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Abstract. Supersingular H−n rank one perturbations of an arbitrary positive
self-adjoint operator A acting in the Hilbert space H are investigated. The
operator corresponding to the formal expression

Aα = A + α〈ϕ, ·〉ϕ, α ∈ R, ϕ ∈ H−n(A),

is determined as a regular operator with pure real spectrum acting in a certain
extended Hilbert space H ⊃ H. The resolvent of the operator so defined is
given by a certain generalization of Krein’s resolvent formula. It is proven that
the spectral properties of the operator are described by generalized Nevanlinna
functions. The results of [24] are extended to the case of arbitrary integer
n ≥ 4.
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1. Introduction

Finite rank singular perturbations of self-adjoint operators have been studied in-
tensively during the recent years [2,3,4,6,8,15,16,20,28,29,37]. In particular partial
differential operators with point interactions are described in [1,9], following the
pioneering work by F.Berezin and L.Faddeev from 1961 [7]. One of the main math-
ematical tools to study spectral properties of these operators is the well-known
Krein’s resolvent formula relating the resolvents of two self-adjoint extensions of
one symmetric operator having finite or infinite deficiency indices [21,27,34]. Self-
contained presentation of this theory can be found in recent papers [4,14].

In the current paper we continue our studies of singular rank one pertur-
bations of a positive self-adjoint operator A acting in the Hilbert space H. The
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perturbed operator can formally be defined by

Aα = A + α〈ϕ, ·〉ϕ, (1.1)

where α ∈ R is a coupling constant and ϕ is the singular vector describing the
interaction. To measure the singularity of the interaction one can use the scale Hs

of Hilbert spaces1 associated with the self-adjoint operator A acting in the Hilbert
space H

. . . ⊂ H4 ⊂ H3 ⊂
Dom(A)

‖
H2 ⊂ H1 ⊂

H
‖
H0 ⊂ H−1 ⊂

(Dom (A))∗
‖
H−2 ⊂ H−3 ⊂ H−4 ⊂ . . .

(1.2)
We say that the interaction is from the class H−n if and only if ϕ ∈ H−n \H−n+1.

The singular interactions from the classes H−1 and H−2 can be defined using
operators acting in the original Hilbert space H. The perturbation term α〈ϕ, ·〉ϕ
is infinitesimally form bounded with respect to the operator A, if ϕ ∈ H−1. The
perturbed operator is uniquely defined using the KLMN theorem in [33]. The
perturbed operator in the case of H−2 perturbations is not defined uniquely - in
this case a one parameter family of self-adjoint operators corresponds to formal
expression (1.1) [19,2,3,4].

The current paper is devoted to so-called supersingular perturbations de-
fined by vectors from H−n, n ≥ 3. Such perturbations have been studied using a
certain extension of the original Hilbert space. In [35,36,12,13] rank one supersin-
gular perturbations were defined using self-adjoint operators acting in Pontryagin
spaces. It was shown that the spectral properties of these models are described
by generalized Nevanlinna functions with a finite number of negative squares [16].
Similar ideas were used in [18,30-32] where concrete problems of mathematical
physics were attacked. Different physicists and mathematicians tried to define su-
persingular perturbations [10,11,17,5].

In [23] supersingular rank one perturbation of positive self-adjoint operator
have been defined without any use of spaces with indefinite metrics. The approach
was limited to the case of H−3 perturbations. In [24] we were able to make one
step further and describe all supersingular perturbations from the class H−4. It
turns out that these perturbed operators are not self-adjoint but are regular. The
following definition was introduced in [24]:

Definition 1.1. Densely defined operator B is called regular if its domain coincides
with the domain of the adjoint operator.

The set of regular operators contains all self-adjoint operators. The class
of self-adjoint operators can be characterized by one additional restriction: the
densely defined operator B is self-adjoint if it is regular and symmetric. Obviously
the set of regular operators extends the set of self-adjoint operators enormously.

The operators corresponding to supersingular interactions have one addi-
tional remarkable property:

1For the precise definition, see Section 2.
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The spectrum of the operator is purely real.
This property makes it possible to use high order perturbations in physical appli-
cations. The formula describing the resolvent of the perturbed operator is similar
to the celebrated Krein’s formula. The spectral properties of the operators are
described by generalized Nevanlinna functions. The aim of the current paper is to
generalize the ideas of [24] to the case of arbitrary supersingular perturbations.

For the convenience of the reader we recall the necessary preliminary facts
concerning singular rank one perturbations in Section2. The main ideas of the cur-
rent paper are described in this section. In particular it is proposed to define the
perturbed operator as a restriction of a certain maximal operator. The maximal
operator and the extended Hilbert space used to construct supersingular perturba-
tions are described in Section 3. The family of regular operators corresponding to
such singular perturbation is obtained in Section 4. The resolvent formula describ-
ing supersingular perturbation is calculated. The relations between this formula
and Krein’s resolvent formula are investigated.

2. Rank One Perturbations and the Extensions Theory

The present paper is devoted to the construction of the operator describing rank
one supersingular perturbation of a given positive self-adjoint operator A acting
in a certain Hilbert space H, given formally by (1.1). Description of the recent
developments in this area can be found in [2,3,15,19,22,26,37]. It has been shown
that if ϕ belongs to the original Hilbert space H then the perturbation α〈ϕ, ·〉ϕ is
a bounded symmetric operator and the perturbed operator Aα is self-adjoint on
the domain of the original operator A. The resolvent of the perturbed operator is
given by

1
Aα − λ

=
1

A − λ
− 1

1
α + 〈ϕ, 1

A−λϕ〉
〈

1
A − λ̄

ϕ, ·
〉

1
A − λ

ϕ. (2.1)

All spectral properties of the perturbed operator Aα are described by the Nevan-
linna function Q(λ) = 〈ϕ, 1

