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Abstract. The inverse scattering problem for the Schrödinger operator on the half-axis is
studied. It is shown that this problem can be solved for the scattering matrices with arbitrary finite
phase shift on the real axis if one admits potentials with long-range oscillating tails at infinity.
The solution of the problem is constructed with the help of the Gelfand–Levitan–Marchenko
procedure. The inverse problem has no unique solution for the standard set of scattering data
which includes the scattering matrix, energies of the bound states and corresponding normalizing
constants. This fact is related to zeros of the spectral density on the real axis. It is proven that
the inverse problem has a unique solution in the defined class of potentials if the zeros of the
spectral density are added to the set of scattering data.

1. Introduction

The inverse scattering problem for the Schrödinger operator

Hu = −d2u

dx2
+ V (x)u

on the half-axis with the Dirichlet boundary condition at the originu(0) = 0 is investigated
in the present paper. This problem has been studied for real potentials from the Faddeev
class, i.e. with a finite first momentum∫ ∞

0
(1 + x)|V (x)| dx < ∞.

One-to-one correspondence between the scattering data and potentials was established. The
set of scattering data included the scattering matrix, the energies of the bound states and
corresponding normalizing constants. See [9] for an excellent review of the modern results
in this direction. This problem is closely related to the inverse spectral problem [11], which
was originally studied by Gelfand, Levitan and Marchenko [12, 18] and recently by Gesztesy
and Simon [13]. The relations with the inverse spectral problem are usually used to prove
the uniqueness results for the potential. Thus the existence problem appears to be very
important during the investigation of the inverse scattering problem. The existence of the
potential has been proven only for the scattering matricesS(k) with a negative phase shift
on the real axis

argS(k)|∞−∞ 6 0 (1)
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because the phase shift on the real axis for potentials from the Faddeev class is related to the
number of bound states through Levinson’s theorem. The main goal of the present paper is
to show that the inverse problem can be solved for scattering matrices with any finite phase
shift on the real line (not only negative ones). The set of potentials has to be extended in
order to include potentials with long-range oscillating tails at infinity. Such potentials with
asymptotics in the formV (x) ∼x→∞ c sin 2(bx +β)/(x +1) were considered in connection
with the bound states embedded in a continuous spectrum [1, 10, 19, 27]. We confine our
consideration to the case of negative bound states. Positive- and zero-energy eigenvalues
give no contribution to the scattering matrix and can be considered separately. The class
of admissible potentials includes potentials decreasing at infinity such as 1/|x + 1|2. The
corresponding Schrödinger operators can have an infinite number of bound states, but our
consideration is confined to the case when the number of bound states is finite.

It has been shown that the standard set of scattering data (scattering matrix, eigenvalues
and corresponding constants) does not provide enough information to reconstruct a unique
potential with long-range oscillations [14, 15]. This phenomenon is related to the fact that
the spectral density can have zeros on the positive part of the real axis. The spectral density
ρ(k) for the Schr̈odinger operator on the half-axis is defined by the Jost functionF(k):
ρ(k) = (2/π)(1/(|F(k)|2). The Jost functions for the potentials from the Faddeev class
are bounded in the closed upper half-plane and the spectral density does not vanish on the
positive part of the real line. This is not true for potentials which do not belong to the
Faddeev class. For example the potentials

Vb(x) = 16b2 1 − (bx + B) sin 2(bx + δ) − cos 2(bx + δ)

(2bx + 2B − sin 2(bx + δ))2

B = b(a + ā)(aā + b2)

(a2 + b2)(ā2 + b2)
e2iδ = b − ia

b + ia

b − iā

b + iā
Rea > 0

correspond to one and the same scattering matrixS(k) = (k − ia)(k − iā)/(k +
ia)(k + iā). The Jost function has singularities at the pointsk = ±b: F(k) =
(k + ia)(k + iā)/(k − b)(k + b).

Similar examples of potentials having the same scattering data on the entire axis were
constructed in [2, 3, 7, 24]. All these examples are related to the special behaviour of the
scattering matrix at the origin. The family of potentialsVb(x) has nonstandard behaviour
for the spectral densityρ(k) outside the origin: it vanishes atk = ±b. In order to have a
unique solution for the inverse problem, the positions of the zeros of the spectral density
have to be added to the set of scattering data. An arbitrary finite number of such zeros is
considered in the present paper. The corresponding scattering matrix can have a positive
phase shift on the real axis. We show that the inverse scattering problem on the half-axis
can be solved for scattering matrices with an arbitrary finite phase shift on the real axis.
The generalized Levinson theorem relates the phase shift to the number of bound states and
zeros of the spectral density.

