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Rank-one perturbations

of a semibounded selfadjoint operator 4 are studied with the help of distribution
theory. It is shown that such perturbations can be defined for finite values of a even
if the element ¢ does not belong to #_,(A4). Approximations of the rank one per-
turbations are constructed in the strong operator topology. It is proven that rank
one #_, perturbations can be defined uniquely for the homogeneous operators.
The results are applied to a Schrodinger operator with a delta interaction in dimen-
sion 3. © 1997 Academic Press

1. INTRODUCTION

Rank one perturbations of selfadjoint positive operators A of the form

are studied in the present paper. Such perturbations were considered in a
series of papers [9, 12, 17]. It was shown that the operator A, is well
defined only if the element ¢ belongs to the space # ,(A4) from the
standard scale of Banach spaces for the nonnegative operator 4 and only
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if the coefficient « is finite. A natural generalization to the case of infinite
values of a was constructed in the paper by Gesztesy and Simon [9]. There
it was shown that rank one perturbations can also be studied in the case
where ¢ € #_,(A), but the operator A4, is not defined uniquely in the latter
case. In [13] a special definition for the perturbation of the operator has
been picked out but the analysis of all possible choices was not carried
through. The latter is presented in the very recent work [3], by a method
different from that of the present paper. Similar problems have been con-
sidered by Albeverio et al. in [2] for the squares of selfadjoint operators.
An approach based on the analytical properties of the Q-function
associated with a symmetric operator and its selfadjoint extensions has
been developed recently by S. Hassi and H. de Snoo [10]. This allowed
them to study rank one perturbations of selfadjoint operators which are
not necessarily semibounded. Their approach is based on the fact that the
original operator 4 and any rank one perturbation of it are two different
selfadjoint extensions of a certain symmetric operator with deficiency
indices (1, 1). The relations between two selfadjoint operators whose
resolvents differ by a rank one operator have been also studied in [10].
However, Hassi and de Snoo do not discuss the question of which self-
adjoint operator corresponds to the given formal expression (1).

A construction using “infinitesimal coupling” was suggested by Kiselev
and Simon [12]. We are going to show here that the theory of rank one
perturbations for ¢ € # ,(A) can be developed for any finite or infinite
value of the coupling constant a. The main idea is to define the linear
operator (1) first on a certain natural domain with the range being a subset
of # ,(A). The corresponding self-adjoint operators are defined by
standard restriction of these linear operators to domains consisting of
elements having their ranges in the Hilbert space #)(A4). This approach
leads to natural approximations of the linear operators with rank one per-
turbations given by elements of # ,(A) in the strong operator topology.
The advantage of the suggested approach is that the singular perturbations
thus constructed remain additive even when ¢ e # ,(A). Moreover, all
basic formulas for the rank one # , perturbations can be extended to rank
one # _, perturbations. We show that if the original operator and the
element ¢ are homogeneous with respect to a certain one parameter group,
then the perturbed operator is uniquely defined.

A corresponding problem for nonsemibounded operators has been
already studied in [4, 16]. Using special scaling properties the self-adjoint
operator corresponding to the formal expression (1) can be defined even if
the perturbation is not form bounded.

The abstract approach is developed in Section 2. In the third section we
apply these results to homogeneous operators. Schrodinger operators with
a delta (i.e. point) interaction in dimension 3 are studied in the last section.
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2. #_, CONSTRUCTION OF RANK ONE PERTURBATIONS

2.1. A _, Perturbations and Distribution Theory

Let A be a selfadjoint positive operator in a separable Hilbert space #
with domain Dom(A4). Let #,(A), peZ be the standard scale of Banach
spaces associated with 4; see, e.g., [ 17]. We consider in this section the
basic construction of the rank one perturbations under the general condi-
tion ¢ € # _,(A). We normalize ¢ as follows:

=1 (2)

Hop(A)

