions at each point x = n:(

ψ�n+�
ψ′�n+�

)
=
(
1 0
α 1

)(
ψ�n−�
ψ′�n−�

)



Different models with point interactions can be obtained by considering
more general boundary conditions at the singular points. Consider first
one point interaction at the origin. A mathematically rigorous descrip-
tion of such point interaction can be obtained by considering all possible
self-adjoint extensions of the symmetric operator H0 = −d2/dx2 with the
domain

Dom�H0� = �ψ ∈ W 2
2 �R� 	 ψ�0� = ψ′�0� = 0



One can prove that self-adjoint extensions can be divided into two classes:
connected and separated extensions. Separated extensions are described by
two independent boundary conditions on the half-axes and are equal to the
orthogonal sum of two self-adjoint operators acting in L2�R−� and L2�R+�,
respectively. Such extensions are not interesting in our studies and will be
excluded from our consideration. Connected extensions of the operator H0

can be described by the boundary conditions at the origin,(
ψ�0+�
ψ′�0+�

)
= eiθ

(
a b
c d

)(
ψ�0−�
ψ′�0−�

)
� (1)

where the parameters a� b� c� d are real, ad − bc = 1, and θ ∈ �0� 2π�.
These point interactions are well described in the literature [3� 4� 15� 23,
29� 30]. The problem of approximating these contact interactions by stan-
dard operators of mathematical physics with short-range interactions
attracted the attention of many researchers. Approximations of δ and
δ′-interactions1 have been constructed in [2� 3� 12� 28]. Another approxi-
mation of the δ′-potential using “geometric scatterers” appeared in [17].

1These interactions are described by the boundary conditions with

θ = 0�
(

a b
c d

)
=
(
1 0
α 1

)
and

θ = 0�
(

a b
c d

)
=
(
1 β
0 1

)
�

respectively.
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Different approximations of the whole four-parameter family of point
interactions have been constructed in [7–9� 23� 31].
In the current paper we are going to study the operator L = L�A� θ�,

the second-derivative operator with periodic local point interactions deter-
mined by

Definition 1.1. Let A = (
a b
c d

) ∈ SL�2�R� and let θ ∈ �0� 2π�. Then the
operator L ≡ L�A� θ� is the second-derivative operator L = −d2/dx2 act-
ing in the Hilbert space L2�R� defined on the functions from W 2

2 �R\�n
n∈Z�
satisfying the boundary conditions

(
u�n+�
u′�n+�

)
= eiθ

(
a b
c d

)(
u�n−�
u′�n−�

)
� n ∈ Z
 (2)

Each operator L is a self-adjoint extension of the unperturbed
second-derivative operator L0 = −d2/dx2 restricted to the set of func-
tions from W 2

2 �R� vanishing in a neighborhood of the points x = n
 We
do not study all periodic self-adjoint extensions of L0. In particular, non-
local operators and operators described by separated boundary conditions
are excluded from our consideration. The spectrum of the operator L
can be investigated using Bloch’s theorem. The first application of Bloch’s
theorem to point interactions other than the standard Kronig–Penney
model was discussed by Gesztesy and Holden in [13], where the so-called
δ′-interactions were first treated (see also [3]). Another three-parameter
class of periodic point interactions was considered in [16]. The authors
are grateful to the referee for pointing out that the whole four-parameter
family of periodic point interactions in R1 was considered by Exner and
Grosse in [11], where explicit formulas for the spectral bands have been
presented. The same problem has been discussed in [32], but the result
has never been published. Therefore we start our presentation by proving
the spectral asymptotics for the second-derivative operator with different
periodic boundary conditions leading to self-adjoint operators.
The aim of the current paper is to study the spectral asymptotics for

