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Abstract. The inverse scattering problem for the Sadinger operator on the half-axis is
studied. Itis shown that this problem can be solved for the scattering matrices with arbitrary finite
phase shift on the real axis if one admits potentials with long-range oscillating tails at infinity.
The solution of the problem is constructed with the help of the Gelfand-Levitan—Marchenko
procedure. The inverse problem has no unique solution for the standard set of scattering data
which includes the scattering matrix, energies of the bound states and corresponding normalizing
constants. This fact is related to zeros of the spectral density on the real axis. It is proven that
the inverse problem has a unique solution in the defined class of potentials if the zeros of the
spectral density are added to the set of scattering data.

1. Introduction

The inverse scattering problem for the Siadinger operator

d’u
dx2
on the half-axis with the Dirichlet boundary condition at the origi®) = O is investigated

in the present paper. This problem has been studied for real potentials from the Faddeev
class, i.e. with a finite first momentum

Hu = + V(x)u

/Oo(l+x)|V(x)| dx < oo.
0

One-to-one correspondence between the scattering data and potentials was established. The
set of scattering data included the scattering matrix, the energies of the bound states and
corresponding normalizing constants. See [9] for an excellent review of the modern results
in this direction. This problem is closely related to the inverse spectral problem [11], which
was originally studied by Gelfand, Levitan and Marchenko [12, 18] and recently by Gesztesy
and Simon [13]. The relations with the inverse spectral problem are usually used to prove
the uniqueness results for the potential. Thus the existence problem appears to be very
important during the investigation of the inverse scattering problem. The existence of the
potential has been proven only for the scattering matrii@3 with a negative phase shift

on the real axis

argS(k)|*,, <0 1)
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because the phase shift on the real axis for potentials from the Faddeev class is related to the
number of bound states through Levinson’s theorem. The main goal of the present paper is
to show that the inverse problem can be solved for scattering matrices with any finite phase
shift on the real line (not only negative ones). The set of potentials has to be extended in
order to include potentials with long-range oscillating tails at infinity. Such potentials with
asymptotics in the fornV (x) ~,_. csin2bx + B)/(x + 1) were considered in connection

with the bound states embedded in a continuous spectrum [1, 10, 19, 27]. We confine our
consideration to the case of negative bound states. Positive- and zero-energy eigenvalues
give no contribution to the scattering matrix and can be considered separately. The class
of admissible potentials includes potentials decreasing at infinity such|asr11|>. The
corresponding Schdinger operators can have an infinite humber of bound states, but our
consideration is confined to the case when the number of bound states is finite.

It has been shown that the standard set of scattering data (scattering matrix, eigenvalues
and corresponding constants) does not provide enough information to reconstruct a unique
potential with long-range oscillations [14, 15]. This phenomenon is related to the fact that
the spectral density can have zeros on the positive part of the real axis. The spectral density
p(k) for the Schodinger operator on the half-axis is defined by the Jost funciioh):

p(k) = (2/7)(1/(|F(k)|?). The Jost functions for the potentials from the Faddeev class
are bounded in the closed upper half-plane and the spectral density does not vanish on the
positive part of the real line. This is not true for potentials which do not belong to the
Faddeev class. For example the potentials

1— (bx + B)sin2bx + §) — cosAbx + §)
V,(x) = 16b°
bx) (2bx + 2B — sin Abx + 3))2
b(a + a)(aa + b?) v _ b—lab—ia
= = . . Re 0
@2+ b?)(@ + b?) b+iab+ia “=
correspond to one and the same scattering mafiik) = (k — ia)(k — ia)/(k +

ia)(k + ia). The Jost function has singularities at the poikts= +b: F(k) =
(k +ia)(k +ia)/(k — b)(k + b).

Similar examples of potentials having the same scattering data on the entire axis were
constructed in [2,3,7,24]. All these examples are related to the special behaviour of the
scattering matrix at the origin. The family of potentidfs(x) has nonstandard behaviour
for the spectral density (k) outside the origin: it vanishes at= +b. In order to have a
unique solution for the inverse problem, the positions of the zeros of the spectral density
have to be added to the set of scattering data. An arbitrary finite number of such zeros is
considered in the present paper. The corresponding scattering matrix can have a positive
phase shift on the real axis. We show that the inverse scattering problem on the half-axis
can be solved for scattering matrices with an arbitrary finite phase shift on the real axis.
The generalized Levinson theorem relates the phase shift to the number of bound states and
zeros of the spectral density.