A−λϕ〉 (See e.g. [4]).
Consider now the scale of Hilbert spaces Hs associated with the positive

operator A. The norm in each space Hs is defined by

‖ U ‖2
Hs

= 〈U, (A + 1)sU〉,
where 〈·, ·〉 is the scalar product in the original Hilbert space H. In order to avoid
misunderstanding only the scale of Hilbert spaces associated with the original op-
erator A and the original Hilbert space H will be considered throughout the paper.
All perturbations defined by vectors ϕ not from the original Hilbert space H are
called singular. These perturbations are characterized by the fact that the domain
of the perturbed operator does not coincide with the domain of the original one.
In the case ϕ ∈ H−1 \H the perturbation is relatively form bounded with respect
to the sesquilinear form of the operator A and the perturbed operator can be de-
termined using the form perturbation technique. The resolvent of the perturbed
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operator is again given by (2.1). The main difference is that the domain of the
perturbed operator does not coincide with the domain of the original operator
in general, but the perturbed operator is uniquely defined and is a self-adjoint
operator acting in the original Hilbert space H [37,2]. Another way to define the
perturbed operator is using the extension theory for symmetric operators. It is
obvious that the perturbed and original operators coincide on the linear set of
functions U satisfying the condition

〈ϕ,U〉 = 0. (2.2)

Then the perturbed operator is an extension of the original operator restricted to
this linear set. If ϕ ∈ H−1 \H the restricted operator is a symmetric operator with
the deficiency indices (1, 1). Its self-adjoint extension corresponding to the formal
expression (1.1) is uniquely defined. The resolvent of the perturbed operator can
be described using Krein’s formula [21,27], which coincides with formula (2.1) in
this case.

The case ϕ ∈ H−2 \ H−1 can be treated using the extension theory for
symmetric operators, since the perturbation is not form bounded with respect
to the original operator. The restricted symmetric operator can be defined in
a way similar to H−1-case. But the perturbed operator is not uniquely defined
anymore. One can only conclude that the perturbed operator is equal to one of
the self-adjoint extensions of the restricted operator. All such operators can be
parametrized by one real parameter γ ∈ R ∪ {∞} as follows

1
Aγ − λ

=
1

A − λ
− 1

γ + 〈ϕ, 1+λ
A−λ

1
A+1ϕ〉

〈
1

A − λ̄
ϕ, ·

〉
1

A − λ
ϕ. (2.3)

A relation between the real parameter γ describing the self-adjoint extensions of
the restricted operator and the (additive) coupling parameter α appearing in for-
mula (1.1) cannot be established without additional assumptions like homogeneity
of the original operator and the perturbation vector.2 The Nevanlinna function
Q−2(λ) = 〈ϕ, 1+λ

A−λ
1

A+1ϕ〉 can be considered as a regularization of the resolvent
〈ϕ, 1

A−λϕ〉 which is not defined in the case of ϕ ∈ H−2 \ H−1:

Q−2(λ) = 〈ϕ,
1 + λ

A − λ

1
A + 1

ϕ〉 formally
= 〈ϕ,

1
A − λ

ϕ〉 − 〈ϕ,
1

A + 1
ϕ〉. (2.4)

Observe that the two scalar products appearing in the right hand side of the last
formula are not defined for ϕ ∈ H−2 \H−1, but their difference is in contrast well
defined. The Nevanlinna function 〈ϕ, 1+Aλ

A−λ
1

A2+1ϕ〉 just coincides with Krein’s Q-
function appearing in the formula for the difference between the resolvents of two
different self-adjoint extensions of a symmetric operator with deficiency indices
(1, 1) [21,27].

The next step is to consider ϕ ∈ H−3. The restriction defined by (2.2) is
defined only if one considers the original operator A as an operator acting in the
Hilbert space H1. Then the domain of the unperturbed operator A coincides with

2This approach has been developed in [2,3].
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the space H3 and the restriction (2.2) determines a symmetric operator. On the
other hand formula (2.1) is valid only if one considers the extended Hilbert space
containing vectors 1

A−λϕ ∈ H−1. It turns out that such an ension is in fact one
dimensional, since for arbitrary λ, µ ∈ C \ R+ the following inclusion is valid

1
A − λ

ϕ − 1
A − µ

ϕ = (ϕ − µ)
1

(A − λ)(A − µ)
ϕ ∈ H1.

Hence it is enough to include the one dimensional subspace generated by the
vector 1

A+1ϕ only. Hence the perturbed operator can be defined in the Hilbert
space H−3 = H1 ⊕ C equipped with the natural embedding ρ−3

ρ−3 : H−3 → H−1

U = (U, u1) �→ U + u1
1

A+1ϕ.
(2.5)

The perturbed operator corresponding to the formal expression (1.1) has been
constructed in [23] by first defining a certain maximal operator acting in H−3 and
then restricting it to a self-adjoint operator. The maximal operator is similar to the
adjoint operator appearing in the restriction-extension procedure used to construct
H−2-perturbations. The set of self-adjoint restrictions of the maximal operator are
described by one real parameter. Therefore formula (1.1) does not determine the
perturbed operator uniquely, but a one parameter family of operators like in the
case of H−2-perturbations. The resolvent of the perturbed operator restricted to
the original Hilbert space is given by the formula

ρ−3
1

Aθ−λ
|H1 =

1
A−λ

− 1

(λ + 1) cot θ + 〈ϕ, 1
A−λ

(λ+1)2

(A+1)2 ϕ〉 − 1

〈
1

A−λ̄
ϕ, ·

〉
1

A−λ
ϕ,

(2.6)
where θ ∈ [0, π) is the real number parametrizing the restrictions. The similarity
between formulas (2.1) and (2.6) is obvious. The function

Q(λ)−3 = 〈ϕ,
1

A − λ

(λ + 1)2

(A + 1)2
ϕ〉

formally
= 〈ϕ,

1
A − λ

ϕ〉 − 〈ϕ,
1

A + 1
ϕ〉 − (λ + 1)〈ϕ,

1
(A + 1)2

ϕ〉
(2.7)

is a double regularization of the resolvent function. This function describes the
spectral properties of the self-adjoint perturbed operator.