1
el H_AA) = A+l @

We are going to concentrate our attention on the case of perturbations
which do not belong to # ,(A) (the case where ¢p e # ,(A) has already
been considered in detail in [17]). It was shown in [ 12] that every rank
one perturbation A, coincides with one of the selfadjoint extensions of the
symmetric operator 4°= A4 |p,» where D, = {Yy eDom(A4)|(¢p,y)=0}. The
condition (¢, ¥)=0 1is well defined for Y eDom(A4)=#, ,(A4), since
@eH ,(A). The deficiency indices of the operator 4° are equal to one
and corresponding deficiency elements for every 31#0 are equal to
g,=(A—72)"" . All selfadjoint extensions of 4° can be constructed using
Birman—Krein—Vishik theory (see [5, 8, 14, 18]). The adjoint operator 4°*
is defined on the domain Dom(A°*)=Dom(A4)+ {[1/(A+1)]¢}. We
remark that the element [1/(4+1)] ¢ belongs to the Hilbert space .
Every element y € Dom(A%*) possesses the representation

1

V=9 +aW) o

(3)

where J e Dom(A4), a(y) e C. A°* acts as follows:

L

~ 1 ~
A (Fath) 70 )= AT —ath) g 0

The boundary form of 4°* is equal to

(Ao*lpa ’7) - (‘//’ AO*’,])

~ 1 1
~ (s 0Ty ot e (e (4 017

(¢, ) a(n) — a(y)( @, 7).
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All selfadjoint extensions of the operator 4° are parameterized by a one
parameter ye Ru {o0}. For y R, every such extension 4, is defined as the
restriction of the adjoint operator A°* to the domain Dom(4,)=
{ e Dom(A4°*)|a(y) = — (¢, })}. The extension corresponding to y=0
coincides with the original operator A. If the parameter y is equal to oo
then the corresponding extension is defined by the boundary condition
(@, ) =0. The corresponding operator will be denoted by A .

We are going to discuss the dependence of the parameter y on the
coupling constant « entering (1). This relation is not straightforward. The
reason is that the operator A, is not defined on each domain Dom(4,).
The operator A is well defined as a linear operator on the domain
Dom(A4°*), but the corresponding projector is not defined there as ¢ does
not belong to #_,(A). We can look at this problem from the point of view
of the theory of distributions. The distribution ¢ is defined only on the
domain #,,(A4), but the element [1/(4+1)] ¢ does not belong to this
domain. It is necessary to extend the distribution ¢ as a bounded linear
functional to the set of test functions from #,,(A4). This extension is not
unique. If the distribution ¢ has special symmetry and/or scaling properties
then the extension possessing the same properties may be unique. We
consider here the general case first. We are going to extend the linear
functional ¢ to the whole domain Dom(A4°*). One can define the norm on
this linear space to be equal to

”gHDom(AO*): ng.y/;z(m"‘ la(g)l, (5)

where g=g+a(g)[1/(4+1)] ¢. To extend the functional ¢ from Dom(A4)
to Dom(A°%*) it is enough to define it on the element [1/(4+1)] ¢. All
possible extensions ¢, are parametrized by a constant ¢ such that

1
<(P(-aA+1(ﬂ>=C- (6)

This parameter ¢ can be fixed only by choosing some additional conditions.
(In the paper [ 12] it was assumed that ¢ = c0). We suppose that ¢ € R. This
assumption guarantees that the quadratic form of the resolvent [1/(4 +1)]
is real. The distribution ¢, is defined as a linear bounded functional on the
space Dom(A%*) =, ,(A) +{[1/(A+1)] ¢} 3§ +a(g)[1/(4+1)]p=gby

(9., &) =(9, &) +ca(g). (7)

We remark that by Lemma 2.1 below every such functional ¢, can be
approximated by a certain sequence of distributions from J#(A).
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THEOREM 2.1. The domain of the selfadjoint operator A,= A+ o(@., )¢
coincides with the set

o
C1+oac

Dom(4, {weDom (A°*)alh) = (90,@)} (8)

A, is a selfadjoint extension of A°. For a=0 we have A,= A.