the operator L. In particular we are interested in approximations of these
operators with contact interactions by standard operators of mathematical
physics. We are going to study the positive part of the spectrum. The spec-
trum of this operator is pure absolutely continuous and fills in an infinite
number of bands separated by gaps. In Section 2 we discuss the classes
of unitary equivalent operators with periodic point interactions. The mon-
odromy matrix and dispersion relation are obtained in Section 3. This rela-
tion is used to calculate the spectral bands. At this point our approach is
different from that of [16]. In addition, the whole four-parameter family
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of periodic operators is studied.2 The character of the spectral asymptotics
depends on the parameters appearing in (2) and is described by Proposi-
tions 1–3. These propositions correspond to three different asymptotic pic-
tures observed for periodic operators. In particular it is proven that if the
parameter b �= 0, then the ratio between the lengths of the bands and gaps
tends to zero at high energies (Theorem 4.1). This behavior is different
from those for the periodic Schrödinger operator with less singular inter-
actions. Therefore periodic operators of this type attracted the attention of
several scientists [3� 5� 14]. It is shown in Section 6 that such a spectrum
can be obtained as a limit of the spectrum of the periodic “weighted” oper-
ator, which corroborates another one-time approach developed in [6� 23].
We study the norm resolvent convergence of this operator sequence. It is
proven that this sequence converges to the resolvent of the formal differ-
ential expression defined on the functions satisfying the energy-dependent
boundary conditions (46). Since this expression does not define any opera-
tor, we construct another self-adjoint operator acting in a certain extended
Hilbert space such that its resolvent restricted to the original space L2�R�
is just the formal resolvent obtained as the limit of the operator sequence.
Section 5 is devoted to the inverse spectral problem for the singular periodic
operator. It is proven that the first few terms in the spectral asymptotics
determine the class of unitary equivalent operators uniquely.

2. UNITARY EQUIVALENCE AND
REDUCTION OF THE PARAMETERS

The parameters a� b� c� d, and θ do not parameterize the operators L
uniquely. Actually the operator determined by the matrix −A and the phase
θ + π coincides with the operator determined by A and θ, since these
parameters determine just the same boundary conditions (2). Therefore
without loss of generality we reduce our studies to operators determined
by matrices A with positive trace,

t ≡ a + d ≥ 0
 (3)

Since our goal is to study the spectrum of the operators L, let us describe
the classes of unitary equivalent operators.
We note first that the operators determined by the same matrices A and

different phases θ are unitary equivalent. Consider the unimodular function

U�x� = ein �θ2−θ1�� x ∈ ��n − 1�� n�


2Our result is partially covered by [11], but to establish the uniqueness of the solution of
the inverse spectral problem we need to calculate the spectral asymptotics in more detail.
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Then the unitary equivalence between the operators L�A� θ1� and L�A� θ2�
follows from

L�A� θ1� = U−1L�A� θ2�U


Consider the reflection operator �If ��x� = f �−x�. Then the unitary
equivalence between the operators L

((
a b
c d

)
� θ
)
and L

((
d b
c a

)
�−θ

)
follows

from3

L

((
d b
c a

)
�−θ

)
= I−1L

((
a b
c d

)
� θ

)
I


Definition 2.1. The operators L�A1� θ1� and L�A2� θ2� are called
equivalent if and only if at least one of the following two equalities is
satisfied4:

a1 = a2
b1 = b2
c1 = c2
d1 =d2

or

a1 =d2
b1 = b2
c1 = c2
d1 = a2


 (4)

The classes of equivalent operators can be described by three indepen-
dent real parameters (instead of four independent real parameters describ-
ing the operators L),

t = a + d� b� and c�

subject to the inequality

t ≥ 2
√
1+ bc
 (5)

Taking into account that ad − bc = 1, the parameter a can be determined
from the second-order algebraic equation a2 − at + 1+ bc = 0, which has
two real solutions due to (5). The two different solutions correspond to the
two equivalent operators, which one gets by interchanging the parameters
a and d.
The class of operators described by the parameters a = 1� b = 0� c =

0� d = 1 is equivalent to the second-derivative operator in L2�R� with the
domain W 2

2 �R�. The spectrum of this operator is pure absolutely continuous
and covers the interval �0�∞�. This trivial case will be excluded from our
consideration.

3One has to take into account that the first derivative changes sign under reflection
d
dx
�If ��x� = − d

dx
f �−x�.