Supersingular perturbation from the class H−4 have been studied in [24].
Our original aim was simply to generalize the ideas developed in [23] to the case
of more singular perturbations. The main difference with the case ϕ ∈ H−3 is that
the original operator A should be considered as an operator acting in the Hilbert
space H2 from the scale of Hilbert spaces. Moreover this Hilbert space should be
extended to include not only the vector

g1 =
1

A + 1
ϕ ∈ H−2
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but the vector

g2 =
1

(A + 1)2
ϕ ∈ H

as well. Hence one has to consider the Hilbert space

H−4 = H2 ⊕ C2 (2.8)

equipped with the standard imbedding

ρ−4 : H−4 → H−2

U = (U, u2, u1) �→ U + u2
1

(A+1)2 ϕ + u1
1

A+1ϕ.
(2.9)

The maximal operator can be defined in a way similar to H−3-perturbations. The
main difference is that any symmetric restriction of the maximal operator is not
self-adjoint. Hence no self-adjoint operator corresponds to the formal expression
(1.1). Instead one can consider the restrictions of the maximal operator that are
regular operators. All such restrictions are parametrized by one real parameter in a
way similar to H−3 perturbations. The real and imaginary parts of these operators
were calculated explicitly. The resolvent of the perturbed operator was calculated
as well and it was shown that the spectrum of the perturbed regular operator
is pure real. The resolvent restricted to the original Hilbert space is given by a
formula similar to Krein’s formula (2.3). All spectral properties of the perturbed
operator are described by the Nevanlinna function Q given by

Q−4(λ) = 〈ϕ,
1

A − λ

(λ + 1)3

(A + 1)3
ϕ〉

formally
= 〈ϕ,

1
A − λ

ϕ〉 − 〈ϕ,
1

A + 1
ϕ〉 − (λ + 1)〈ϕ,

1
(A + 1)2

ϕ〉

−(λ + 1)2〈ϕ,
1

(A + 1)3
ϕ〉

(2.10)

The aim of the current paper is to generalize the ideas of [24] to the case of
arbitrary supersingular perturbations from the class H−n, n ≥ 4.

3. The Extended Hilbert Space and the Maximal Operator

The operator corresponding to the formal expression (1.1) will be constructed as
a restriction of a certain maximal operator acting in a certain extended Hilbert
space. The extended Hilbert space and the maximal operator are described in the
current section. To avoid a non-essential discussion we limit our consideration to
the case where ϕ ∈ H−n \ H−n+1, n ≥ 4. 3

3The cases n = 1, 2, 3 are well-described in the literature.
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Following the ideas expressed in Section 2, we consider the Hilbert space
H ≡ H−n = C(n−2) ⊕Hn−2

4 equipped with the scalar product


 U,V � = ū1v1 + . . . + ūn−3vn−3 + ūn−2vn−2 + 〈U, V 〉Hn−2

= 〈�u,�v〉Cn−2 + 〈U, (1 + A)(n−2)V 〉,
(3.1)

where we used the following vector notation

U = (�u, U), �u = (u1, u2, . . . , un−2)
V = (�v, V ), �u = (v1, v2, . . . , vn−2).

Different scalar products can be defined in the vectors space H. The simplest case
is considered in the current paper in order to avoid unnecessary complications.
The general case will be studied in one of the following publications.

The space H can be embedded into the space H−n+2 as follows

ρU = u1g1 + u2g2 + . . . + un−2gn−2 + U

=
n−2∑
k=1

ukgk + U,
(3.2)

where the vectors gk, k = 1, 2, . . . , n − 2 are defined by

g0 = ϕ, gk =
1

A + 1
gk−1 =

1
(A + 1)k

ϕ, k = 1, 2, . . . , n − 2. (3.3)

Note that the embedding operator ρ depends on the order n.
The operator A can be considered as an operator acting in the scale of Hilbert

spaces. Recall that the spaces Hs ⊂ H ⊂ H−s form a Gelfand triplet for s =
1, 2, . . .: H is a Hilbert space and H∗

s = H−s with respect to the pairing defined
by the scalar product of H.

Consider arbitrary Gelfand triplet K ⊂ H ⊂ K∗. Let B be a densely defined
operator in the space K then the triplet adjoint operator B† acting in K∗ is defined
on the domain

Dom (B†) = {f ∈ K∗ : g ∈ Dom (B) ⇒ |〈Bg, f〉| ≤ Cf ‖ g ‖K}
by the following equality

〈Bg, f〉 = 〈g,B†f〉.
Note that the scalar product appearing in the last definition should be understood
as pairing defined by the original scalar product of H. The triplet adjoint operator
coincides with the standard adjoint operator in the case K = H = K∗. Otherwise
the triplet adjoint operator B† is different from the adjoint operator B∗ - operator
adjoint to B considered as an operator in the Hilbert space H ⊃ K.

Consider the restriction AHn−2 of the operator A to the Hilbert space Hn−2.
This operator is a self-adjoint operator in this Hilbert space with the domain

4We are going to drop the subindex −n whenever it is possible to make the presentation more
transparent.
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Dom (AHn−2) = Hn. The triplet adjoint operator A†
Hn−2

coincides with the op-
erator AH−n+2 , which the resctriction of A (acting in the scale of Hilbert spaces
as described above) to the space H−n+2. It is also an extension of the original
self-adjoint operator A acting in H. The domain of the triplet adjoint operator
coincides with the space H−n+4

Dom (A†
Hn−2

) = H−n+4.

Summing up we conclude that the triplet adjoint operator to AHn−2 with respect
to the triplet Hn−2 ⊂ H ⊂ H−n+2 coincides with the operator AH−n+2 .

We define the minimal operator Amin corresponding to the formal expression
(1.1) as the restriction of the operator AHn−2 to the domain of function orthogonal
to ϕ

Dom (Amin) = {ψ ∈ Hn : 〈ϕ,ψ〉 = 0}. (3.4)

The operator Amin is densely defined, since ϕ /∈ H−n+1 ⇒ ϕ /∈ H−n+2. Then the
maximal operator Amax coincides with the triplet adjoint operator to Amin with
respect to the triplet Hn−2 ⊂ H ⊂ H−n+2

Amax = A†
min. (3.5)

The following Lemma describes the maximal operator Amax in detail.