The paper is organized as follows. First the sets of admissible scattering matrices and
Jost functions are described. Then the generalized set of scattering data is introduced. Next
the set of potentials with long-range oscillating tails at infinity is defined. It is shown that
solution of the inverse problem for the defined class of scattering data can be found in the
described class of potentials. Uniqueness of the potential is finally established using the
relations with the inverse spectral problem.
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2. Scattering matrices and Jost functions

We are going to solve the inverse scattering problem on the half-axis for the scattering
matrices from the following se$:

Definition 1 The setS of scattering matrices consists of all continuous functions on the
real line with the following properties:

D) ISk = 1;

(2) S(o0) = 1;

() S(—k) = S(k); .

(4) Sty —1= [% o dr, [* |o@)]df < oo.

We note, that the subset of scattering matrices corresponding to potentials with a finite
first momentum can be selected by an additional condition (equation (1)), which follows
from Levinson’s theorem. This subset of the scattering matrices will be denotet} by
The solution of the inverse problem for such scattering matrices can be derived using the
properties of the Jost functioFi(k). One can prove that the Jost functions for the potentials
with a finite first momentum possess the following properties:

(1) analytical in the open upper half-plane Ans- O;

(2) continuous in the closed upper half-planekry O;

) lim Fk) =1,

(4) F(k) = F(—k);

(5) possess the following representation:

F(k)y=1+ /OO f(er dr /oo |f(0)]dt < oo. @)
0 0

All functions satisfying properties (1)—(5) form Faddeev's class of Jost functions and will
be denoted byFr hereafter. Levinson’s theorem relates the phase shift on the real axis to
the number of bound state@g,; of the corresponding Sobdinger operator:

argS (k)| = —4Ny,m if F(0)+0
argS k)|, = —(2Nys + 121 if F(0)=0.
In order to solve the inverse problem for the scattering matrki@s from S the set
of admissible Jost functions has to be extended. The phase sBitkpbn the real axis is
always finite. If it is nonpositive, the§(k) € Sr and the inverse problem can be solved
in the class of potentials with a finite first momentum. One can find fundiign € Fr
such thatS(k) = F(—k)/F (k). The potential corresponding to this Jost function can be

calculated with the help of the Gelfand—Levitan—Marchenko procedure. If the phase shift
is positive, then the scattering matrix can be presented in the following form:

k — iao Nsing k — Ia, k — |C_l]
k+i610 =1k+iajk+ic_zj

S(k) =

)SF(k) = Ssing(k)SF (k) (3)
J

whereSg (k) € Sp. Constantsg > 0, Rea; > 0 can be chosen arbitrarily. Itis impossible to
find F(k) € Fr such thatSsng(k) = F(—k)/F (k) holds. The Jost function corresponding

to Ssing(k) can be found only with singularities on the real line. Thus we are going to
consider the Jost functions to be continuous in the closed upper half-plang lnexcept

at a finite number of pointsb;, b; > 0, j = 1,2, ..., Nsingand may be at the origin. The
function can have simple poles at these points. We are going to speak abaeatdrenergy
singularity in the case when the Jost function has a pole at the origin. If the Jost function is
equal to zero at the origin, therzaro-energy resonands present. A zero-energy resonance
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and a singularity cannot occur simultaneously. Let us attach to each furfttigran index

a = —1,0,1, which is equal to—1 in the case of a zero-energy singularity, 1 in the case
of a zero-energy resonance and 0 otherwise. The following definition will be used in the
future:

Definition 2 The setF is the set of functiong' (k) which can be presented in the following
form

F(k) =

. N. . .
k+|ao(ls—"[gk+lajk+laj

k k — b, k+bj>FF(k) @)

j=1
where functionFr (k) is a Jost function from the Faddeev cldsg, ag > 0, Rea; > 0. If
Fr(0) = 0, thenag = 0.