4We have already restricted our consideration to the set of operators described by matrices
with nonnegative traces (3).
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3. THE MONODROMY MATRIX AND
DISPERSION RELATION

The monodromy matrix for the interval 0− → 1− is given by

Mλ�0−� 1−� =
(

cos k 1
k
sin k

−k sin k cos k

)(
a b
c d

)

=
(

a cos k + c
k
sin k b cos k + d

k
sin k

−ak sin k + c cos k −bk sin k + d cos k

)
� (6)

where k = √
λ. The characteristic determinant of the monodromy matrix is

det�Mλ − λI� = λ2 − λTrMλ + detMλ

= λ2 − λTrMλ + 1� (7)

since detMλ = 1. The spectrum of the operator L coincides with the set of
λ for which the zeroes of the characteristic determinant are nonreal, i.e.,
�TrMλ� ≤ 2, ∣∣∣∣�a + d� cos k +

(
c

k
− bk

)
sin k

∣∣∣∣ ≤ 2
 (8)

The last equation describes the spectrum of the periodic operator with the
interaction given by (1). We introduce the function f ,

f �k� = t cos k +
(

c

k
− bk

)
sin k
 (9)

Then the spectrum of L is described by the equation

�f �k�� ≤ 2
 (10)

Solving this inequality, we will get the spectrum of the periodic operator
L in the following section. The spectrum consists of an infinite number of
bands of the absolutely continuous spectrum. Depending on the parameters
t� b, and c, the asymptotics of this spectrum are different. The graph of the
function f and the spectrum of the corresponding periodic operator are
plotted in Fig. 1.

4. SPECTRAL ASYMPTOTICS FOR THE
PERIODIC OPERATOR

The spectrum of the operators L is pure absolutely continuous and con-
sists of an infinite number of bands tending to +∞ [3� 16� 25].5 In this

5Note that we do not consider operators described by separated boundary conditions, which
lead to eigenvalues of infinite multiplicity.
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FIG. 1. The function f �k� = t cos�k� + �c/k − bk� sin�k� and the positive spectrum of the
periodic operator.
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section the spectral asymptotics of these operators will be studied in detail.
The following three cases covering all possible values of the parameters
t� b� and c will be considered separately:

A. b �= 0, t and c arbitrary satisfying (5);
B. b = 0� t > 2, c arbitrary;
C. b = 0� t = 2, c �= 0 arbitrary.

Case A is generic, but the spectral asymptotics in this case are different
from those for the standard Schrödinger operator in dimension one. Case C
corresponds to periodic delta interactions that have been well studied in the
literature.
The following three propositions describe the spectrum of the operator

L in the three outlined cases.

Case A.

Proposition 4.1. Let b �= 0; then the spectrum of the operator L consists
of an infinite number of bands �n = �a2

n� b2
n� situated for large values of n on

the intervals ��πn − π/2�2� �πn + π/2�2�. The asymptotics of the band edges
when λ → ∞ is

an = πn + 1
π

[
t

b
− 2

�b�
]
1
n

+
[
− t3

3b3π3 −
(
1− 1

�b�
)

t2

b2π3 +
(

c

b2π3 + 4�b�
b3π3

)
t

− 4
3�b�3π3 − 2

b3π3

(
2b + c�b�

)] 1
n3 + O

(
1
n5

)
� as n → ∞�

bn = πn + 1
π

[
t

b
+ 2

�b�
]
1
n
+
[
− t3

3b3π3 −
(
1+ 1

�b�
)

t2

b2π3

+
(

c

b2π3 − 4�b�
b3π3

)
t + 4

3�b�3π3 − 2
b3π3 �2b − c�b��

]
1
n3

+O

(
1
n5

)
� as n → ∞
 (11)

The length ��n� and the middle point mn of the band �n are asymptotically
given by

��n� =
8
�b� +

4
π2

(
− 1

�b� b2 t2 − 2
b �b� t +

4
3 �b�3 + 2c

b �b�

)
1
n2

+O

(
1
n4

)
� as n → ∞� (12)
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and

mn = π2n2 + 2t

b
+ 1

π2

(
− 2

3b3 t3 − 1
b2 t2 + 2c

b2 t − 4
b2

)
1
n2

+O

(
1
n4

)
� as n → ∞� (13)

respectively.