Lemma 3.1. The maximal operator Amax is defined on the domain

Dom (Amax) =
{

f = f̃ + f1g1 ∈ H−n+2, f̃ ∈ H−n+4, f1 ∈ C
}

. (3.6)

by the following formula

Amax(f̃ + f1g1) = Af̃ − f1g1. (3.7)

Remark 3.2. In the case n = 2 the minimal operator Amin is a symmetric operator
in the original Hilbert space having the domain Dom (Amin) = {ψ ∈ Dom (A) =
H2(A) : 〈ϕ,ψ〉 = 0}. Then the maximal operator Amax coincides with the usual
adjoint operator to Amin with the domain given by (3.6). The action of the adjoint
operator is given by (3.7).

Proof. The domain of the triplet adjoint operator A†
min consists of all elements

f ∈ H−n+2 such that the sesquilinear form 〈(A + 1)ψ, f〉 = 〈ψ, (A + 1)f〉 can be
estimated as follows

|〈ψ, (A + 1)f〉| ≤ Cf ‖ ψ ‖Hn−2

for all ψ ∈ Dom (Amin), since the operator Amin is a restriction of the operator A.
The last estimate holds for all ψ ∈ Hn, 〈ψ,ϕ〉 = 0 if and only if

(A + 1)f = f̂ + f1ϕ,

where f̂ ∈ H−n+2, f1 ∈ C. It follows that the function f possesses representation
(3.6).
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Suppose now that representation (3.6) holds. Then the sesquilinear form can
be written as follows

〈(A + 1)ψ, f〉 = 〈(A + 1)ψ, f̃〉 + 〈(A + 1)ψ,
1

A + 1
ϕ〉

= 〈ψ, (A + 1)f̃〉 + 0.

It follows that

(A + 1)†(f̃ + f1g1) = (A + 1)f̃

and hence (3.7) holds. �

The operator Amax will be used to define the maximal operator acting in the
extended Hilbert space H.

Definition 3.3. The maximal operator Amax acting in the Hilbert space H is the
restriction of the operator Amax to the Hilbert space H defined by the following
equality

Amaxρ = ρAmax (3.8)

on the following domain

Dom (Amax) = {U ∈ H : Amaxρ(U) ∈ Range(ρ)}.
The following lemma describes in details the maximal operator Amax.

Lemma 3.4. The maximal operator Amax determined by Definition 1 is defined on
the domain

Dom(Amax) = {U = (u1, u2, . . . , un−2, Ur + un−1gn−1),
u1, u2, . . . , un−2, un−1 ∈ C, Ur ∈ Hn} (3.9)

by the formula

Amax




u1

u2

. . .
un−2

Ur + un−1gn−1


 =




u2 − u1

u3 − u2

. . .
un−1 − un−2

AUr − un−1gn−1


 . (3.10)

Proof. Consider any vector U = (u1, u2, ..., un−2, U) from the domain of the op-
erator Amax and let us denote its image by W = (w1, w2, . . . , wn−2,W ). Then
equality (3.8) can be written as follows

w1g1 + w2g2 + . . . + wn−3gn−3 + wn−2gn−2 + W

=(u2 − u1)g1 + (u3 − u2)g2 + . . . + (un−2 − un−3)gn−3 − un−2gn−2 + AU.
(3.11)
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We conclude that

w1 = u2 − u1;
w2 = u3 − u2;
. . .

wn−3 = un−2 − un−3;
W + wn−2gn−2 = AU − un−2gn−2.

(3.12)

The last equality can be written as

W + U + wn−2gn−2 + un−2gn−2 = (A + 1)U

and therefore

U =
1

A + 1
(W + U) + (wn−2 + un−2)

1
A + 1

gn−2.

It follows that the element U possesses the following representation

U = Ur + un−1gn−1,

where Ur ∈ Hn , un−1 ∈ C. Then equality (3.11) can be written as

w1g1 + w2g2 + . . . + wn−2gn−2 + W

= (u2 − u1)g1 + (u3 − u2)g2 + . . . + (un−1 − un−2)gn−2 + AUr − un−1gn−1,

and one can deduce that formula (3.10) holds. �

The spectrum of the operator Amax covers the whole complex plane. Indead
consider any complex number λ. Then the element

U =




1
(1 + λ)

. . .
(1 + λ)n−3

(1 + λ)n−1

A − λ
gn−1 + (1 + λ)n−2gn−1




=




1
(1 + λ)

. . .
(1 + λ)n−3

(1 + λ)n−2 A + 1
A − λ

gn−1




solves the equation AmaxU = λU. Note that the last formula reads as follows in
the special case λ = −1

Amax




1
0

. . .
0
0


 = −




1
0

. . .
0
0


 .

Let us calculate the adjoint operator Amin = A∗
max. Note that the operator

Amin is different from the minimal operator Amin considered earlier. In fact the
operator Amin is a restriction of the operator Amin.



Vol. 45 (2003) Krein’s Formula for H−n–perturbations 447

Lemma 3.5. The operator Amin, adjoint to Amax in H, is defined on the domain

Dom (Amin) = {U = (u1, u2, . . . , un−2, Ur);u1, u2, . . . , un−2 ∈ C,
Ur ∈ Hn, un−2 = 〈ϕ,Ur〉} (3.13)

by the formula

Amin




u1

u2

. . .
un−2

Ur


 =




−u1

u1 − u2

. . .
un−3 − un−2

AUr


 . (3.14)

Proof. Consider arbitrary elements U ∈ Dom (Amax) and
V = (v1, v2, . . . , vn−2, V ) ∈ H. The sesquilinear form of the operator Amax is


 (Amax + 1)U,V � = ū2v1 + ū3v2 + . . . + ūn−1vn−2

+〈(A + 1)Ur, (1 + A)n−2V 〉

= ū2v1 + ū3v2 + . . . + ūn−2vn−3

+ūn−1

{
vn−2 − 〈gn−1, (1 + A)n−1V 〉}

+〈Ur + un−1gn−1, (1 + A)n−1V 〉.

(3.15)

Consider first the subset of elements U ∈ Dom (Amax) with

uk = 0, k = 1, 2, . . . , n − 1.