The paper is organized as follows. First the sets of admissible scattering matrices and
Jost functions are described. Then the generalized set of scattering data is introduced. Next
the set of potentials with long-range oscillating tails at infinity is defined. It is shown that
solution of the inverse problem for the defined class of scattering data can be found in the
described class of potentials. Uniqueness of the potential is finally established using the
relations with the inverse spectral problem.
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2. Scattering matrices and Jost functions

We are going to solve the inverse scattering problem on the half-axis for the scattering
matrices from the following setS:

Definition 1. The setS of scattering matrices consists of all continuous functions on the
real line with the following properties:

(1) |S(k)| = 1;
(2) S(∞) = 1;
(3) S(−k) = S(k);
(4) S(k) − 1 = ∫ ∞

−∞ σ(t)eikt dt,
∫ ∞
−∞ |σ(t)| dt < ∞.

We note, that the subset of scattering matrices corresponding to potentials with a finite
first momentum can be selected by an additional condition (equation (1)), which follows
from Levinson’s theorem. This subset of the scattering matrices will be denoted bySF .
The solution of the inverse problem for such scattering matrices can be derived using the
properties of the Jost functionF(k). One can prove that the Jost functions for the potentials
with a finite first momentum possess the following properties:

(1) analytical in the open upper half-plane Imk > 0;
(2) continuous in the closed upper half-plane Imk > 0;
(3) limk→∞ F(k) = 1;
(4) F(k) = F(−k̄);
(5) possess the following representation:

F(k) = 1 +
∫ ∞

0
f (t)eikt dt

∫ ∞

0
|f (t)|dt < ∞. (2)

All functions satisfying properties (1)–(5) form Faddeev’s class of Jost functions and will
be denoted byFF hereafter. Levinson’s theorem relates the phase shift on the real axis to
the number of bound statesNbs of the corresponding Schrödinger operator:

argS(k)|∞−∞ = −4Nbsπ if F(0) 6= 0

argS(k)|∞−∞ = −(2Nbs + 1)2π if F(0) = 0.

In order to solve the inverse problem for the scattering matricesS(k) from S the set
of admissible Jost functions has to be extended. The phase shift ofS(k) on the real axis is
always finite. If it is nonpositive, thenS(k) ∈ SF and the inverse problem can be solved
in the class of potentials with a finite first momentum. One can find functionF(k) ∈ FF

such thatS(k) = F(−k)/F (k). The potential corresponding to this Jost function can be
calculated with the help of the Gelfand–Levitan–Marchenko procedure. If the phase shift
is positive, then the scattering matrix can be presented in the following form:

S(k) = k − ia0

k + ia0

( Nsing∏
j=1

k − iaj

k + iaj

k − iāj

k + iāj

)
SF (k) = Ssing(k)SF (k) (3)

whereSF (k) ∈ SF . Constantsa0 > 0, Reaj > 0 can be chosen arbitrarily. It is impossible to
find F(k) ∈ FF such thatSsing(k) = F(−k)/F (k) holds. The Jost function corresponding
to Ssing(k) can be found only with singularities on the real line. Thus we are going to
consider the Jost functions to be continuous in the closed upper half-plane Imk > 0 except
at a finite number of points±bj , bj > 0, j = 1, 2, . . . , Nsing and may be at the origin. The
function can have simple poles at these points. We are going to speak about thezero-energy
singularity in the case when the Jost function has a pole at the origin. If the Jost function is
equal to zero at the origin, then azero-energy resonanceis present. A zero-energy resonance
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and a singularity cannot occur simultaneously. Let us attach to each functionF(k) an index
α = −1, 0, 1, which is equal to−1 in the case of a zero-energy singularity, 1 in the case
of a zero-energy resonance and 0 otherwise. The following definition will be used in the
future:

Definition 2. The setF is the set of functionsF(k) which can be presented in the following
form

F(k) = k + ia0

k

( Nsing∏
j=1

k + iaj

k − bj

k + iāj

k + bj

)
FF (k) (4)

where functionFF (k) is a Jost function from the Faddeev classFF , a0 > 0, Reaj > 0. If
FF (0) = 0, thena0 = 0.