Proof. The operator A, is well defined as a linear operator on
Dom(A°*) and we have:

- 1
A =4, <w +a(y) 111 </)>
~ ~ 1 1
=AYy +alo.¥) o —aly) ZmF e +al) g +aly)a <<"v’ A+1 ‘”) v

=AY —a(y) @+aW) ¢ +ale, §) ¢ +aaly) co.

A+1

The range of the linear operator A, is contained in # _,(A4). The selfadjoint
operator A, can be defined as usual on the domain

Dom(4,) = {i € Dom(A™%)| A,y € #5(A)}. 9)

The element A4,y belongs to #)(A) if and only if the following condition
is satisfied:

o
1+4+ac

a(y) = — (0. ). (10)

The operator A, with the domain Dom(4,) is symmetric. The operators 4,
and A°* coincide on the domain Dom(A4,). It follows that A4, is a self-
adjoint extension of the operator 4°. For « =0 we have by construction
Ay=A. |

Remark. 1If o= —1/c, then the extension 4, of A° is defined by the
condition (¢, /) =0 and coincides with the operator A4 . It follows that
the parameter ¢ can be defined if one knows which value of a corresponds
to the extension 4., .

2.2. Resolvent Formulas

We are going to discuss here the generalization of the Krein’s formula
for the resolvent of two different selfadjoint extensions of a given symmetric
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operator. Let the operators 4 and A, be two selfadjoint extensions of the
operator A°. Let fe #,(A), e Dom(A4,), and

(4=2)"" f=

(z is in the resolvent set of A,). The resolvent of the operator 4, can be
calculated as follows. One applies first the operator 4,—z to the latter
equality,

~ 1
f=A,—2)y=(A+au(p, ) p—2z) <‘//+a(l//)A+1(P>
~ 1
)Yy —(z+1) (l//)mﬁl"

By applying then the resolvent (4 —z) ! of the unperturbed operator 4 to
f we obtain

]
a1

—(z+Dal)——

Projection on ¢ then gives the equation

(0.5 )=t -G+ aw) (0.7 179)

~ 1 1
=(so,x//)—(2+1)a(t//)< so,so)-

It follows that

(o, ) 1 I
e (e )
and
I, NG T 1o
T4 e +1)< 1 )A—ZA+1¢
oac+ oz A—_(p’A-l—l
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The resolvent of the perturbed operator is equal to

1 ® 1 1
A=z A—z | {H +1)< 1 I ﬂ A—z" )=
al c+(z —_—, @

A—z"U11
z + (11)
Define (for 3z #0)
F( )—( 1 > (12)
otZ - (pc’Aa—Z(p

The function F(z) = F,(z) can be calculated using the extended definition of
the distribution ¢,

1
F(z) = <¢c, 12 ¢>

1 11
= — 1 — ).
<¢6,A+1¢>+(2+ )<¢C,A_ZA+1¢>

The first term in the latter expression is equal to ¢ due to our assumption.
We can drop the subscript ¢ in the last term since [ 1/(4 —z)][1/(A+1] ¢
is an element from #, ,(A); hence

F(Z):C+(Z+l)<A-li-1¢’Al—z(p>' (13)

Using this all five crucial formulas for the rank one perturbation [17] can
be written in the same form as in the case of #_,(A4) perturbations:

Fa(z)=1£f;)(z); i
Aal—Z(pzl—i-olcF(z)Al—z(D; (15)
Aal—Z:Al—z_l—i-ZF(z)(Al_ng">AI_Z§0; (16)
T{AI_Z_A:_Z}:jzln(lﬂF(z)); (17)
J+%[d/11(E)]doc=dE, (18)

— O
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where y, is the spectral measure corresponding to the operator 4, and the
elements ¢_., ¢. (See [17] for the correct interpretation of the latter
formula.)

2.3. Approximations of #_, Perturbations

We discuss in this section the approximations of the constructed linear
operators by usual J#, perturbations of the operator 4. We concentrate our
attention on the J# , perturbations.

LEMMA 2.1. Let f be an element from HNA)N\A ,(A) and ¢ be an
element from # _,(A); then for any c there exists a sequence ¢, of elements
from A\ A) converging to @ in H _,(A) norm such that (f, ¢,) converges
to c.