Then the last term in (3.15) is a bounded functional with respect to U ∈ H if
and only if V = Vr ∈ Hn. Consider next arbitrary U ∈ Dom (Amax). Since the
functional U �→ un−1 is not bounded in the norm of H, the last formula determines
bounded linear functional if and only if the expression in { } vanishes, i.e.

vn−2 = 〈gn−1, (1 + A)n−1Vr〉 ≡ 〈ϕ, Vr〉. (3.16)

Hence the domain of Amin is formed by the elements possessing the repre-
sentation

V = (v1, v2, . . . , vn−2, Vr), Vr ∈ Hn, vk ∈ C

and satisfying (3.16). Taking into account these relations, the formula for the
adjoint operator can be written as follows


 AmaxU,V � = 
 U,AminV �

= ū1v1 + ū2(v1 − v2) + . . . + ūn−2(vn−3 − vn−2)

+〈Ur + un−1gn−1, (1 + A)n−2AVr〉.
It follows that the action of the minimal operator is given by (3.14). �
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The operator Amin is an extension of the operator Amin. Indead the do-
main of Amin defined by (3.4) belongs to Dom (Amin) and moreover Amin =
Amin|Dom(Amin).

5

The domain of the minimal operator Amin is contained in the domain of
the maximal operator Amax, but the minimal operator does not coincide with
the restriction of the maximal operator to the domain of the minimal one. There-
fore no restriction of the operator Amax is self-adjoint like in the case of H−3-
perturbations [23]. Therefore no self-adjoint operator can be associated with the
formal operator (1.1).

This can also be seen from the following lemma.

Lemma 3.6. The boundary form of the maximal operator Amax is given by


 AmaxU,V � − 
 U,AmaxV �

=

〈



0 1 . . . 0 0 0
−1 0 . . . 0 0 0
. . . . . . . . . . . . . . . . . .
0 0 . . . 0 1 0
0 0 . . . −1 0 1
0 0 . . . 0 −1 0







u1

u2

. . .
un−2

un−3

〈ϕ,Ur〉




,




v1

v2

. . .
vn−2

vn−3

〈ϕ, Vr〉




〉
(3.17)

Proof. The following straightforward calculations prove the Lemma


 AmaxU,V � − 
 U,AmaxV �

= 





u2 − u1

u3 − u2

. . .
un−1 − un−2

AUr − un−1gn−1


 ,




v1

v2

. . .
vn−2

Vr + vn−1gn−1


 �

− 





u1

u2

. . .
un−2

Ur + un−1gn−1


 ,




v2 − v1

v3 − v2

. . .
vn−1 − vn−2

AVr − vn−1gn−1


 �

= +ū2v1 + ū3v2 + . . . + ūn−1vn−2 − ū1v2 − ū2v3 − . . . − ūn−2vn−1

+〈Ur, ϕ〉vn−1 − ūn−1〈ϕ, Vr〉.
We have used that ϕ = (1 + A)n−1gn−1 in these calculations. �

5The operators Amin and Amin coincide only in the cases n = 1, 2.
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The matrix describing the boundary form

B ≡




0 −1 0 . . . 0 0 0
1 0 −1 . . . 0 0 0
0 1 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −1 0
0 0 0 . . . 1 0 −1
0 0 0 . . . 0 1 0




is symplectic and has rank n for even n and n−1 for odd n. Hence any symmetric
restriction of the operator Amax is described by at least [n

2 ] boundary conditions.6

Such restriction cannot be self-adjoint, since the kernel of the operator Amax − λ
for nonreal λ has dimension one. We have proven for the second time that no
restriction of the operator Amax is self-adjoint in the Hilbert space H and no
self-adjoint operator corresponds to formal expression (1.1) in the case ϕ ∈ H−n \
H−n+1, n ≥ 4. To define a non self-adjoint operator corresponding to this formal
expression the class of regular operators will be introduced in the following section.

If n = 3, then the rank of the matrix B is 2 and all Lagrangian planes of the
boundary form are described by one condition. Thus the restrictions of Amax to
the corresponding subspaces are self-adjoint operators [23].

One can proceed now along two possible lines:
1. Construct a non self-adjoint operator corresponding to (1.1).
2. Consider the maximal common symmetric restriction of the operators Amin

and Amax and describe all its self-adjoint extensions.
We decided to follow the first possibility, since the resolvent of the operator ob-
tained in this way is given by formula (4.15) similar to Krein’s formula for gener-
alized resolvents. The second approach is described in [25] (for n = 4 only).

4. Regular Operators and Supersingular Perturbations of
Self-adjoint Operators

The operator corresponding to the formal expression (1.1) is a certain restriction
of the maximal operator. In this section we are going to study the set of regular
restrictions of the maximal operator.

All regular restrictions of the maximal operator are characterized by the
following theorem.

Theorem 4.1. A restriction A of Amax is a regular operator if and only if there
exist real numbers a, b, not equal to zero simultaneously, such that DomA is the
restriction of DomAmax by

a〈ϕ,Ur〉 + bun−1 − aun−2 = 0. (4.1)

6[·] denotes the integer part here.
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Proof. The domain Dom (Amax) of the maximal operator contains the domain
Dom (Amin) of its adjoint. Therefore every regular restriction of Amax is an ex-
tension of Amin. 7 The domain Dom (Amax) consists of all elements U ∈ H
possessing the representation

U = (u1, u2, . . . , un−2, Ur + un−1gn−1),

where Ur ∈ Hn, uk ∈ C, k = 1, 2, . . . , n − 1. The domain Dom (Amin) of the
adjoint operator is a subdomain of Dom (Amax) characterized by the boundary
conditions {

un−1 = 0,
〈ϕ,Ur〉 − un−2 = 0.

Thus the dimension of the quotient space Dom (Amax)/Dom (Amin) is equal to
2. Any linear subset D of Dom (Amax) which does not coincide with Dom (Amin)
and Dom (Amax) is described by the boundary conditions of the form

a (〈ϕ,Ur〉 − un−2) + bun−1 = 0, (4.2)

where (a, b) is a two dimensional nonzero complex vector. (If both parameters
a and b are equal to zero, then the boundary condition (4.2) is satisfied by all
functions from Dom (Amax) and the linear subset coincides with the domain of
maximal operator.)

The foregoing shows that a regular restriction has a domain of the form (4.2).
It has to be determined under what necessary and sufficient conditions on a and
b a restriction of the maximal operator to a domain of the form (4.2) is regular.