The absolute value of the Jost function defines the spectral density of théd8gjer
operator p(k) = (2/m)(k?/|F(k)|?. The spectral density, corresponding to the Jost
functions from 7, vanishes at the points-b;. The spectral measure can be calculated
from the energies of the bound states, corresponding normalizing constants and the spectral
density on the positive half-axis. The standard set of scattering data includes the scattering
matrix, energies of the bound states and the normalizing constants. For potentials from the
Faddeev class this information is enough to reconstruct the spectral measure. But zeros of
the spectral density, corresponding to the Jost functions fFgncannot be reconstructed
from these scattering data. That is why we are going to consider the following set of
scattering data:

Definition 3 The setD of scattering data consists of the following data:
(1) scattering matrixS(k) from S;
(2) natural numbersVy,, Nsing € N ande = —1, 0, 1 such that

argS(k)|i°oo = —27(2Nps — 2Nsing + o)
(3) the energies of the bound states and corresponding normalizing constants
E; <0 s;i>0 J=212, ..., Ny
(4) positions of the zeros of the spectral density on the real line
b >0 j=12,..., Nsing
Lemma 1l Let F(k) be any function fromF, then the quotient
F(—k)
O 5)
is a function fromS. Let S(k) be any function fromS, then there exist# (k) € F, such

that (5) holds. The functio¥ (k) from F is defined uniquely by the scattering data from
D.

Proof. Suppose thaF (k) € F, then representation (4) gives the following equality
F(=k) _ k—ia <NS‘"9 k —ia; k — iaj) Fr(—k)
F(k)y — k+iao i1 k+iajk+ia;) Fp(k) ’
It follows that S(k) € S becauseSg (k) = Fr(—k)/Fr(k) € Sf.

Let function S(k) be a function fromS and the necessary data (2)—(4) are given. Let
us consider the function

. . Nsin . . Nps . 2

A k—ick+ia Pk +iaj k +ia; 5ok —iy))
50 = (Tl ) (T e )sw

Fick —iao\ j_j k—iaj k —ia; J\ ;1 (k +iy))

S(k) =

S(k) =
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defined by certain constantg, c > 0, Reaq; > 0, y; = \/—TEJ such that
a=-1—-ay#0 c=0
a=0—qaqy=0 c=0
a=1—>a=0 c#0.

The function S(k) is a scattering matrix with zero phase shift on the real axis and the
corresponding Jost function can be reconstructed in a unique way [11]. The phase of the
scattering matrix can be defined by the following conditions

S(k) = 12 In S(k) 5(0) = 0.

Each such functiod (k) is a sine-transformation of a certain functipne L1(0, c0)
S(k):—/ooy(t)sinktdt /Oo|y(z)|dt < 0.

Then the correspondingoJost function is equa:)to
Fk) = exp(/ooo y (1) explikt) dt).

The Jost function, which solves the original problem, is equal to
Nsing

k k+ia k—+iaj k+ia;\ [ k—iy\ -
Fy = O(H / ‘j<ﬂf V)nm
+lc k =1 k—bj k+bj n:1k+|y”

Making different choices for the constanig c, a; does not change the final function. The
lemma is proven. O

We have proven a slightly more general result. Let us use the following definition:

Definition 4 The set of spectral measurggl is the set of all measures on the real
line, which are pure point on the negative half-axis having there a finite number of
atoms and pure continuous on the positive half-axis with the density fungtigh =
2/m)(k*/|F (k) ?), F(k) € F

The following lemma has been proven:

Lemma2 The scattering data frof® and the spectral measures frout are in one-to-one
correspondence.

3. The inverse problem

We are going to prove that for any scattering data frbnthere exists a certain potential
Vs(x) from L,(0, o) such that the Scbdinger operatorH = —d‘i—zz + Vs defines these
scattering data. A similar problem has been studied for potentials from Faddeev’'s class
of potentials with a finite first momentuviy = {V : [ (1 +x)|V(x)|dx < co0}. We are

going to extend this class in order to include potentials with long-range oscillating tails at
infinity. The following class of potentials will be considered:

Definition 5 The setV of potentials is the set of all locally integrable potenti&lér) on

the half-axis having the following representation

Yo jLacisin2b;x + B))
x+1

where V,(x) = O(1/(1 + x)?); ;" (1+x)|Vr|dx < co and constants;, b;, B; are real.

V(x) = + Vo(x) + Ve (x)
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It is obvious that the se¥ includes the set of potentials with a finite first momentum
V¢ C V. A standard scattering theory can be developed for potentials oo, 27].
The usual Jost solution exists for all real valueskog 0, k # b; [4]. The Jost function
is continuous on every closed interval outside these points. To solve the inverse problem
for the scattering data fror® it is enough to consider only Jost functions having simple
poles at the real points; and analytical in the upper half-plane km> 0. Let us denote
the corresponding subset of potentialsgy.