Proof. The subspace #(A) is dense in #_,. It follows that there exists
a sequence @, of elements from ) converging in J#_, norm to ¢. If the
sequence (f, @,) =a, converges to ¢, then the lemma is proven. If this is
not so, consider a sequence , € #y(A4) with unit 2 , norm ||y, |, _,=1
such that |(f,y,)] diverges to oo. Such a sequence exists because
fé A, (A). We can then choose a subsequence such that (c¢c—a,)/
(f,¥,)—>0. We keep the same notation for the chosen subsequence.
Consider the sequence

c—da

gﬂn = @n + o . lpn'
(fov)
The following estimates are valid:
~ c _an
lo,— ol o, S 1¢,— @l wo, T TS .

It follows that ¢, converge to ¢ in #_, norm. At the same time the
sequence (f, @,)=a,+c—a,=c obviously converges to c¢; hence the
lemma is proven. ||

Remark. The convergence in J# ,(A) was crucial for the proof of the
lemma. For example, if f'€ #, ,(A) and ¢ € #_,(A) then for every sequence
¢, weakly converging in # ,(A) to ¢ one has (f, ¢,)— ,_ .. (f, ¢) and
the constant ¢ cannot be chosen arbitrarily. This corresponds to the case
of a #_, perturbation.

We are going to consider the linear operators AZ=A+a(@,, ) @,
defined on the common domain Dom(A°*). The range of the linear
operators A", A, belongs to the space #_,(A) with the standard norm.
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THEOREM 2.2. Let the sequence @, € #,(A) converge to @ e H (A)\
H (A) in H_, norm and (¢,,[1/(A+1)] @) converge to c, then the
sequence of linear operators

AZ:A—'_O('((pn")(pn (19)
defined on the domain Dom(A°*) converges in the operator norm to the
operator A,.

Proof. The linear operators A’ and A, are defined on the elements from
Dom(A°*) and the range belongs to the space # ,(A). Consider an
arbitrary element g from Dom(A4°*), then the following estimates are valid

[(Ay—A4,) gl ,
=@, &) ¢, — P, &) @l » ,

(90s &) 90 +al >< ! )
5 n a ns 4, 1 n
P, 8) P g\ @ A—l—l(p @

= |

1
— (¢, &) p—alg) <<oc,A+1 </)> ®

Iy

<Ia <|(¢n, = (0 D 19w s+ 192 D] 92—l

1
@) [(00 70 )= IalLo .l el o=l
< (192 s 102 s 181 s 10— 0l 101 121

1
#|(on g7 2) = | 10 latl + el o~ o1t

<ol {<|<pn|xz+ 10l s+ lel) 00— @l

1
<%’A+1¢>_C‘} lgll-

Now the operator norm can be estimated as follows:

+ ngn H H_>

HAQ - Ao( H Dom(A%*) = #_5(A)

< o {(Icﬂn Lo+ M@l e+ D) @, — @l

1
<¢”’A+1¢>_CH'

+ o, A
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The sequence ¢, converges in # ,(A) norm to ¢, the sequence [, || ,_, is
bounded and the sequence (¢, [1/(4+1)] ¢) converges to c. It follows
that

lim |45, —A4 HDom(AO*)ilf_z(A) 0. 1

n— oo

The following more general fact can be proven:

THEOREM 2.3. Let @peH (A)N\KH_,(A), then there exists a sequence
@, € #)(A) converging to ¢ in A _, norm such that the sequence of linear
operators (19) defined on the domain Dom(A°*) converges in the operator
norm to the operator A,=A+o(p,, ) @.

Proof. It pe# (A\A_(A) then [1/(A+1)] p e #(AN\A, (A) and
it follows from Lemma 2.1 that there exists a sequence ¢, e%(A) con-
verging to ¢ in H_,(A) norm and such that (¢,,, [1/(4+1)] ¢) converges
to ¢. It follows from Theorem 2.2 that the operators (19) converge to 4, in
the operator norm. ||

To study the strong resolvent convergence we prove first the following.