The absolute value of the Jost function defines the spectral density of the Schrödinger
operator ρ(k) = (2/π)(k2/|F(k)|2). The spectral density, corresponding to the Jost
functions from F , vanishes at the points±bj . The spectral measure can be calculated
from the energies of the bound states, corresponding normalizing constants and the spectral
density on the positive half-axis. The standard set of scattering data includes the scattering
matrix, energies of the bound states and the normalizing constants. For potentials from the
Faddeev class this information is enough to reconstruct the spectral measure. But zeros of
the spectral density, corresponding to the Jost functions fromF , cannot be reconstructed
from these scattering data. That is why we are going to consider the following set of
scattering data:

Definition 3. The setD of scattering data consists of the following data:
(1) scattering matrixS(k) from S;
(2) natural numbersNbs, Nsing ∈ N andα = −1, 0, 1 such that

argS(k)|∞−∞ = −2π(2Nbs − 2Nsing + α)

(3) the energies of the bound states and corresponding normalizing constants

Ej < 0 sj > 0 j = 1, 2, . . . , Nbs

(4) positions of the zeros of the spectral density on the real line

bj > 0 j = 1, 2, . . . , Nsing.

Lemma 1. Let F(k) be any function fromF , then the quotient

S(k) = F(−k)

F (k)
(5)

is a function fromS. Let S(k) be any function fromS, then there existsF(k) ∈ F , such
that (5) holds. The functionF(k) from F is defined uniquely by the scattering data from
D.

Proof. Suppose thatF(k) ∈ F , then representation (4) gives the following equality

S(k) = F(−k)

F (k)
= k − ia0

k + ia0

( Nsing∏
j=1

k − iaj

k + iaj

k − iāj

k + iāj

)
FF (−k)

FF (k)
.

It follows that S(k) ∈ S becauseSF (k) = FF (−k)/FF (k) ∈ SF .
Let functionS(k) be a function fromS and the necessary data (2)–(4) are given. Let

us consider the function

Ŝ(k) = k − ic

k + ic

k + ia0

k − ia0

( Nsing∏
j=1

k + iaj

k − iaj

k + iāj

k − iāj

)( Nbs∏
j=1

(k − iγj )
2

(k + iγj )2

)
S(k)
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defined by certain constantsa0, c > 0, Reaj > 0, γj = √−Ej such that

α = −1 → a0 6= 0 c = 0

α = 0 → a0 = 0 c = 0

α = 1 → a0 = 0 c 6= 0.

The function Ŝ(k) is a scattering matrix with zero phase shift on the real axis and the
corresponding Jost function can be reconstructed in a unique way [11]. The phase of the
scattering matrix can be defined by the following conditions

δ̂(k) = i

2
ln Ŝ(k) δ̂(0) = 0.

Each such function̂δ(k) is a sine-transformation of a certain functionγ ∈ L1(0, ∞)

δ̂(k) = −
∫ ∞

0
γ (t) sinkt dt

∫ ∞

0
|γ (t)| dt < ∞.

Then the corresponding Jost function is equal to

F̂ (k) = exp

( ∫ ∞

0
γ (t) exp(ikt) dt

)
.

The Jost function, which solves the original problem, is equal to

F(k) = k

k + ic

k + ia0

k

( Nsing∏
j=1

k + iaj

k − bj

k + iāj

k + bj

)( Nbs∏
n=1

k − iγn

k + iγn

)
F̃ (k).

Making different choices for the constantsa0, c, aj does not change the final function. The
lemma is proven. �

We have proven a slightly more general result. Let us use the following definition:

Definition 4. The set of spectral measuresM is the set of all measures on the real
line, which are pure point on the negative half-axis having there a finite number of
atoms and pure continuous on the positive half-axis with the density functionρ(k) =
(2/π)(k2/|F(k)|2), F (k) ∈ F .

The following lemma has been proven:

Lemma 2. The scattering data fromD and the spectral measures fromM are in one-to-one
correspondence.