The sesquilinear form of the operator Amax|D is given again by formula
(3.15), where now U ∈ D. Consider vectors U with un−2 = un−1 = 〈ϕ,Ur〉 = 0.
Then the scalar product

〈Ur, (A + 1)n−1V 〉
generates a bounded linear functional with respect to the vector (0, 0, . . . , 0, Ur)
∈ H and the standard norm in H if and only if the following representation holds8

(A + 1)n−1V = cϕ + f̃ ,

where c ∈ C, f̃ ∈ H−n+2. This implies that

V = cgn−1 +
1

(A + 1)n−1
f̃ ,

and it follows that the vector V possesses the representation

V = Vr + vn−1gn−1,

7This procedure is similar to the one used in the extension theory of symmetric operators.
8Remember that Ur is orthogonal to ϕ.
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where Vr ∈ Hn, vn−1 ∈ C. Then the sesquilinear form is given by


 (A + 1)U,V �

= 〈Ur + un−1gn−1, (A + 1)n−1Vr〉 − ūn−1〈ϕ, Vr〉 + vn−1〈Ur, ϕ〉

+ūn−1vn−2 + ūn−2vn−3 + . . . + ū3v2 + ū2v1.

The domain of the operator adjoint to Amax|D is characterized by the con-
dition that the last formula determines bounded a certain linear functional with
respect to U ∈ H. We are going consider all possible values of the parameters a
and b and study the question whether the domain of the adjoint operator coincides
with the domain of the restricted operator or not. Let us call admissible the two
dimensional vectors leading to regular restrictions of the maximal operator. The
following two cases cover all possible values of the the parameters.

Case 1. General:
a �= 0, b arbitrary.
The boundary condition can be presented in the form

〈ϕ,Ur〉 − un−2 = − b

a
un−1

and the sesquilinear form of the operator is given by


 (A + 1)U,V �

= 〈Ur + un−1gn−1, (A + 1)n−1Vr〉 + ūn−1

(
−〈ϕ, Vr〉 − b̄

ā
vn−1 + vn−2

)

+ūn−2 (vn−3 + vn−1) + ūn−3vn−4 + . . . + ū3v2 + ū2v1.

The last expression determines a bounded linear functional if and only if the
following relation holds

ā (〈ϕ, Vr〉 − vn−2) + b̄vn−1 = 0.

This condition coincides with (4.2) if and only if the complex numbers a and b
have the same phase. Hence without loss of generality the constants a, b can be
chosen real. Any vector (a, b) ∈ R2 is admissible.

Case 2. Special
a = 0, b �= 0.
The boundary condition takes the form

un−1 = 0. (4.3)
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Hence the sesquilinear form of the operator is given by


 (A + 1)U,V �

= 〈Ur + un−1gn−1, (A + 1)n−1Vr〉 + ūn−2vn−3

+〈Ur, ϕ〉vn−1 + ūn−3vn−4 + . . . + ū3v2 + ū2v1.

This form defines bounded linear functional with respect to U ∈ H if and only if

vn−1 = 0,

since 〈Ur, ϕ〉 is not a bounded linear functional. The last condition coincides with
(4.3). Without loss of generality the constant b can be chosen real. Every vector
(0, b), b �= 0, is admissible.

Summing up our studies we conclude that the set of regular restrictions of the
operator Amax can be characterized by the boundary conditions (4.1) with real a
and b not equal to zero simultaneously. �

The theorem states that all regular restrictions of the operator Amax are
described by nontrivial real two dimensional vectors (a, b). The length of the vector
(a, b) plays no rôle and therefore all boundary conditions can be parametrized by
one real parameter - ”angle” θ ∈ [0, π) as follows:

sin θ〈ϕ,Ur〉 + cos θun−1 − sin θun−2 = 0. (4.4)

The following definition will be used.

Definition 4.2. The operator Aθ is the restriction of the maximal operator Amax

to the set of functions satisfying boundary conditions (4.4).

The domain of the operator Aθ is formed by the functions from Dom (Amax)
(given by (3.9)) subject to the boundary conditions (4.4). The action of the oper-
ator Aθ is given by (3.10).

Thus the regular operator corresponding to the formal expression (1.1) is not
defined uniquely. Like in the case of H−2 and H−3-perturbations a one parameter
family of operators has been constructed.

Let us calculate the operator adjoint to Aθ. The domain of this operator
coincides with the domain Dom (Aθ). The sesquilinear form of the operator Aθ

can be presented by the following expression using the fact, that the functions
from the domains of the operators Aθ and A∗

θ satisfy (4.4)


 (Aθ + 1)U,V � = 〈Ur + un−1gn−1, (A + 1)n−1Vr〉 + ūn−2 (vn−1 + vn−3)

+
n−4∑
k=1

ūk+1vk,
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and it follows that

(A∗
θ + 1)




v1

v2

. . .
vn−3

vn−2

Vr + vn−1gn−1




=




0
v1

. . .
vn−4

vn−1 + vn−3

(A + 1)Vr




.

Hence the action of the operator A∗
θ is given by

A∗
θ




v1

v2

. . .
vn−3

vn−2

Vr + vn−1gn−1




=




−v1

v1 − v2

. . .
vn−4 − vn−3

vn−1 + vn−3 − vn−2

AVr − vn−1gn−1




. (4.5)

The real and imaginary parts of the operator Aθ are given by

Aθ = �Aθ + i�Aθ;

(�Aθ)




u1

u2

. . .
un−3

un−2

Ur + un−1gn−1




=




1
2u2 − u1

1
2 (u3 + u1) − u2

. . .
1
2 (un−2 + un−4) − un−3

un−1 + 1
2un−3 − un−2

AUr − un−1gn−1




;

�Aθ =
1
2




0 −i 0 . . . 0 0 0
i 0 −i . . . 0 0 0
0 i 0 . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . 0 −i 0
0 0 0 . . . i 0 0
0 0 0 . . . 0 0 0




. (4.6)

The real part of the operator Aθ is a self-adjoint operator on the domain Dom (Aθ).
The imaginary part of Aθ is a bounded self-adjoint operator, which does not
depend on the parameter θ.

Let us study the operator A0 in more details. This operator is equal to the
orthogonal sum of two operators acting in the spaces Cn−2 and Hn−2. Indead the
domain of the operator A0 can be decomposed as follows

Dom (A0) = Cn−2 ⊕Hn ⊂ Cn−2 ⊕Hn−2 ≡ H.