Definition & The subseV: C V is the set of all potentials having a Jost function frdm

Every scattering matri¥ (k) with the finite phase shift on the real axis can be presented
in the form (3). Thus let us investigate the solution of the inverse scattering problem for
the rational scattering matrices with a positive phase shift on the real axis. The phase shift
is proportional to Z, i.e. there exists a natural numb&f such that arg k)|t = M2r.
We have to separate out two possible cases: when the corgtasitan even or an odd
number. In the second case the Jost function corresponding to the scattering matrix has a
singularity at the origin. The following two lemmas consider the cases when the constant
M is even or equal to 1.

Lemma 3 Let the potential\7 € Vr and function

Nsing

S1k) = [ ]

j=1

k—idjk—ié_lj

be given, then there exists a potentialx) € V such thatS; (k) is a scattering matrix for
the pair of operators

5 d2 5 d2
Proof. The functionSi(k) is not a scattering matrix from Faddeev’'s class, thus let us
consider approximating the scattering matixe Sy for arbitrary positivee > 0

+‘7+V1.

Nsing

k—iaj k—ic_zj k+bj+i€k—bj+i€

Se (k) = . . . —
® jllk+bj—|ek—bj—|e k +la; k +ia;

Real numbers;, j = 1,2,..., Ny, can be chosen arbitrarily. The inverse problem can be
solved for S, in the classVr of potentials. The corresponding Jost function is continuous
in the closed upper half-plane

Nsm H s -
9k —+ Iaj k + |Clj

F.(k) = . —.
(%) gk—b,+|ek+b,+|e

Let us denote byf(k, x) and ¢(k, x) the Jost and regular solutions of the differential
equation

yk, x) -~
- S V@YK ) = Kk ), ©
Then the potential, which solves the problem, is equal to
82
Ve(x) = —2— logdetW(x, €).
9x2
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Matrix W(x, €) has dimension Hsing x 2Nsing With the following elements

Wa_12j-1(x,€) = W[ f(ia, x), p(—b; + i€, x)]

a? + (b; —ie)?

Waj-1(x, €) = W[ f(ia, x), (=b; + i€, x)]

at+ (b —ie)?

WZlfl,Zj ()C, 6) = W[f(ia;, )C), ‘P(bj + i€, X)]

a? + (b; +ie)?

W21,2j(x76) = W[f(it_l],x), (p(b] +i67x)]

at + (bj +ie)?
j=1,2,..., Ny 1=1,2 ..., Ny.

W[x*, x] denotes here the Wronskian of two solutions of the differential equation. The
regular solution is given by the formula

W)  fx)
Bk, x) o(k,x)
detW(x) '

det

(/)G(k9 -x) =

Vectors
(f(xX)2-1 = fa;, x) (f )z = f(a;, x)

Boj—1= / o(—=b; +ie, )k, t)dt Boj = / ob; +ie, Hp(k, 1) dt
0 0

have dimension X,,. Let us now consider the limi — O of the potential and regular
solution. The determinant of the matri®/(x, 0) is equal to zero and the following
representation holds

detW(x, €) = (2¢)™» detQ(x) + o((e)»)
whereQ(x) is a 2Nsing X 2Nsing Matrix with the following elements:
2b;i

QZI—l,Zj—l(x) = (@be)z

. i . R1%
W[.f(lalv-x)v (p(b]’x)] - mw |:f(|ala -x)v ak(bja-x)i|

l J
1 .
Qo_12j(x) = mw[f(ml,x)a @(b;, x)]

J
Q22j-1(x) = —02_12j-1(x) Q2.2j(x) = Q22j-1(x)
i=12.. . Ny  1=12 ... Np.