LemmA 2.2. Let # be a separable Hilbert space and C be positive bounded
self-adjoint operator. If the sequence C\,,, \y,, € H converges weakly in H to
feDom(C ™Y, then |y, | diverges to .

Proof. Suppose that ||y, | does not diverge to co. This means that there
exists an infinite bounded subsequence y,,. This subsequence converges
weakly on Dom(C ') which is dense in . 1t follows from the Banach—
Steinhaus theorem, that such a subsequence converges weakly on the
whole #. Let ge # then

lim (g, ¥,,) = F(g)

n— oo
exists. This implies that there exists 4 € # such that

lim (g.,) = (g h).

n— oo

It follows that Ch= f due to the uniqueness of the weak limit and
feDom(C~"'). We get a contradiction, which proves the lemma. [

COROLLARY 2.1. Let ¢, € #)(A) be a sequence converging weakly in
H_(A), m=2 to pe A (ANA_(A), m>1=0. Then |, ,_, diverges
to 0.
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Proof. Consider the sequence y,=(A4+1)""?¢, and the positive
bounded selfadjoint operator C=(A4+ 1)~ ~"2 The sequence Cy,
converges weakly in the Hilbert space # to f=Cy=(A+1)""p¢
A, _(A)=Dom(C~"). It follows from the previous lemma that

A+ @l =10l s, = Va5,

diverges to co. |

It follows that Theorem 5.1 in [12] can be generalized to include any
sequence ¢, converging weakly to an element ¢ € #__ . (Only a special
sequence ¢, has been considered in [12].) We shall need the following
lemma.

LemMMA 2.3. Let A=0 and pe H_,(AN\KH_(A), m=2. Let ¢, be any
sequence weakly converging to ¢ in #H_,(A). Then the sequence of selfadjoint
operators

An:A+(x(¢na')¢n

converges to A in the strong resolvent sense.

Proof. The resolvent of the operator 4, is equal to

1 1 o 1 1
= — - —,. (20
A,—z A—:z < 1 ><A—Z_(/}"’ >A—Z(P" (20)
1—|—O( DPns 7 Pn
A—z

We are going to prove that the resolvent of the perturbed operator con-
verges to the resolvent of the unperturbed operator in the weak topology.
It will follow then that the resolvents converge in the norm also. We have
for arbitrary vy, Y, € #:

(G
=‘ - I ><'ﬁ1,A1_Z¢n><A1_Z_¢ml//>’-

1+O( <(p;7»/4_z(pn

The sequence (Y, [1/(4—2)]¢,)=0), [1/(4A+1)]p,)+(z+ 1)1/
(A—2z)]Y,, [1/(A+1)] @,,) converges due to the weak convergence of ¢,



RANK ONE PERTURBATIONS 163

in # ,. This sequence is uniformly bounded. Similarly the sequence
([1/(A+2)] ¢,., ¥,) is also uniformly bounded. The sequence

o

1
1+O{<(pn9A_Z(pn>

converges to zero because p ¢ # ;. ||

Thus the operators A4, for a specially chosen sequence ¢, converge to the
operator A, in the operator norm of linear operators defined on Dom(A4°%*).
If the sequence converges to an element from # ,(A) then the resolvents
of the corresponding selfadjoint operators converge strongly to the resolvent
of the unperturbed operator. To construct approximations of the # ,
perturbations in the strong resolvent sense infinitesimal couplings should
be considered. This approach has been developed in [12].

3. RANK ONE PERTURBATIONS FOR
HOMOGENEOUS OPERATORS

In this section we study the rank one perturbations in the case where the
original operator and the element ¢ are homogeneous with respect to a
certain one parameter group of unitary transformations of the Hilbert
space . Then the homogeneous extension of the functional ¢ to the set
of all functions from the domain Dom(A4°*) is defined uniquely under
certain conditions. The following lemma is valid:

LemMMA 3.1. Let the positive selfadjoint operator A and the vector
@€ H _,(A) be homogeneous with respect to a certain one parameter (multi-
plicative) unitary group G(t), in the sense that G(t,) G(t,)=G(tt,),
t1,t, €R and there exist real constants f3, y such that