The two operators appearing in the corresponding decomposition of the operator
A0

A0 = T ⊕ A,
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are the operator in Cn−2 given by the upper triangular matrix

T =




−1 1 0 0 . . . 0 0
0 −1 1 0 . . . 0 0
0 0 −1 1 . . . 0 0
0 0 0 −1 . . . 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1 1
0 0 0 0 . . . 0 −1




and the operator A in Hn−2 with the domain Hn. The resolvent of the operator
A0 for arbitrary nonreal λ can easily be calculated

1
A0 − λ

=




−1
1+λ

−1
(1+λ)2

−1
(1+λ)3 . . . −1

(1+λ)n−2

0 −1
(1+λ)

−1
(1+λ)2 . . . −1

(1+λ)n−3

0 0 −1
(1+λ) . . . −1

(1+λ)n−4

. . . . . . . . . . . . . . .

0 0 0 . . . −1
1+λ




⊕ 1
A − λ

. (4.7)

Let us study now the spectrum of the operator Aθ. The following theorem
implies that the spectrum is real, since the resolvent of Aθ wxists and is a bounded
operator for nonreal values of the spectral parameter.

Theorem 4.3. The resolvent of the operator Aθ for all nonreal λ is given by the
(n − 1) × (n − 1) bounded matrix operator

1
Aθ − λ

=
1

A0 − λ

− sin θ

D(λ)




0 0 . . . 0 1
(1+λ)n−1

1
(1+λ)n−2 〈 1

A−λ
ϕ, ·〉

0 0 . . . 0 1
(1+λ)n−2

1
(1+λ)n−3 〈 1

A−λ
ϕ, ·〉

. . . . . . . . . . . . . . . . . .

0 0 . . . 0 1
(1+λ)2

1
1+λ 〈 1

A−λ
ϕ, ·〉

0 0 . . . 0 1
1+λ

1
A−λgn−2

(
1

A−λgn−2

)
〈 1

A−λ
ϕ, ·〉




(4.8)

where the function D(λ, θ) is the following Nevanlinna function

D(λ, θ) =
(
〈ϕ,

1 + λ

A − λ
gn−1〉 − 1

1 + λ

)
sin θ + cos θ. (4.9)
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Proof. Consider arbitrary F = (f1, f2, . . . , fn−2, F ) ∈ H. Then the resolvent equa-
tion

(A − λ)




u1

u2

. . .
un−2

Ur + un−1gn−1


 =




f1

f2

. . .
fn−2

F


 (4.10)

together with the boundary condition (4.4) imply that



−(1 + λ) 1 0 . . . 0 0 0
0 −(1 + λ) 1 . . . 0 0 0
0 0 −(1 + λ) . . . 0 0 0

. . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . −(1 + λ) 1 0

0 0 0 . . . 0 −〈ϕ,
1 + λ

A − λ
gn−1〉 1

0 0 0 . . . − sin θ cos θ sin θ




×




u1

u2

u3

. . .
un−2

un−1

〈ϕ,Ur〉




=




f1

f2

f3

. . .
fn−2

〈ϕ, 1
A−λF 〉
0




. (4.11)

To derive the last equation we used the following transformation of the last equa-
tion in the system (4.10)

(A − λ)Ur − (1 + λ)un−1gn−1 = F (4.12)

⇒ 〈ϕ,Ur〉 − (1 + λ)un−1〈ϕ,
1

A − λ
gn−1〉 = 〈ϕ,

1
A − λ

F 〉.

The determinant of the matrix appearing in the last equation is equal to
(−1)n−1(1 + λ)n−2D(λ, θ) and it vanishes for nonreal λ only if D(λ, θ) = 0. The

imaginary part of the function 〈ϕ,
1 + λ

A − λ

1
(A + 1)n−1

ϕ〉 − 1
1 + λ

is given by

�〈ϕ, 1+λ
A−λ

1
(A+1)n−1 ϕ〉 − 1

1+λ = y
(
〈ϕ, (A+1)2

(A−x)2+y2
1

(A+1)n ϕ〉 + 1
(1+x)2+y2

)
,

where λ = x + iy, x, y ∈ R. The imaginary part cannot vanish for nonreal values
of λ if θ �= 0. In the case θ = 0 the function D(λ, 0) ≡ 1 is constant. We conclude
that the linear system (4.11) has unique solution for all nonreal λ. It follows that
the spectrum of the operator Aθ is real.



456 Kurasov IEOT

To calculate the resolvent exactly consider the system of equations for un−2, un−1,
〈ϕ,Ur〉




−(1 + λ) 1 0

0 −〈ϕ,
1 + λ

A − λ
gn−1〉 1

− sin θ cos θ sin θ





 un−2

un−1

〈ϕ,Ur


 =


 fn−2

〈ϕ, 1
A−λF 〉
0




(4.13)
The solution to this linear system reads as follows

un−2 = − (sin θ〈ϕ, 1+λ
A−λgn−1〉 + cos θ)fn−2 + sin θ〈ϕ, 1

A−λF 〉
(1 + λ)D(λ, θ)

;

un−1 = −
(
(1 + λ)〈ϕ, 1

A−λF 〉 + fn−2

)
sin θ

(1 + λ)D(λ, θ)
;

〈ϕ,Ur〉 = − sin θ〈ϕ, 1+λ
A−λgn−1〉fn−2 + (sin θ − (1 + λ) cos θ) 〈ϕ, 1

A−λF 〉
(1 + λ)D(λ, θ)

.

(4.14)
Then all other components of the vector �u can be calculated from the recursive
relations

ul =
1

1 + λ
ul+1 − 1

1 + λ
fl, l = 1, 2, . . . , n − 3,

which coincide with the first n − 3 equations of the system (4.11). The following
formula holds

ul =
1

(1 + λ)n−2−l
un−2 −

n−3∑
m=l

1
(1 + λ)m+1−l

fm.

The component U can be calculated from (4.12)

U = Ur + un−1gn−1

=
1

A − λ
F + (1 + λ)un−1

1
A − λ

gn−1 + un−1gn−1

=
1

A − λ
F + un−1

1
A − λ

gn−2.