3. The inverse problem

We are going to prove that for any scattering data fromD there exists a certain potential
VS(x) from L2(0, ∞) such that the Schrödinger operatorH = − d2

dx2 + VS defines these
scattering data. A similar problem has been studied for potentials from Faddeev’s class
of potentials with a finite first momentumVF = {

V :
∫ ∞

0 (1 + x)|V (x)|dx < ∞}
. We are

going to extend this class in order to include potentials with long-range oscillating tails at
infinity. The following class of potentials will be considered:

Definition 5. The setV of potentials is the set of all locally integrable potentialsV (x) on
the half-axis having the following representation

V (x) =
∑N

j=1 cj sin 2(bjx + βj )

x + 1
+ V2(x) + VF (x)

whereV2(x) = O(1/(1 + x)2); ∫ ∞
0 (1 + x)|VF | dx < ∞ and constantscj , bj , βj are real.
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It is obvious that the setV includes the set of potentials with a finite first momentum
VF ⊂ V. A standard scattering theory can be developed for potentials fromV [19, 27].
The usual Jost solution exists for all real values ofk 6= 0, k 6= bj [4]. The Jost function
is continuous on every closed interval outside these points. To solve the inverse problem
for the scattering data fromD it is enough to consider only Jost functions having simple
poles at the real pointsbj and analytical in the upper half-plane Imk > 0. Let us denote
the corresponding subset of potentials byVC .

Definition 6. The subsetVC ⊂ V is the set of all potentials having a Jost function fromF .

Every scattering matrixS(k) with the finite phase shift on the real axis can be presented
in the form (3). Thus let us investigate the solution of the inverse scattering problem for
the rational scattering matrices with a positive phase shift on the real axis. The phase shift
is proportional to 2π , i.e. there exists a natural numberM such that argS(k)|+∞

−∞ = M2π .
We have to separate out two possible cases: when the constantM is an even or an odd
number. In the second case the Jost function corresponding to the scattering matrix has a
singularity at the origin. The following two lemmas consider the cases when the constant
M is even or equal to 1.

Lemma 3. Let the potentialṼ ∈ VF and function

S1(k) =
Nsing∏
j=1

k − iaj

k + iaj

k − iāj

k + iāj

be given, then there exists a potentialV1(x) ∈ V such thatS1(k) is a scattering matrix for
the pair of operators

H̃ = − d2

dx2
+ Ṽ H1 = − d2

dx2
+ Ṽ + V1.

Proof. The functionS1(k) is not a scattering matrix from Faddeev’s class, thus let us
consider approximating the scattering matrixSε ∈ SF for arbitrary positiveε > 0

Sε(k) =
Nsing∏
j=1

k − iaj

k + bj − iε

k − iāj

k − bj − iε

k + bj + iε

k + iaj

k − bj + iε

k + iāj

.

Real numbersbj , j = 1, 2, . . . , Nbs can be chosen arbitrarily. The inverse problem can be
solved forSε in the classVF of potentials. The corresponding Jost function is continuous
in the closed upper half-plane

Fε(k) =
Nsing∏
j=1

k + iaj

k − bj + iε

k + iāj

k + bj + iε
.

Let us denote byf (k, x) and ϕ(k, x) the Jost and regular solutions of the differential
equation

− d2y(k, x)

dx2
+ Ṽ (x)y(k, x) = k2y(k, x). (6)

Then the potentialVε which solves the problem, is equal to

Vε(x) = −2
∂2

∂x2
log detW(x, ε).
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Matrix W(x, ε) has dimension 2Nsing × 2Nsing with the following elements

W2l−1,2j−1(x, ε) = 1

a2
l + (bj − iε)2

W [f (ial, x), ϕ(−bj + iε, x)]

W2l,2j−1(x, ε) = 1

ā2
l + (bj − iε)2

W [f (iāl , x), ϕ(−bj + iε, x)]

W2l−1,2j (x, ε) = 1

a2
l + (bj + iε)2

W [f (ial, x), ϕ(bj + iε, x)]

W2l,2j (x, ε) = 1

ā2
l + (bj + iε)2

W [f (iāl , x), ϕ(bj + iε, x)]

j = 1, 2, . . . , Nbs l = 1, 2, . . . , Nbs.