Proof. We first prove that exactly one band �n of the absolutely contin-
uous spectrum is situated in each interval ln = ��πn − π/2�2� �πn + π/2�2�
for large enough values of k.6 The values of the function f at the end points
of each interval ln

f �πn + π/2� = �−1�n

(
c

πn + π/2
− b�πn + π/2�

)

= �−1�n+1bπn + O�1�� as n → ∞�

have alternating signs and an absolute value of >2 if n is sufficiently large.
Taking into account that the function f �k� is continuous, we conclude that
each considered interval contains at least one spectral band.
The zeroes of f ′�k� = −�t + c/k2 + b� sin k + � c

k
− bk� cos k are deter-

mined by the equation

tan k = k�c − bk2�
�t + b�k2 + c


 (14)

The function k�c − bk2�/��t + b�k2 + c� is rational and tends to ±∞ as
k → ∞ as follows:

k�c − bk2�
�t + b�k2 + c

=



− b

t + b
k + c�t + 2b�

�t + b�2
1
k
+ O

( 1
k2

)
� t + b �= 0 ;

k − b

c
k3� t + b = 0� c �= 0.

In the special case where t + b = 0� c = 0, the relation (14) takes the form
−bk cosk = 0 and has solutions k = π

2 + πn. Therefore each interval ln
contains exactly one extreme point for the function f when n → ∞. Since
f is continuous and monotonous between the extreme points, it follows that
there is precisely one interval where �f �k�� ≤ 2 in each ln if n is sufficiently
large.
The end points of each band �n = �a2

n� b2
n� can be calculated by solv-

ing the equation �f �k�� = 2. Consider first the case b > 0. Then the left

6We find it convenient to count the band of the continuous spectrum by the number n, so
that the band �n is situated near the point π2n2 for large values of the energy.
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and right end points of the intervals �n satisfy the following equations,
respectively:

t cos an +
(

c

an

− b an

)
sin an = �−1�n2� (15)

t cos bn +
(

c

bn

− b bn

)
sin bn = −�−1�n2
 (16)

Since the points an and bn are close to πn for large n, we use the asymptotic
representations

an =πn + α

n
+ α′

n3 + O

(
1
n5

)
�

bn =πn + β

n
+ β′

n3 + O

(
1
n5

)
�

n → ∞


Substituting these representations into (15) and (16), we get

an = πn + t − 2
bπ

1
n
+
(
− 1
3b3π3 t3 + 1− b

b3π3 t2

+c + 4
b2π3 t − 4

3b3π3 − 4+ 2c

b2π3

)
1
n3 + O

(
1
n5

)
� as n → ∞�

(17)

bn = πn + t + 2
bπ

1
n
+
(
− 1
3b3π3 t3 − 1+ b

b3π3 t2

+c − 4
b2π3 t + 4

3b3π3 + 2c − 4
b2π3

)
1
n3 + O

(
1
n5

)
� as n → ∞


Similar analysis in the case where b < 0 leads to formula (11).
The length and the middle point of the band �n are given by

��n� = b2
n − a2

n� mn = a2
n + b2

n

2

 (18)

Then formulas (12) and (13) are straightforward corollaries of (17). The
proposition is proven.

The length of the gap Gn between the bands with the numbers n and
n + 1 can be calculated as follows:

�Gn� = a2
n+1 − b2

n = 2π2n + π2 − 8
�b� + O

(
1
n2

)

 (19)

The ratio between the lengths of the bands and forbidden gaps tends to
zero as follows:

��n�
�Gn�

= 4
π2�b�

1
n
+ O

(
1
n3

)
� as n → ∞
 (20)
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Case B.

Proposition 4.2. Let b = 0 and let t > 2; then the spectrum of the oper-
ator L consists of an infinite number of bands �n = �a2

n� b2
n� situated for

sufficiently large n inside the intervals �π2n2� π2�n + 1�2�. The asymptotics of
the band edges are given by

an =πn + arccos
2
t
+ c

πtn
+ O

(
1
n2

)
� as n → ∞�

bn =π�n + 1� − arccos
2
t
+ c

πtn
+ O

(
1
n2

)
� as n → ∞


(21)

The length ��n� and the middle point mn of the band �n are asymptotically
given by

��n� = 2π

(
π − 2 arccos

2
t

)
n +

(
π2 − 2π arccos

2
t

)

+O

(
1
n

)
� as n → ∞� (22)

and

mn = π2
(

n + 1
2

)2

+
(
arccos

2
t
− π

2

)2

+ 2c

t

+O

(
1
n

)
� as n → ∞ 
 (23)

Proof. The function f looks as follows in the considered case:

f �k� = t cosk + c

k
sink
 (24)