We are going to prove first, that the determinant of the mafriis not equal to zero. If

it is equal to zero at a certain point on the positive part of the real axis, then the limit
potential has an inverse square singularity at this point and the corresponding potential is
not locally integrable. The inverse problem under investigation can be solved by steps
introducing singularities of the Jost function on the real line by pairs. In this way we obtain

a representation of the limit potential as a sum of potentials obtained at each step. We are
going to show that the determinants obtained at each step are not equal to zero. It is enough
to consider the cas#¥sing = 1. Direct calculations show in this case that

4bi(a® — a?) W[f(a,x), @b, x)] W[f(ia, x), ¢(b, x)]
(a? + b?)(a? + b?) { a? 4 b? a?+ b?
n Wlp®b, x), 0¢(b, x)/0k] W[f(ia, x), f(ia,x)] }

detQ(x) =

2b a? —a?
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The last formula can be simplified using the following properties of the Wronskians, which
are valid for any locally integrable potential. Letk, x) be any solution of the Scdinger
equation (6) corresponding to the eneidy then the following equality holds

Wlyk. 2), y®', 011 = (2 — K?) / y(k, ) y(K', x) d.

We have, in particular, for the regular solution

w |:<p(b, 0. 2% 6, x)] T f ©2(b, 1) dr.
ok o

The following representation for the determinant is valid
4bi(a® — a?)
(a? + b?)(a? + b?)

+/x @%b, t)dt/oo | f (ia, t)|2dt}. @
0 x

We have used here the fact thétia, x) = f(ia, x). Formula (7) shows that the determinant

of Q is not equal to zero, because the expression in the curly brackets is always positive
for positivex: x > 0 = detQ(x) # 0. We conclude that the limit potential is given by the
usual formula

detQ(x) =

{/w fia, e (b, t)dt/m fia, )p(b, t)dt

92 2(detQ)” detQ — (detQ’)?

Vl(x) = _Zﬁ |Og detQ(X) = - (detQ)Z (8)

This formula is valid for an arbitrary number of singularitidsing. Let us study the
asymptotics of this potential. We substitute the asymptotics of the regular and Jost solutions
@(bj, x) ~rso0 A(b)) SiN(bjx + 8(b)))
f(ials X) ~x—00 e

into the matrixQ

, 2bji _ .
Qﬁzl]bil’zjil(x) = 27J22A(bj)e a’x(bj COS(bjx + S(bj)) +a; Sln(bjx + S(bj)))
(aj +b7)
—me*“’x(cos(bjx +38(b;))(A'(b))b; + A(bj) + A(bj)ai(x + 8'(b})))
J
+sin(bjx + 8(b;)(—Ab))b; (x + 8 (b)) + A'(ba))
as A (bJ )e_a,x :
af + bj
Q%;,Zj—l(x) = _Q%zs_l,zj—l(x) Q6211S,2j (x) = %,Zj—l(x)'
The terms containingd’(b;) do not give any contribution to the determinants. The

determinant of the matriQ divided by exg—2 Zf’j{g Reaq;x) is a polynomial with respect

to x of order Nsing With the coefficients equal to certain trigonometric functions:

Nsing
detQ(x) = eXp(—ZZ Ream) (Po(0)x™50 4 py ()00~ - (1)),
=1

Multiplication by the exponential function exp2 Zle'{g Rea;x) gives a zero contribution

to the formula for potential (8) after taking the second derivative of the logarithm. The
long-range oscillating asymptotics of the potential can be calculated using the first two



Scattering matrices with finite phase shift 303

functions only: po(x) and p1(x). We are going to prove that the functigg(x) is equal to
a constant. This function is equal to the determinant of the maPfixvith the following
coefficients:

[ .
PY 10 4(x) = —mA(bj)(a, cosbjx + 8(b))) — b; sin(bjx + 8(b;)))
1T
0 A(bj) .
Py g2;(x) = - (bj codbjx + 8(b))) + a; Sin(bjx 4 5(b;)))
' aj + b
Pg,z,‘—l(x) = _P§—1,2j—l(x) onl,zj('x) = P2(},2j—1(x)'

The derivative ofpg(x) is equal to the sum of the determinants of the matrices, which
can be obtained from the matriR® by substituting the:th column by its derivative with
respect tor. Each odd column of the matriR® is equal to the derivative of the next even
column divided by ;. Every element of th€2; — 1)th and 2jth columns is a solution of
the equation—y”(x) = b]?y(x). It follows that each matrix used for the calculation of the
derivative of po has two linearly dependent columns and the corresponding determinants
are equal to zero. We have proven that the derivativeodé equal to zero. One can show
that the determinant of the matri®® does not vanish [17].