G(t) A=1t"PAG(1), (21)
(G(1) @, )= (o, G /1) ) = "(, ) (22)

for every e #(A). Then @ can be extended as a homogeneous linear
bounded functional to the domain Dom(A°*) if and only if

1—¢=# 1
=1y <(1+A)(1+tﬁ)¢’ <”> (23)

does not depend on t # 1.
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Proof. Every extension of ¢ to the domain Dom(A§) is defined by its
value on the element [1/(4+1)] ¢. Consider an arbitrary extension ¢,
defined by the equality (6). Suppose that it satisfies the homogeneity
property (22). It follows that

. 1 1 1
ft)= 17 <<(Pc, A+ 7 §0> - <(Pc, A_|_1(P>>
— # t=7 ;G(l) L
- 1—[/}727' gomA_i_l,p (p ¢<79A+1(p
1 1 1
— B—y — S
1 _ t/)’—Zy <[ <G(1/t) (p(-’ A + 1 (ﬂ> <(pc’ A + 1 (p>>

1
—<(P0A+1(P>~

This implies that for any extension ¢, the function f(¢) is constant, i.e.,
independent of 7, and this constant defines the unique extension ¢..

Suppose now that the function f(¢) is constant f(¢) = ¢. Let us define the
extension ¢, of ¢ using the equality (6). We have to show that this exten-
sion is homogeneous with respect to the symmetry group G(t). In fact it is
enough to show that (G(¢) ¢, [1/(A+1)] @)=t (@, [1/(A+1)] @). By
calculations similar to those above we get then

1
G(1/t) ¢, ——
< (/)(/JL,AJrl(/J)
— G(Z);
- gﬂc, A+l(/)
1
:tl'*/}
1 1 1
— =B _ 1—¢# e
t <<¢C,A+l(ﬂ>+( t )<%A+1A+Zﬁfﬂ>>
o (g )+ (=) (g
CA+1 CA+1

1
=t ., —
<¢l7A+1¢>’

and the lemma is proven. |
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It has been shown that the homogeneity properties allow one to define
uniquely the rank one # ,-perturbations. The most important examples of
homogeneous rank one perturbations are

o —d?*dx*>+ad in Ly(R);
o —d?dx*+a(d',-)d" in Ly(R);
e —A+08in L,(RY).

The first two operators has been considered in detail in [7, 15] where
the distribution theory for discontinuous test functions has been developed.
The first operator is defined uniquely since ¢ is an element from the space
A _, for the second derivative operator in one dimension. The second and
third operators can be defined using the groups of scaling transformations
in L,(R) and L,(R?®) correspondingly. A detail analysis of the third
operator is presented in the next section.

4. POINT INTERACTIONS IN DIMENSION THREE

We study the Schrodinger operator in dimension three defined by the
heuristic expression

L,= —A+ao, (24)

where 4 is the Laplace operator, « is a coupling constant in R and ¢ is a
Dirac delta function in dimension three. The first correct mathematical
definition of such a “point interaction Hamiltonian” has been given by
F. A. Beresin and L. D. Faddeev [6] in the framework of the exten-
sion theory for symmetric operators. Important question concerning
approximations of the point interaction Hamiltonian by rank one pertur-
bations of the Laplace operator has been considered in a series of papers
by S. Albeverio and R. Hgegh-Krohn (see [ 1] for an extensive review of
the problem).

The operator L, to be defined in L?(R?) can be considered as a rank one
perturbation of the Laplace operator because d¢p = @(0)d = (¢, d)d and
the generalized function ¢ is an element from # ,(—A). Consider the
group S(1), t > 0 of the scaling transformations of L,(R?) defined as follows
for every function y and distribution f-

(S(t) )(x) = 2 (tx);
(S(2) W) =/(S(1/1) ).
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The Laplace operator and the delta function are homogeneous with respect
to the group S(7)

S(t) 4 =12AS(¢t);
S(t) 6 =1"32.