The proof of the fact that exactly one band of the absolutely continuous
spectrum is situated in each interval ln = �π2n2� π2�n + 1�2� is similar to
that of Proposition 1. Actually the values of the function f at the end points
of each interval ln

f �πn� = �−1�nt�

have alternating signs and an absolute value of >2 for sufficiently large n

The equation for extreme points,

tank = ck

k2t + c
�

has exactly one solution in each interval, since the function ck/�k2t + c� is
decreasing if k is sufficiently large.
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Solutions to the equation t cosk = ±2 are situated at the points

k = ± arccos
2
t
+ πn


Since 0 < 2
t

< 1� arccos 2
t
satisfies

0 < arccos
2
t

< π/2


Since the points an and bn are close to πn + arccos 2
t
and π�n + 1� −

arccos 2
t
, respectively, the following representations can be used:

an = πn + arccos
2
t
+ αn� bn = π�n + 1� − arccos

2
t
+ βn


The equation for the left end point,

t cos
(

πn + arccos
2
t
+ αn

)

+ c

πn + arccos�2/t� + αn

sin
(

πn + arccos
2
t
+ αn

)
= �−1�n2�

implies that

t

(
2
t
cosαn − sin

(
arccos

2
t

)
sinαn

)

+ c

πn + arccos�2/t� + αn

(
sin
(
arccos

2
t

)
cosαn +

2
t
sinαn

)
= 2


Keeping the first terms of the perturbation theory, we get

αn = c

πtn
+ O

(
1
n2

)
� n → ∞�

and formula (21). The representation for bn can be proven similarly. For-
mulas (22) and (23) follow directly from the asymptotic representations
(21) and definition (18). The proposition is proven.

The length of the gap between the spectral bands �n and �n+1 is

�Gn� = 4π
(
arccos

2
t

)
n + 4π arccos

2
t
+ O

(
1
n

)
� as n → ∞
 (25)

Both the gaps and the bands are growing approximately linearly with the
number n. The ratio between the lengths of the bands and gaps tends to
the finite nonzero limit depending on the parameter t only,

��n�
�Gn�

= π/2 − arccos�2/t�
arccos�2/t� + O

(
1
n

)
� as n → ∞
 (26)
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Case C.

Proposition 4.3. Let b = 0 , t = 2, and c �= 0; then the spectrum of the
operator L consists of an infinite number of bands �n = �a2

n� b2
n� situated for

sufficiently large n inside the intervals �π2n2� π2�n + 1�2�. The asymptotics of
the band edges are

an =πn + c

πn
+ O

(
1
n2

)
� as n → ∞�

if c > 0�
bn =π�n + 1��
an =πn�

if c < 0�
bn =π�n + 1� − �c�

πn
+ O

(
1
n2

)
� as n → ∞�

(27)

The length ��n� and the middle point mn of the band �n are asymptotically
given by

��n� = 2π2n + �π2 − 2�c�� + O

(
1
n

)
� as n → ∞� (28)

mn = π2n2 + π2n + π2

2
+ c + O

(
1
n

)
� as n → ∞
 (29)

Proof. The proof of this proposition follows the same lines as those of
propositions 1 and 2. It can be found in many textbooks (see, e.g., [3]).

The length of the gap between the bands is given by

�Gn� = 2�c� + O

(
1
n

)
� n → ∞
 (30)

The ratio between the length of the nth band and the width of the nth gap
tends to infinity as follows:

��n�
�Gn�

= π2

�c� n + O�1�� n → ∞
 (31)

In the case t = 2, b = c = 0, the operator L coincides with the unper-
turbed second-derivative operator. The gaps between the spectral bands
disappear when c → 0, and the absolutely continuous spectrum fills the
whole interval �0�∞�.
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Our results concerning the spectral asymptotics for the periodic operator
with point interactions can be summarized as follows:

Theorem 4.1. The spectrum of the operator L with periodic point interac-
tions consists of an infinite number of bands �n of the absolutely continuous
spectrum separated by an infinite number of gaps Gn (if the operator is not
equivalent to the unperturbed second-derivative operator). The lengths of the
bands and gaps and the ratio between them are given by

• if b �= 0

��n� =
8
�b� + O

(
1
n2

)
�

�Gn� = 2π2n + O�1�� as n → ∞�
��n�
�Gn�

= 4
π2�b�

1
n
+ O

(
1
n2

)
�

(32)