Let us investigate the functiopy(x). It is equal to the sum of the determinantsigig
matrices P17, which can be obtained from the matri® by substituting the2; — 1)th
column with the following one:

; 2bji :
Piaay a0 = (57 s A b COSbyx +505) +arsintbyx + 5(67)
J

i /
—m(coibﬂ + (b)) (A (b)) + A(bj)aid' (b))

—sin(bjx + 8(b;))A(b;)b;&' (b))).
We first separate out the contribution due to the phd&es):

Nps Neng
p1x) =po Y &)+ ) detPh
=1 =1

J

J

where matrices?l/ have the following(2j — 1)th columns

a1 2bji .
lel’il,zj_l(x) = mf\(bj)(b_,- cosbjx + 8(b;)) + a; sin(b;x + §(b;)))
J
i
_m cogbjx + 8(b;j))A(b;)

J
and the same other columns. The determinants of these matrices can be presented in the
following form

detPh/ =" c;(b) sin Abx + B; (b))
b

where constant$ belong to the set of all sums and differences of the constants
B({bj}Ly) = {b:b = Zjvzlajbj,aj = £1}. The sum of all these determinants have
a similar structure:

p1(x) = c(b)sin2bx + B(b)) + co.

b#0
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Then the asymptotics of the potential is equal to
pi(x) ( 1 )
V(x) ~ys00 —2——-— 40
) pox + 1) (x + 1)
and it follows that potential; belongs to the sey.

The limit of the regular solution is given by the formula
Q)  f(x)
Pk, x) @(k, x)

detQ(x)

det

9)

o1k, x) =

with the following vectors

Y ] *
0 0

Formulae (8) and (9) represent Darboux transformations [20] for theb8iciger equation
(6). It follows that they;(k, x) given by (9) is a regular solution for the operat@r with
V1 given by (8). The asymptotics of the regular solution can be calculated:

-1 T (k —iay) (k — iaj) e 1 (ki) (ki)
j= J j=1 7
and the scattering matrix is equal $@(k). Lemma 3 is proven. |

Lemma 4 Let potentialV be from the seV: such that the Jost functiofy (k) does not
vanish at the originFy (0) # 0 and the operator does not have a zero-energy bound state.
Then for any positive G< ag < ~/—E; (E1 is the energy of the highest bound state) there
exists a potentiaVy € V¢ such that functionSo(k) = (k — iag)/(k + iag) is a scattering
matrix for the pair of operators
o? o?

=—gatV ="y
Proof. One can apply an approximation procedure similar to the one used in the proof of
lemma 3. The solution of the inverse problem is given by the following formula:

52 12090, V)90, x) = fi(iao, ¥)pI(0, ) + a* (a0, )97 (0, x)
(fa(iao, x)91(0, x) — fi(iao, x)¢1(0, x))?
whereg (k, x), fi(k, x) are the regular and Jost solutions for the $dimger operato;.
We are going to prove that the denominator in the last formula does not vanish. Suppose
that the Wronskian is equal to zero:

+V +W.

Vo(x) =

W[ fa(iao, x0), ¢1(0, x0)] = 0 (10)
at some pointy > 0. Let us consider two functions
f1(ik, xo) ' (ik, xo)
(k) = = hk) = ————.
A ha ik, xo)

These functions are similar to the Weyl function for the differential operator [27]. Both
functions are meromorphic functions bfvith possible singularities on the real axis. These
functions are real for the real values of the variable Function g(k) has a negative
imaginary part in the upper half-plane kn> 0, but 2(k) has a positive imaginary part
there. It follows thatg (k) is a decreasing function on every interval on the positive half-
axis outside the singular points. Functidtk) is an increasing function on every similar
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interval. Condition (10) means thgi{ap) = h(0) and it follows that there exists a certain
point 0 < kg < ag, such thafg (ko) = h(kg). However, the last equation means that the point
E = —k3 is a discrete spectrum point of the operatfy, which contradicts the condition
ap < ~/—E1. The caseg(kog) = h(ko) = oo means that the eigenfunction with the energy
—kg is equal to zero akyg. We have proven that the denominator does not vanish on the
positive half-axis.