W [∗, ∗] denotes here the Wronskian of two solutions of the differential equation. The
regular solution is given by the formula

ϕε(k, x) =
det

∣∣∣∣ W(x) f (x)

β(k, x) ϕ(k, x)

∣∣∣∣
detW(x)

.

Vectors

(f (x))2l−1 = f (ial, x) (f (x))2l = f (iāl , x)

β2j−1 =
∫ x

0
ϕ(−bj + iε, t)ϕ(k, t) dt β2j =

∫ x

0
ϕ(bj + iε, t)ϕ(k, t) dt

have dimension 2Nbs . Let us now consider the limitε → 0 of the potential and regular
solution. The determinant of the matrixW(x, 0) is equal to zero and the following
representation holds

detW(x, ε) = (2ε)Nbs detQ(x) + o((ε)Nbs )

whereQ(x) is a 2Nsing × 2Nsing matrix with the following elements:

Q2l−1,2j−1(x) = 2bj i

(a2
l + b2

j )2
W [f (ial, x), ϕ(bj , x)] − i

a2
l + b2

j

W

[
f (ial, x),

∂ϕ

∂k
(bj , x)

]
Q2l−1,2j (x) = 1

a2
l + b2

j

W [f (ial, x), ϕ(bj , x)]

Q2l,2j−1(x) = −Q2l−1,2j−1(x) Q2l,2j (x) = Q2l,2j−1(x)

j = 1, 2, . . . , Nbs l = 1, 2, . . . , Nbs.

We are going to prove first, that the determinant of the matrixQ is not equal to zero. If
it is equal to zero at a certain point on the positive part of the real axis, then the limit
potential has an inverse square singularity at this point and the corresponding potential is
not locally integrable. The inverse problem under investigation can be solved by steps
introducing singularities of the Jost function on the real line by pairs. In this way we obtain
a representation of the limit potential as a sum of potentials obtained at each step. We are
going to show that the determinants obtained at each step are not equal to zero. It is enough
to consider the caseNsing = 1. Direct calculations show in this case that

detQ(x) = 4bi(ā2 − a2)

(a2 + b2)(ā2 + b2)

{
W [f (ia, x), ϕ(b, x)]

a2 + b2

W [f (iā, x), ϕ(b, x)]

ā2 + b2

+W [ϕ(b, x), ∂ϕ(b, x)/∂k]

2b

W [f (ia, x), f (iā, x)]

ā2 − a2

}
.



302 P Kurasov

The last formula can be simplified using the following properties of the Wronskians, which
are valid for any locally integrable potential. Lety(k, x) be any solution of the Schrödinger
equation (6) corresponding to the energyk2, then the following equality holds

W [y(k, x), y(k′, x)]|x2
x1

= (k2 − k′2)
∫ x2

x1

y(k, x)y(k′, x) dx.

We have, in particular, for the regular solution

W

[
ϕ(b, x),

∂ϕ

∂k
(b, x)

]
= −2b

∫ x

0
ϕ2(b, t) dt.

The following representation for the determinant is valid

detQ(x) = 4bi(ā2 − a2)

(a2 + b2)(ā2 + b2)

{ ∫ ∞

x

f (ia, t)ϕ(b, t)dt

∫ ∞

x

f̄ (ia, t)ϕ(b, t)dt

+
∫ x

0
ϕ2(b, t)dt

∫ ∞

x

|f (ia, t)|2dt

}
. (7)

We have used here the fact thatf (iā, x) = f̄ (ia, x). Formula (7) shows that the determinant
of Q is not equal to zero, because the expression in the curly brackets is always positive
for positivex: x > 0 ⇒ detQ(x) 6= 0. We conclude that the limit potential is given by the
usual formula

V1(x) = −2
∂2

∂x2
log detQ(x) = −2

(detQ)′′ detQ − (detQ′)2

(detQ)2
. (8)

This formula is valid for an arbitrary number of singularitiesNsing. Let us study the
asymptotics of this potential. We substitute the asymptotics of the regular and Jost solutions

ϕ(bj , x) ∼x→∞ A(bj ) sin(bjx + δ(bj ))

f (ial, x) ∼x→∞ e−alx

into the matrixQ

Qas
2l−1,2j−1(x) = 2bj i

(a2
l + b2

j )2
A(bj )e

−alx(bj cos(bjx + δ(bj )) + al sin(bjx + δ(bj )))

