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1 Introduction.

Singularities of the scattering matrix play an important role during investigation of
the large time behaviour of quantum systems. Only singularities, corresponding to
bound states, produce eigenfunctions which belong to the same Hilbert space, where
the operator is selfadjoint. It follows that positions of eigenvalues can be defined
easily. But resonance ”eigenfunctions” - solutions of the stationary equation, cor-
responding to the resonance energies - are not elements of the main Hilbert space.
The method of complex scaling for the Schroedinger equation with an analytic po-
tential connects resonances of the initially selfadjoint operator with eigenvalues of
some scaled operator [1],[3]. The scaled operator has eigenfunctions corresponding
to these complex eigenvalues.The positions of the resonances can be derived numeri-
cally. However, it is very hard to introduce any self-consistent scattering theory for
nonselfadjoint operators. This fact is connected with nonunitarity of the evolution
operator for such Hamiltonians. If the imaginary part of the scaled operator has a
definite sign, then it is possible that the scaled operator or its adjoint is a dissipative
operator. The evolution semigroup defined by one of these operators is contractive
and can be dilated to some unitary group [7]. The generator of this group is a selfad-
joint dilation of the dissipative scaled operator ([2]), i.e. operator which restriction
on a certain subspace coincide with nonselfadjoint one. Note that this definition of
dilation is not related to complex rotation, which is sometimes also called complex
dilation. This construction allows us to consider the spectral problem for the scaled
operator from the scattering theory point of view because we includ the nonselfadjoint
problem into the selfadjoint one.

In this paper we shall analyze this idea for the simplest model operator obtained
by perturbation of the boundary condition. Such operator defines the scaled operator
with a finite rank of nonselfadjointness. First we show that this operator during the
complex scaling reproduce the behaviour of an operator with an analytic potential.
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Then we shall construct a functional model of a selfadjoint dilation of the scaled
operator with the help of additional incoming and outgoing channels ([5]). It will
be shown that the reflection coefficient, obtained for the scaled operator, is a matrix
element of the general scattering matrix for selfadjoint dilation. Connections between
scattering characteristics of the dilation and spectrum of the scaled operator will be
shown.

2 Boundary condition for the operator .

We define a selfadjoint operator in the Hilbert space H = L2(0,∞) by the formula

Lh = − d2

dx2
(1)

on the functions with square integrable second derivative( W 2
2 (R+)), satisfying bound-

ary condition:
du

dx
|x=0= hu |x=0, h ∈ R (2)

For an arbitrary real constant h the operator Lh is a selfadjoint operator on it’s
domain. We have to note that in the case of a complex constant h the operator is no
longer a selfadjoint one.

The spectrum of the operator consists of the branch [0,∞) of the continuous
spectrum and may be one eigenvalue on the negative half-axis. Eigenfunctions of
continuous spectrum are:

ψ(k, x) = e−ıkx − S(k)eıkx (3)

where scattering matrix S(k) can be calculated from the boundary condition:

S(k) =
h + ık

h− ık
(4)

This S-matrix is a meromorphic function on the complex plane k , unitary on the
real axis. The singularity of the scattering matrix is situated on the imaginary axis.
It defines a bound state or a resonance. If h < 0, then the function

ψ0(x) = ehx (5)

is an eigenfunction, corresponding to a bound state with the energy E0 = −h2. When
h > 0 the singularity corresponds to a resonance.In this case the function ψ0(x) = ehx

increases at infinity exponentially and does not belong to L2.
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3 Complex Scaling.

Following ref. [1] and [3] we shall consider an unitary transformation in L2(0,∞):

U(z) : u(x) ⇒ √
zu(zx), z ∈ R+ (6)

This transformation is unitary for positive real values of the parameter z only. Hence
the scaled operator

L̂h(z) = U(z)LhU
−1(z) (7)

is a self adjoint operator for real positive z. The transformation U(z) can be continued
to complex values of the parameter z. Then the operator becomes nonselfadjoint with
a complex branch of continuous spectrum z̄2 × [0,∞). In order to use a possibility
to compare the scaled operator with the nonperturbed operator on half axis we shall
multiply operator L̂h(z) by a complex constant:

Lh(z) = z2L̂h(z). (8)

The branch of the continuous spectrum becomes real, i.e. it coincides with the essen-
tial spectrum of the unperturbed operator. The new operator is a selfadjoint operator
for real values of the parameter z again. We shall calculate the operator Lh(z), which
is an operator in L2(0,∞). First of all, we shall restore the differential expression:

(Lh(z)u) (x) = z2U(z)(− d2

dx2
)

1√
z
u(

x

z
) = z2U(z)

(
− 1

z2
√

z
u′′(

x

z
)

)
= − d2

dx2
u(x)

The new operator is defined on the functions which after the U - transformation
satisfy the boundary conditions (2), hence:

d

dx
u(

x

z
) |x=0= hu(

x

z
) |x=0⇒ d

dx
u(x) |x=0= zh u(x) |x=0 (9)

Thus we have just proved the equality:

Lh(z) = Lzh(1) = Lzh (10)

Corresponding continuous spectrum eigenfunctions have the same form, as for
initial operator. So one can again introduce a reflection coefficient Sz(k), which
coincides with the scattering matrix in a selfadjoint case:

Sz(k) =
zh + ık

zh− ık
=

h + ıkz−1

h− ıkz−1
= S(z−1k) (11)

The scaled operator can have only one complex eigenvalue which is a singularity of
the reflection coefficient. Let us suppose that z = eıθ then the reflection coefficient for
the scaled operator coincide with the S-matrix of the initial operator rotated on the
angle θ on the k-plane and 2θ on the energy plane. This behaviour of the singularities
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of the scattering matrix reproduce the usual behaviour for the Schroedinger operator
with an analytical potential.