• if b = 0, t > 2

��n� = 2π

(
π − 2 arccos

2
t

)
n + O�1��

�Gn� = 4π
(
arccos

2
t

)
n + O�1�� as n → ∞�

��n�
�Gn�

= π/2 − arccos�2/t�
arccos�2/t� + O

(
1
n

)
�

(33)

• if b = 0, t = 2, c �= 0

��n� = 2π2n + O�1��

�Gn� = 2�c� + O

(
1
n

)
� as n → ∞


��n�
�Gn�

= π2

�c� n + O�1��

(34)

5. INVERSE SPECTRAL PROBLEM FOR A SINGULAR
PERIODIC OPERATOR

The spectral asymptotics determine the class of equivalent operators
uniquely.

Theorem 5.1. The spectral asymptotics for the operator L with periodic
point interactions determine uniquely the class of equivalent operators; that is,
the parameters t = a + d, b, and c can uniquely be determined either from
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the asymptotics of the band edges or from the asymptotics of the lengths and
middle points of the spectral bands.

Proof. Let us consider the three cases described by Propositions 1–3
separately. These cases can easily be distinguished from the spectral asymp-
totics, since the ratio between the lengths of the bands and gaps has differ-
ent behaviors for large values of the energy.
In Case A the terms of order 1

n
in formulas (11) determine the parame-

ters b and t uniquely, since the parameter t is positive. Then the parameter
c is determined by the third-order term. Similarly the first two terms in
the asymptotics of ��n� and the first three terms in the asymptotics of mn

determine the three parameters t, b, and c as well.
Cases B and C are similar. The theorem is proven.

The theorem implies that the spectral asymptotics generally do not
determine uniquely the parameters of the periodic operator L. The set of
operators having the same spectral asymptotics coincides with the set of
equivalent operators.

6. SPECTRAL ASYMPTOTICS FOR A PERIODIC
OPERATOR AND A “WEIGHTED” OPERATOR

The spectral asymptotics calculated in Section 4 can be compared with
the spectral asymptotics for nonsingular periodic one-dimensional opera-
tors. The asymptotics in Case C resemble the asymptotics for a periodic
Schrödinger operator,

− d2

dx2 + U�x�� U�x + 1� = U�x�� U ∈ C�R�


We would like to point out that this operator has an absolutely continuous
spectrum filling up the bands separated by a finite or an infinite number
of gaps. The ratio between the lengths of the bands and gaps increases as
λ → ∞, and the rate depends on the regularity of the interaction.
The spectral asymptotics obtained in Case A differ drastically from those

for the periodic Schrödinger operator. In this case the ratio between the
lengths of the bands and gaps tends to zero as λ → ∞. In this section we
show that such spectral asymptotics appear naturally during the investiga-
tion of the periodic “weighted” operator

W� = − 1
ρ

d

dx

(
ρ

d

dx
ψ

)
� (35)
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with ρ > 0. This operator was investigated recently by Korotyaev (see [18,
19] for references and historical remarks). Consider the periodic weighted
operator

Wε� = − 1
ρε�x�

d

dx

(
ρε�x�

d

dx
Ψ

)
� (36)

where the density function

ρε�x� = 1+
∞∑

n=−∞
h
1
ε
χε�x − n�� h ∈ R+ (37)

is defined using the characteristic function

χε�x� =
{
1� x ∈ �0� ε�
0� x /∈ �0� ε�. (38)

The density function ρε is chosen so that it converges to the sum of delta
functions plus 1 as ε → 0.
Let us study the spectrum of the operator Wε. Since the function ρε is

discontinuous at x = n, x = n + ε, the functions from the domain of the
operator Wε satisfy the boundary conditions

(�n+�=(�n−��(
1+ h

1
ε

)
(′�n+�=(′�n−��

(��n + ε�+�=(��n + ε�−��

(′��n + ε�+�=
(
1+ h

1
ε

)
(′��n + ε�−�


(39)

These conditions guarantee that the functions Ψ and ρεΨ
′ are continu-

ous. The monodromy matrix for the operator W is equal to the product
of four matrices: two monodromy matrices for the second-derivative oper-
ator on the intervals �0+� ε−� and �ε+� 1−� and two monodromy matrices
corresponding to discontinuities at x = 0 and x = ε,