− i

a2
l + b2

j

e−alx(cos(bjx + δ(bj ))(A
′(bj )bj + A(bj ) + A(bj )al(x + δ′(bj )))

+ sin(bjx + δ(bj ))(−A(bj )bj (x + δ′(bj )) + A′(bj )al))

Qas
2l−1,2j (x) = A(bj )e−alx

a2
l + b2

j

(bj cos(bjx + δ(bj )) + al sin(bjx + δ(bj )))

Qas
2l,2j−1(x) = −Qas

2l−1,2j−1(x) Qas
2l,2j (x) = Qas

2l,2j−1(x).

The terms containingA′(bj ) do not give any contribution to the determinants. The

determinant of the matrixQ divided by exp(−2
∑Nsing

l=1 Realx) is a polynomial with respect
to x of orderNsing with the coefficients equal to certain trigonometric functions:

detQ(x) = exp

(
−2

Nsing∑
l=1

Realx

)
(p0(x)xNsing + p1(x)xNsing−1 + · · · + pNsing(x)).

Multiplication by the exponential function exp(−2
∑Nsing

l=1 Realx) gives a zero contribution
to the formula for potential (8) after taking the second derivative of the logarithm. The
long-range oscillating asymptotics of the potential can be calculated using the first two
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functions only:p0(x) andp1(x). We are going to prove that the functionp0(x) is equal to
a constant. This function is equal to the determinant of the matrixP 0 with the following
coefficients:

P 0
2l−1,2j−1(x) = − i

a2
l + b2

j

A(bj )(al cos(bjx + δ(bj )) − bj sin(bjx + δ(bj )))

P 0
2l−1,2j (x) = A(bj )

a2
l + b2

j

(bj cos(bjx + δ(bj )) + al sin(bjx + δ(bj )))

P 0
2l,2j−1(x) = −P 0

2l−1,2j−1(x) P 0
2l,2j (x) = P 0

2l,2j−1(x).

The derivative ofp0(x) is equal to the sum of the determinants of the matrices, which
can be obtained from the matrixP 0 by substituting thenth column by its derivative with
respect tox. Each odd column of the matrixP 0 is equal to the derivative of the next even
column divided by ibj . Every element of the(2j − 1)th and 2j th columns is a solution of
the equation−y ′′(x) = b2

j y(x). It follows that each matrix used for the calculation of the
derivative ofp0 has two linearly dependent columns and the corresponding determinants
are equal to zero. We have proven that the derivative ofp0 is equal to zero. One can show
that the determinant of the matrixP 0 does not vanish [17].

Let us investigate the functionp1(x). It is equal to the sum of the determinants ofNsing

matricesP 1,j , which can be obtained from the matrixP 0 by substituting the(2j − 1)th
column with the following one:

P
1,j

2l−1,2j−1(x) = 2bj i

(a2
l + b2

j )2
A(bj )(bj cos(bjx + δ(bj )) + al sin(bjx + δ(bj )))

− i

a2
l + b2

j

(cos(bjx + δ(bj ))(A(bj ) + A(bj )alδ
′(bj ))

− sin(bjx + δ(bj ))A(bj )bj δ
′(bj )).

We first separate out the contribution due to the phasesδ′(bj ):

p1(x) = p0

Nbs∑
j=1

δ′(bj ) +
Nsing∑
j=1

detP̂ 1,j

where matricesP̂ 1,j have the following(2j − 1)th columns

P̂
1,j

2l−1,2j−1(x) = 2bj i

(a2
l + b2

j )2
A(bj )(bj cos(bjx + δ(bj )) + al sin(bjx + δ(bj )))

− i

a2
l + b2

j

cos(bjx + δ(bj ))A(bj )

and the same other columns. The determinants of these matrices can be presented in the
following form

detP̂ 1,j =
∑

b

cj (b) sin 2(bx + βj (b))

where constantsb belong to the set of all sums and differences of the constantsbj :
B({bj }Nj=1) = {b : b = ∑N

j=1 αjbj , αj = ±1}. The sum of all these determinants have
a similar structure:

p1(x) =
∑
b 6=0

c(b) sin 2(bx + β(b)) + c0.
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Then the asymptotics of the potential is equal to

V (x) ∼x→∞ −2
p′′

1(x)

p0(x + 1)
+ O

(
1

(x + 1)2

)
and it follows that potentialV1 belongs to the setV .