This completes the calculation of the resolvent of the operator Aθ given by formula
(4.8) for all nonreal λ. �

The theorem implies that the spectrum of the operator Aθ is real. Consider
the restriction of the resolvent to the subspace Hn−2 ⊂ H combined with the
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embedding ρ

ρ
1

Aθ − λ
|Hn−2 =

1
A − λ

− 1

(λ + 1)n−2
{

cot θ + 〈ϕ, 1
A−λ

1+λ
(A+1)n−1 ϕ〉 − 1

1+λ

}
〈

1
A − λ̄

ϕ, ·
〉

1
A − λ

ϕ,

(4.15)
The last formula is analogous to Krein’s formula connecting the resolvents of two
self-adjoint extensions of one symmetric operator and is very similar to formula
(2.6) describing the restricted resolvent of the self-adjoint operator corresponding
to the singular H−3-perturbations. The main difference between this formula and
the well-known Krein’s formula is that the conventional Krein’s formula describes
the resolvent of the self-adjoint operator, while the formula obtained comes from
a certain non self-adjoint operator if the perturbation is singular enough ϕ ∈
H−n, n ≥ 4.

The last formula can be called Krein’s formula for supersingular interactions.
The spectral properties of the operator are described by the generalized Nevanlinna
function

Q(λ) = (λ + 1)n−2

{
cot θ + 〈ϕ,

1 + λ

A − λ

1
(A + 1)n−1

ϕ〉 − 1
1 + λ

}
. (4.16)

The zeroes of this function determine the singularities of the resolvent. The func-

tion cot θ + 〈ϕ,
1 + λ

A − λ

1
(A + 1)n−1

ϕ〉 − 1
1 + λ

is a standard Nevanlinna function

tending to −∞ and +∞ when λ → −∞ and λ → −1− respectively. Therefore
the function has at least one zero in the interval (−∞,−1). Another one zero
can be situated in the interval (−1, 0) depending on the behavior of the function
〈ϕ, 1+λ

A−λ
1

(A+1)n−1 ϕ〉 at the origin and the coupling parameter θ. Let λ0 < 0, λ0 �=
−1 be a zero of the function Q(λ). Then the vector



1
(1+λ0)n−2

1
(1+λ0)n−3

. . .
1

1+λ0
1

A−λ0

1
(A+1)n−2 ϕ




(4.17)

is an eigenvector of the operator Aθ corresponding to the eigenvalue λ0. The point
λ = −1 is an eigenvalue of the operator Aθ with the eigenvector (1, 0, 0, 0, . . . , 0, 0) .

The function Q−n(λ) =
〈
ϕ, 1

A−λ
(λ+1)n−1

(A+1)n−1 ϕ
〉
, consituting the nontrivial part

of the generalized Nevanlinna function Q(λ) appearing in (4.16), is an n− 1-times
regularized resolvent function

Q−n(λ)
formally

= 〈ϕ,
1

A − λ
ϕ〉−〈ϕ,

1
A + 1

ϕ〉−〈ϕ,
λ + 1

(A + 1)2
ϕ〉−. . .−〈ϕ,

(1 + λ)n−2

(A + 1)n−1
ϕ〉.
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5. Conclusions

Rank one singular perturbations of self-adjoint determined by arbitrary vectors
from the class H−n have been defined in this article. It has been shown that
such operators can be defined in the class of non self-adjoint operators acting in a
certain extended Hilbert space. The final operator obtained is nevertheless close to
a self-adjoint one - the imaginary part of the operator is a bounded operator. It has
been proven that the spectrum of the perturbed operator is pure real. It remains
to study in more details the spectral properties of the operator obtained. It is
not clear whether the operator constructed is similar to a certain self-adjoint one.
These questions will be considered in one of the future publications. The approach
developed in this paper has to be generalized in order to include perturbations of
not finite rank following the main ideas of [26].
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1999.

[27] M.Naimark, On spectral functions of a symmetric operator, Bull. Acad. Sciences
URSS, 7, 285-296, 1943.

[28] B.Pavlov, The theory of extensions and explicitly solvable models, Uspekhi Mat. Nauk,
42, 99-131, 1987.

[29] B.Pavlov, Boundary conditions on thin manifolds and the semiboundedness of the
three-body Schrödinger operator with point potential, Mat. Sb. (N.S.), 136, 163-177,
1988.

[30] B.S.Pavlov and I.Popov, Scattering by resonators with small and point holes, Vestnik
Leningrad. Univ. Mat. Mekh. Astronom., vyp. 3, 1984, 116–118.



460 Kurasov IEOT

[31] B.S.Pavlov and I.Popov, An acoustic model of zero-width slits and the hydrodynamic
stability of a boundary layer, Teoret. Mat. Fiz., 86, 1991, 391–401.

[32] I.Popov, The Helmholtz resonator and operator extension theory in a space with
indefinite metric, Mat. Sb., 183, 1992, 3–27.

[33] M.Reed and B.Simon, Methods of modern mathematical physics II, Academic Press,
New York, 1972.

[34] S.N.Saakjan, Theory of resolvents of a symmetric operator with infinite defect num-
bers, Akad. Nauk. Armjan. SSR Dokl., 41, 193-198, 1965.

[35] Yu.Shondin, Perturbation of differential operators on high-codimension manifold and
the extension theory for symmetric linear relations in an indefinite metric space, Teo-
ret. Mat. Fiz., 92, 1992, 466–472.

[36] Yu.Shondin, Quantum mechanical models in Rn connected with extensions of the
energy operator in a Pontryagin space, Teoret. Mat. Fiz., 74, 1988, 331–344.

[37] B.Simon, Spectral analysis of rank one perturbations and applications, in: Mathe-
matical quantum theory. II. Schrödinger operators (Vancouver, BC, 1993), 109–149,
CRM Proc. Lecture Notes, 8, AMS, Providence, RI, 1995.

Pavel Kurasov
Dept. of Mathematics,
Lund Institute of Technology,
Box 118, 221 00 Lund,
Sweden

E-mail: kurasov@maths.lth.se

Submitted: February 25, 2001

Revised: March 22, 2002

To access this journal online:
http://www.birkhauser.ch