The perturbed operator coincides with one of the selfadjoint extensions
of the symmetric Laplace operator —A4, defined on smooth functions
vanishing in a neighborhood of the origin. The domain of the adjoint
operator (—4,)* coincides with the space W3(R*\{0}). The distribution &
possesses a unique extension to the set W3(R*\{0}). The parameter ¢
which defines the extension is equal to

-2/ 1 1
= P P
€ 1—t<—A+1’—A+t>

—1 |x|

=_1—Z2J e Me 3
1—1t

1 1
- _471:<5’ —A+15>'

It follows from Theorem 2.1 that the selfadjoint operator L, coincides
with the operator — 4, restricted to the domain

R 47 | x| 47 | x|

—IxI

Dom(L,) = {w 7 +a(y) < ): T e WiR),

47 | x|

o

a(y)eC,a(y)= —m l/N/(O)}-

In the case a=0, the selfadjoint operator L, coincides with the
Friedrichs extension of —4,,.

Approximations of the operator L, can be constructed explicitly. Let
o be a Cy(R,) function with compact support and vanishing at the
origin, normalized such that L‘f w(x)dx=1. We choose a special (but
“standard”) delta functional sequence equal to

-1 1 | x|
V(x)=— ().
) 4r &2 |x| @ < & >
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V., has compact support and it is easily verified that

Vix)dx=—[ ro,(r) dr
J, i) J, o

e}

= —f% ro'(r) dr= —rao(r) | +I w(r)dr=1.
0

0

(1/2%) Vi(x/e).

Moreover V, has the usual scaling properties: V,(x)

LemMmAa 4.1. Let =y +a(y)(e "an |x|) be any function from
Dom(—A4§), then the following limit holds:

lim (V,, ) = —a(y)/4m +(0).

e—>0
Proof. Every function y € E possesses the following representation

~

wuﬁ{“W)+m>ﬂm+wux

47 | x|

where = —a(\)/4n +(0), the function y has compact support and is
equal to one in a neighborhood of the origin and the function yr satisfies

the asymptotic representation

~

Y(x)=o0(1), x—0.

The following limits exist:

lim j XV () fix) =0;

e—>0 ‘R

lim | d*xV(x) x(x) Yo=10:

e—0 JR3
lim [ @y ALy
e—>0 IR 47 | x|

The latter limit follows from the orthogonality of the functions V,(x) and
1/|x| in L*(R?). The lemma is proven. ||

Consider now the sequence of linear operators defined in the generalized
sense

Locﬂc: _A +CX,VC(X)( Vs(x)’ )
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This sequence of linear operators L, , converges as ¢ \0 to the operator
L, in the weak operator topology. We prove now that the sequence of
linear operators L, , converges to the operator L, in the operator norm.
All these operators are defined on the domain Dom( —4&) and their ranges
belong to # ,(—A4). The norms are defined by Egs. (5) and (2) corre-
spondingly.

LemmA 4.2. Let w be an infinitely differentiable function with compact
support on the positive half axis and assume »(0)=0 and SS‘ w(r)dr=1.

Then
—-101 r
Vix)=—=—-w|- R?
) <47zr ore @ <6>> I e
converges to 0 in H_,(—A) when ¢\0.
Proof. We have to prove that
lim (0—V1,) =0. (25)
e—0 —A+1 Ly(R3)

The Fourier transform of the function ¥, depends only on the absolute
value of the vector pe R*:

. © —2n 01
VEZJ dr r? j df sin gerest T 92 (T
0 0

Anr Or e &
o 1
=J cosrp— @ <r> dr.
0 e \&

The function

A

Vs(p)—1=j0m (cosrp—l)iw<z> dr

is uniformly bounded and tends to zero uniformly on every compact
domain D <R3, Tt follows that, with g,(p)=[1/(p>+ 1)1(V(p)—1),

Hgs ‘|L2(R3) 50 Oa
and the limit (25) holds. |
THEOREM 4.1. The sequence of linear operators L, , converges in the
operator norm to the linear operator L, on W5(R’\{0}).

Proof. This follows easily from Lemma 4.2 and Theorem 2.2 ||
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