The limit of the regular solution is given by the formula

ϕ1(k, x) =
det

∣∣∣∣ Q(x) f (x)

β1(k, x) ϕ(k, x)

∣∣∣∣
detQ(x)

(9)

with the following vectors

β1,2j−1 = −i
∫ x

0

(
∂

∂k
ϕ(bj , t)

)
ϕ(k, t) dt β1,2j =

∫ x

0
ϕ(bj , t)ϕ(k, t)dt.

Formulae (8) and (9) represent Darboux transformations [20] for the Schrödinger equation
(6). It follows that theϕ1(k, x) given by (9) is a regular solution for the operatorH1 with
V1 given by (8). The asymptotics of the regular solution can be calculated:

ϕ1(k, x) ∼x→∞
−1

2ik

{
F(−k)eikx

Nbs∏
j=1

(k − iaj )(k − iāj )

k2 − b2
j

−F(k)e−ikx
Nbs∏
j=1

(k + iaj )(k + iāj )

k2 − b2
j

}
and the scattering matrix is equal toS1(k). Lemma 3 is proven. �

Lemma 4. Let potentialV be from the setVC such that the Jost functionFV (k) does not
vanish at the originFV (0) 6= 0 and the operator does not have a zero-energy bound state.
Then for any positive 0< a0 <

√−E1 (E1 is the energy of the highest bound state) there
exists a potentialV0 ∈ VC such that functionS0(k) = (k − ia0)/(k + ia0) is a scattering
matrix for the pair of operators

H1 = − d2

dx2
+ V H0 = − d2

dx2
+ V + V0.

Proof. One can apply an approximation procedure similar to the one used in the proof of
lemma 3. The solution of the inverse problem is given by the following formula:

V0(x) = 2a2 f 2
1 (ia0, x)ϕ′2

1 (0, x) − f ′2
1 (ia0, x)ϕ2

1(0, x) + a2f 2
1 (ia0, x)ϕ2

1(0, x)

(f1(ia0, x)ϕ′
1(0, x) − f ′

1(ia0, x)ϕ1(0, x))2

whereϕ1(k, x), f1(k, x) are the regular and Jost solutions for the Schrödinger operatorH1.
We are going to prove that the denominator in the last formula does not vanish. Suppose
that the Wronskian is equal to zero:

W [f1(ia0, x0), ϕ1(0, x0)] = 0 (10)

at some pointx0 > 0. Let us consider two functions

g(k) = f ′
1(ik, x0)

f1(ik, x0)
h(k) = h′

1(ik, x0)

h1(ik, x0)
.

These functions are similar to the Weyl function for the differential operator [27]. Both
functions are meromorphic functions ofk with possible singularities on the real axis. These
functions are real for the real values of the variablek. Function g(k) has a negative
imaginary part in the upper half-plane Imk > 0, but h(k) has a positive imaginary part
there. It follows thatg(k) is a decreasing function on every interval on the positive half-
axis outside the singular points. Functionh(k) is an increasing function on every similar
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interval. Condition (10) means thatg(a0) = h(0) and it follows that there exists a certain
point 0< k0 < a0, such thatg(k0) = h(k0). However, the last equation means that the point
E = −k2

0 is a discrete spectrum point of the operatorH1, which contradicts the condition
a0 <

√−E1. The caseg(k0) = h(k0) = ∞ means that the eigenfunction with the energy
−k2

0 is equal to zero atx0. We have proven that the denominator does not vanish on the
positive half-axis.

If potential V ∈ VC, then any solution of the Schrödinger equation for the zero energy
is equivalent to a linear function in the limitx → ∞. If the Jost function does not vanish
at the origin, then the coefficientα in the asymptotics of the regular solution

ϕ1(0, x) ∼x→∞ αx + β + o(1)

is not equal to zero. The following asymptotics is valid for the derivative of the regular
solutionϕ′

1(0, x) ∼x→∞ α + o(1). The asymptotics of the potential is equal to

V0(x) ∼x→∞
2

(1 + x)2

and it follows thatV0 ∈ V . The scattering matrix can be calculated using the regular solution

ϕ0(k, x) = ϕ1(k, x) + a2
0

k2

W [ϕ1(0, x), ϕ1(k, x)]

W [ϕ1(0, x), f1(ia0, x)]
f1(ia0, x)

which has the following asymptotics

ϕ0(k, x) ∼x→∞
−1

2ik

{
F1(−k)eikx k − ia0

k
− F1(k)e−ikx k + ia0

k

}
⇒ S0(k) = k − ia0

k + ia0
.