Mλ
Wε
�0−�1−�

=Mλ

− d2

dx2

�ε+�1−�
(
1 0
0 1+ h

ε

)
Mλ

− d2

dx2

�0+�ε−�
(
1 0
0 1− h

ε+h

)

=
(

cosk− 1
ε
sin�1−ε�ksinεk 1

k
sink− 1

k�ε+h� cos�1−ε�ksinεk

−ksink− k
ε
cos�1−ε�ksinεk cosk+ 1

ε+h
sin�1−ε�ksinεk

)



(40)
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Since the determinant of the monodromy matrix Mλ
Wε

is equal to one,
the spectrum of the operator is determined by the trace of the monodromy
matrix

�TrMλ
Wε
� =

∣∣∣∣2 cosk − h

ε�ε + 1� sin��1− ε�k� sin�kε�
∣∣∣∣ ≤ 2
 (41)

Consider the limit ε → 0; then the last equation transforms into the
equation

�2 cosk − hk sink� ≤ 2� (42)

which coincides with the dispersion equation for the operator with periodic
point interactions determined by the parameters

a = 1� b = h� c = 0� d = 1
 (43)

It follows that each band of the absolutely continuous spectrum of the
operator Wε as ε → 0 converges to a certain band of the absolutely con-
tinuous spectrum of the operator L with the parameters chosen as above.
This calculation shows again that the singular second-derivative operator
described by the boundary conditions (1) with θ = 0 and a = d = 1, c = 0,
b �= 0 can be interpreted as the operator with singular density. This fact
was observed for the first time in [23], where singular interactions for the
second-derivative operator in L2�R� were investigated.
We have shown that the behavior of the spectral bands for the operator

with periodic point interactions in Case A resembles those for the oper-
ator Wε as ε → 0. Let us study the norm resolvent convergence of the
operator sequence Wε. One can easily prove that the resolvents of Wε do
not converge to a resolvent of any operator acting in the Hilbert space
L2�R�. The limit is given by a so-called generalized resolvent—restriction
to L2�R� of the resolvent of a certain self-adjoint operator acting in a cer-
tain extended Hilbert space [1]. Obviously the extended operator is not
uniquely defined. One such self-adjoint operator can be constructed using
the method of generalized point interactions [4� 22� 24� 26� 27]. Consider
the Hilbert space H = L2�R� ⊕ l2 and the self-adjoint operator A defined
by following formula

A
(

(
ψ

)
=

 − d2

dx2 (

��(′�
/√h


 (44)

on functions �(� ψ� ∈ W 2
2 �R\Z� ⊕ l2 satisfying the boundary conditions{
(�n+� = (�n−��
ψn = −√

h�(
n�
n ∈ Z� (45)
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where ��(′�
 and �(
 denote the vectors from l2 with the coordinates
(′�n+� − (′�n−� and (�n�, respectively. The self-adjointness of the opera-
tor A so defined can be proven by noting that the operator is symmetric and
the range of A − λ coincides with H if �λ �= 0 (for details see [4� 21� 24]).
The resolvent of the operator A restricted to the space L2�R� coincides
with the resolvent of the differential operator −d2/dx2 with the energy-
dependent boundary conditions at the points x = n,(

(�n+�
(′�n+�

)
=
(

1 0
−hk2 1

)(
(�n−�
(′�n−�

)

 (46)

To calculate the restricted resolvent one has to solve the following equation
for any function F ∈ L2�R�:

�A − λ�
(

(
ψ

)
=
(

F
0

)
⇒



− d2

dx2 (�x� − λ(�x� = F�x�� x /∈ Z

1√
h
��(′�
 − λψ = 0


Excluding the vector ψ from this system of equations, using the second
boundary condition (45), we get an energy-dependent boundary condition
for the component (,

��(′�
 = −λh�(
�
which is exactly the second equation in (46).

Theorem 6.1. Let h > 0; then as ε → 0+ the resolvents of the operators
Wε converge to the restriction to L2�R� of the resolvent of A.