Eigenfunctions and bound state energy (resonance energy) are analytic functions
of the parameter z. Hence one can obtain all the characteristics of the scaled operator
by analytic continuation of the corresponding characteristics of the initial one. Thus
the scattering matrix is an analytic continuation of the initial scattering matrix.
The bound state eigenfunction is an analytic continuation of the bound state or a
resonance eigenfunction.

4 Selfadjoint Dilation of the Scaled Operator.

The calculated scaled operator has an imaginary part of definite sign. Moreover, it
is possible to prove that the operator or it’s adjoint is a dissipative operator. In this
section we shall construct selfadjoint dilation of the scaled operator i.e. a selfadjoint
operator which restriction on a certain subspace coincides with the scaled operator.
Such dilation can be obtained for dissipative operators only. In our notations dis-
sipative operator has a spectrum in a closed lower halfplane. Hence the imaginary
part of the parameter zh is supposed to be negative:=(zh) < 0; 2=(zh) = −α2. This
restriction is not essential because operators Lz and Lz̄ are adjoint one to another.
This condition means, that we shall choose scaling parameter z from one of the half
planes (depending on the sign h ). The functional model for this case was constructed
by B.S.Pavlov ([2]).

One can define the general operator L in the Hilbert space

H = L2(−∞, 0)⊕H ⊕ L2(0,∞) 3 U = (u−, u, u+) (12)

by the formula:

LU =




1
ı

d
ds

u−(s)

− d2

dx2 u(x)
1
ı

d
ds

u+(s)


 (13)

on the domain of functions, satisfying boundary condition:

(
du

dx
− zh u) |x=0= αu−(0)

(
du

dx
− z̄h u) |x=0= αu+(0) (14)

One can prove that the operator L is a selfadjoint dilation of the operator Lh(z).We
shall restrict ourselves by calculation of the boundary form of the operator:

〈LU ,V〉 − 〈U ,LV〉 =

= −ı (u−(0)v̄−(0)− u+(0)v̄+(0)) + u′(0)v̄(0)− u(0)v̄′(0) =
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=
−ı

α2

(
(u′(0)− zhu(0))(v̄′(0)− z̄hv̄(0))− (u′(0)− z̄hu(0))(v̄′(0)− zhv̄(0))

)
+

+u′(0)v̄(0)− u(0)v̄′(0) = 0. (15)

To prove that the operator L is a dilation of the operator Lh(z) one can show for
=λ > 0 that:

PH(L − λ)−1 |H= (Lh(z)− λ)−1 (16)

Really, for every f ∈ H we have:

(L − λ)−1




0
f
0


 =




0
(Lh(z)− λ)−1f
−ıα ((Lh(z)− λ)−1f) (0)eıλs




Then from the translational invariance of the subspace H we have:

PH(L − λ)−1PH = PHı
∫ 0

−∞
eı(L−λ)tdtPH

which follows that L is a dilation of Lh(z).
Constructed selfadjoint operator has a purely continuous spectrum. Correspond-

ing eigenfunctions can be divided onto two sets. The first set is connected with in-
coming waves in the space L2(−∞, +∞), so-called incoming solutions in Lax-Phillips
scattering theory:

Ψi(λ) =




1√
2π

eıλs

−S21
1

2
√

πk
eıkx

S11
1√
2π

eıλs


 , λ ∈ (−∞, +∞), k =

√
λ (17)

S11 =
z̄h− ık

zh− ık
, S21 =

α
√

2k

zh− ık
.

The second set is produced by incoming solutions in space H, so-called radiating
eigenfunctions in Lax-Phillips theory:

Ψr(λ) =




0
1

2
√

πk
e−ıkx − S22

1
2
√

πk
eıkx

S12
1√
2π

eıλs


 , λ ∈ [0, +∞), k =

√
λ (18)

S22 =
zh + ık

zh− ık
, S12 = − α

√
2k

zh− ık
.

The introduced matrix of transition coefficients:

S =

(
S11 S12

S21 S22

)
(19)
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is the scattering matrix in the outgoing spectral representation for the pair of opera-
tors L and L0 ⊕L∞, where operator L0 is operator of the first derivative on the real
axis: L0 = 1

ı
d
dx

. One can see that the reflection coefficient Sz(k) for the nonselfad-
joint operator is a matrix element of the unitary scattering matrix for a selfadjoint
dilation of this operator. In the limit z → 1, the scattering matrix S transforms into
a diagonal matrix:

S →
(

1 0
0 S(k)

)
,

which corresponds to the case of nonconnected channels.

5 Resume.

It was shown in a model situation that the complex scaled problem can be included
into a selfadjoint one. Thus we received a possibility to consider all the objects of
the selfadjoint theory. Among other things, it is possible to introduce an unitary
scattering matrix. It seems that these ideas can be generalized for a problem with
an analytic potential with an imaginary part with a definite sign. The connections
with Lax-Phillips scattering theory can be very useful for the futher investigation of
complex scaled operators.

We are indebted to prof. B.S.Pavlov for a continuous interest for this work.
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