Lemma 4 is proven. �

It is possible to prove that the calculated potentials define no positive eigenvalues (see
[17]). We are ready now to prove our main theorem.

Theorem 1. Let the scattering data

S(k); Nbs, Nsing, α; Ej , sj , j = 1, 2, . . . , Nbs; bj , j = 1, 2, . . . , Nsing

from D be given, then there exists a potentialV ∈ V corresponding to these scattering data.
This potential is defined uniquely in the classVC .

Proof. This theorem can be proven using the Gelfand–Levitan–Marchenko procedure. We
have shown that the scattering data fromD define the spectral measure in a unique way.
It follows that the potential fromVC is defined uniquely. It is enough to show that this
potential exists and belongs to the classV. This can be proven using the corresponding
results for potentials with a finite first momentum. Any functionS(k) ∈ S can be presented
in the form (3). The constanta0 in the representation can be chosen in such a way that
0 < a0 <

√−E1, whereE1 is the highest bound state of the operator.
The theorem can be proven in three steps. One can first construct the potentialVF ∈ VF

corresponding to the scattering matrixSF (k) and havingNbs bound states with the energies
Ej and normalizing constantssj , j = 1, 2, . . . , Nbs . The solution of this problem is given,
for example, in [7, 11]. In the second step the inverse problem should be solved for the
scattering matrix

S1(k) =
Nsing∏
j=1

k − iaj

k + iaj

k − iāj

k + iāj
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considering potentialVF as the background potential. The solution of this problem—
potentialV1 ∈ VC—is given by lemma 3. In the final step, if it is necessary, the zero-
energy singularity has to be introduced. We note that the constanta0 is not equal to zero
only if the function SF (k) is equal to one at the origin. Thus lemma 4 can be applied
to find the potentialV ∈ VC, which solves the inverse problem for the scattering matrix
S0(k) = (k − ia0)/(k + ia0) with the background potentialV1. Theorem 1 is proven. �

4. Discussion

Schr̈odinger operators with long-range oscillating potentials were first studied in relation to
the bound states embedded in a continuous spectrum. Such eigenvalues can be easily
considered in the framework of our approach. One can add a finite number of such
eigenvalues using the closed form of the solution of the Gelfand–Levitan–Marchenko
equation for the phase-equivalent potentials [7].

It is natural to generalize the discussed ideas to the scattering problem on the whole
axis. A similar problem was studied in [26]. The authors extended the set of scattering
matrices in order to include transition coefficients with zeros on the real axis. (The transition
coefficient does not vanish there if the potential has a finite first momentum.) The solution of
the inverse problem gives long-range oscillating potentials, depending on the positions of the
zeros of the transition coefficient. However, no ambiguity appears in this case, because the
zeros of the transition coefficient can be easily reconstructed from the reflection coefficient.
Moreover, the potentials constructed in our case forSF (k) = 1 can be continued analytically
for negativex. These potentials have second-order singularities on the negative half-axis.
The scattering theory for such potentials can be defined using analytical continuation. It
appears that the corresponding transition coefficient is identically equal to 1 and does not
vanish on the real line. This generalized solution of the inverse problem has been used
in the construction of the solutions of nonlinear evolution equations. The corresponding
long-range solutions of the evolution equations were called positons [16, 21–23]. We have
to point out that the inverse scattering problem on the line cannot be solved uniquely even
for potentials decaying at infinity like O(1/x2) (see [2, 3, 8, 24] and references therein). The
corresponding ambiguity is related to the low-energy behaviour of the scattering matrix.
The set of admissible potentials can be extended also in order to include distributions [5, 6].
The first potentials without bound states having equal scattering matrices were constructed
with the delta functional singularities. This shows another important extension of the class
of admissible potentials.
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