Proof. The operator Wε commutes with the shift operator. Hence it is
natural to use the (Bloch) decomposition of the Hilbert space L2�R� into
the orthogonal integral over the spaces of quasi-periodic functions Hθ [3],

L2�R� ∼
∫ ⊕

θ∈�−π� π�
Hθ dθ� Hθ = L2��0� 1��� (47)

where ∼ denotes the unitary equivalence. Similarly the operator Wε is equal
to the orthogonal integral of the operators W θ

ε , each acting in the space
Hθ = L2��0� 1�� of quasi-periodic functions. The domain of each operator
W θ

ε consists of functions ψ from W 2
2 ��0� 1�� satisfying the boundary condi-

tions at the point x = ε and at the end points of the interval [0� 1]

ψ�0+�= qψ�1�
�1+ h/ε�ψ′�0+�= qψ′�1−�

ψ�ε+�=ψ�ε−�
ψ′�ε+�= �1+ h/ε�ψ′�ε−��

(48)

where we introduced for convenience the parameter q = eiθ.
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The kernel rθ� ε�x� y� of the resolvent �W θ
ε − λ�−1 can be calculated for

arbitrary λ, �λ �= 0, using the representation

rθ� ε�x� y� = r0θ�x� y� +




α coskx + βkx�
0 < x < ε�

A coskx + B sinkx�
ε < x < 1�

k2 = λ� (49)

where r0θ�x� y� is the kernel of the resolvent of the second-derivative oper-
ator −d2/dx2 defined in Hθ by the quasi-periodic boundary conditions

ψ�0� = qψ�1�� ψ′�0� = qψ′�1�

The parameters α, β, A, B appearing in (49) depend on y and λ. Substi-
tuting the kernel rθ� ε�x� y� into the boundary conditions (48), one gets the
following 4× 4 linear system:

α = q�A cosk + B sink�
�1+ h/ε��r0x�0� y� + βk� = q�r0x�1� y� − Ak sink + Bk cosk�

A coskε + B sinkε = α coskε + βk sinkε

r0x�ε� − Ak sinkε + Bk coskε = �1+ h/ε��r0x�ε� y� − αk sinkε

+βk sin coskε�

The first two equations imply that

α = q coskA + q sinkB�

β = 1
k�1+ h/ε��−h/εr0x�0� y� − qk sin kA + qk coskB�
 (50)

Substituting α and β into the second pair of equations, one gets a 2 × 2
linear system which has the solution

A=h
r0x�0�y��−q sink+ h

εh
coskεsinkε�+r0x�ε�y��−sinkε+qcoskεsink+ εq

ε+h
sinkεcosk�

εk�1+q�−2coskεcosk�1−ε�+� ε
ε+h

+ ε+h
ε
�sinkεsink�1−ε��+q2� �

B=h
r0x�0�y��qcosk−1+sin2kε h

ε+h
�+r0x�ε�y��coskε−qcoskεcosk+ εq

ε+h
sinkεsink�

εk�1+q�−2coskεcosk�1−ε�� ε
ε+h

+ ε+h
ε
�sinkεsink�1+ε��+q2� 


(51)

As ε → 0+ these parameters tend to the following limits, respectively:

A0 =
−khq sinkr0�0� y�

1− 2q cosk + hkq sink + q2 �

B0 =
−kh�1− q cosk�r0�0� y�

1− 2q cosk + hkq sink + q2 


(52)
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This convergence is uniform with respect to θ. It follows that the coefficients
α and β are uniformly bounded with respect to θ. Consider the integral
operator with the kernel

ρθ�x� y� = r0�x� y� + A0 coskx + B0 sinkx


The difference between the operators with the kernels rθ� ε and ρθ tends to
zero as ε → 0 in the Hilbert–Schmidt norm uniformly with respect to θ.
The function ρθ�x� y� solves the equation −�d2/dx2�ρ�x� y� − λρ�x� y� =

δ�x − y� and satisfies the following boundary conditions:

ρθ�0+� y� = qρθ�1� y��
∂

∂x
ρθ�0+� y� = −hk2qρθ�1� y� + q

∂

∂x
ρθ�1� y�


It follows that the operators with the kernels ρθ�x� y� determine via Bloch
decomposition (47) exactly the resolvent of the operator A restricted to
the space L2�R�. Since the convergence is uniform with respect to θ, we
have proven that the resolvent of Wε converges in the operator norm to
the resolvent of the operator A restricted to the subspace L2�R� ⊂ H. The
theorem is proven.

For negative values of h one can easily construct a similar self-adjoint
operator acting in a certain Krein space (with indefinite metrics).
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