If potential V € V¢, then any solution of the Saidinger equation for the zero energy
is equivalent to a linear function in the limit — oo. If the Jost function does not vanish
at the origin, then the coefficient in the asymptotics of the regular solution

Qﬂl(o» X) ~rsoo XX+ ,8 + 0(1)

is not equal to zero. The following asymptotics is valid for the derivative of the regular
solution g} (0, x) ~,_, o o + 0(1). The asymptotics of the potential is equal to
2
1+ x)2
and it follows thatV, € V. The scattering matrix can be calculated using the regular solution

2
_ ag Wiei(0,x), pa(k, x)] .
ok, x) = p1(k, x) + K2 Wen(0.0). fu(ido. )] Fiag, x)

which has the following asymptotics

Vo(x) ~rs00

_ k +iag k —iag
T 2k k k +iag’
Lemma 4 is proven. |

k — iao _ Fl(k)e‘”‘"

po(k, x) ~ {Fl(—k)eik" } = So(k) =

It is possible to prove that the calculated potentials define no positive eigenvalues (see
[17]). We are ready now to prove our main theorem.

Theorem 1 Let the scattering data
S(k); Nbsa Nsingyol; Ejvsj’j = la 27 ] Nbs; b]?] = 17 25 LR} Nsing

from D be given, then there exists a potenfiak V corresponding to these scattering data.
This potential is defined uniquely in the clags.

Proof. This theorem can be proven using the Gelfand—Levitan—Marchenko procedure. We
have shown that the scattering data fr@ndefine the spectral measure in a unique way.
It follows that the potential from/¢ is defined uniquely. It is enough to show that this
potential exists and belongs to the clags This can be proven using the corresponding
results for potentials with a finite first momentum. Any functi®f) € S can be presented
in the form (3). The constanty in the representation can be chosen in such a way that
0 < ap < «/—E1, whereE; is the highest bound state of the operator.

The theorem can be proven in three steps. One can first construct the pdtential-
corresponding to the scattering matfix(k) and havingN,, bound states with the energies
E; and normalizing constants, j = 1,2, ..., N,,. The solution of this problem is given,
for example, in [7,11]. In the second step the inverse problem should be solved for the
scattering matrix

Nsing

i) =[]

j=1

k—iajk—ic_zj
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considering potentiaVr as the background potential. The solution of this problem—
potential V; € Vc—is given by lemma 3. In the final step, if it is necessary, the zero-
energy singularity has to be introduced. We note that the conggaistnot equal to zero
only if the function Sg(k) is equal to one at the origin. Thus lemma 4 can be applied
to find the potentialV € V¢, which solves the inverse problem for the scattering matrix
So(k) = (k —iag)/(k + iag) with the background potentidl;. Theorem 1 is proven. O

4. Discussion

Schibdinger operators with long-range oscillating potentials were first studied in relation to
the bound states embedded in a continuous spectrum. Such eigenvalues can be easily
considered in the framework of our approach. One can add a finite number of such
eigenvalues using the closed form of the solution of the Gelfand—Levitan—Marchenko
equation for the phase-equivalent potentials [7].

It is natural to generalize the discussed ideas to the scattering problem on the whole
axis. A similar problem was studied in [26]. The authors extended the set of scattering
matrices in order to include transition coefficients with zeros on the real axis. (The transition
coefficient does not vanish there if the potential has a finite first momentum.) The solution of
the inverse problem gives long-range oscillating potentials, depending on the positions of the
zeros of the transition coefficient. However, no ambiguity appears in this case, because the
zeros of the transition coefficient can be easily reconstructed from the reflection coefficient.
Moreover, the potentials constructed in our caseSfaik) = 1 can be continued analytically
for negativex. These potentials have second-order singularities on the negative half-axis.
The scattering theory for such potentials can be defined using analytical continuation. It
appears that the corresponding transition coefficient is identically equal to 1 and does not
vanish on the real line. This generalized solution of the inverse problem has been used
in the construction of the solutions of nonlinear evolution equations. The corresponding
long-range solutions of the evolution equations were called positons [16,21-23]. We have
to point out that the inverse scattering problem on the line cannot be solved uniquely even
for potentials decaying at infinity like @/x?) (see [2, 3, 8, 24] and references therein). The
corresponding ambiguity is related to the low-energy behaviour of the scattering matrix.
The set of admissible potentials can be extended also in order to include distributions [5, 6].
The first potentials without bound states having equal scattering matrices were constructed
with the delta functional singularities. This shows another important extension of the class
of admissible potentials.
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