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Generalized perturbations and operator
relations.1

1 Introduction

Selfadjoint extensions of symmetric operators are used to obtain operators
with complicated spectral structure. In particular generalized extensions of
symmetric operators having finite deficiency indices have been investigated.
Let A0

0 be such symmetric operator acting in a certain Hilbert space H and
let H+ be an extended Hilbert space H+ ⊃ H. Then a selfadjoint operator
A acting in H+ is called generalized extension of A0

0 if the operator A0
0 is a

symmetric restriction of A. Usually physically relevant is the restriction of the
resolvent of the total operator A acting in H+ to the original Hilbert space
H. These operators are called the generalized resolvents. The generalized re-
solvent equal to the resolvent of a certain selfadjoint operator in H is called
orthogonal. In [9] it was suggested to use the following approach to obtain
generalized extensions of symmetric operators. Let A0

0 be a symmetric opera-
tor acting in the Hilbert space H0 = H. Consider arbitrary extension Hilbert
space H1 and arbitrary symmetric operator A0

1 acting in this space. Define the
symmetric operator A0 = A0

0 ⊕ A0
1 acting in the Hilbert space H = H0 ⊕H1.

Then any selfadjoint extension of the symmetric operator A0 is a generalized
perturbation of the operator A0

0. We are going to define two classes of selfad-
joint perturbations. We call a selfadjoint extension A of A0 separated if it is
equal to the orthogonal sum of selfadjoint extensions of A0

0 and A0
1, i.e. when

the total operator or operator relation A is equal to the orthogonal sum of
operators or operator relations defined in H0 and H1. All the other selfadjoint
perturbations will be called connected.

Two important questions concerning this model arise:

• Is it possible to obtain all generalized extensions of the operator A0
0

considering arbitrary extension spaces and operators?

• Can selfadjoint operator relations appear if the original operator A0
0 is

densely defined?
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We are going to study these two questions in the case, where the operator A0
0

has deficiency indices (1, 1). We prove that all generalized resolvents of the
operator A0

0 can be obtained even if one considers only the operators A0
1 with

the deficiency indices (1, 1). It will be shown that if the original operator A0
0 is

densely defined then every generalized resolvent can be obtained considering
only the selfadjoint extensions of the operator A0 that are selfadjoint oper-
ators, not operator relations. In other words if the selfadjoint extension A
is an operator relation, then it is necessarily separated. But each selfadjoint
extension of a densely defined symmetric operator is an operator. Thus the
restricted resolvent of every such operator relation to the original space H0 is
orthogonal, i.e. coincides with the resolvent of a certain selfadjoint operator in
H0. Therefore the case of selfadjoint operator relations is not interesting, since
physically relevant is the restriction of the resolvent to the original Hilbert
space H0.

Current paper is organized as follows. First we describe in detail how
to define the selfadjoint perturbation in the case where the operator A0

1 is not
densely defined. We prove that the operator relation can occur only in the case
where the total selfadjoint perturbation is equal to the orthogonal sum of an
operator in H0 and operator relation (or operator) in H1. In the last section we
show that every generalized resolvent can be obtained using the model defined
in the case where the deficiency indices of the restricted operator A0

0 are equal
to (1, 1).

2 Domain of the perturbed operator.

Let us consider a pair of Hilbert spaces H0,H1 and a pair of selfadjoint oper-
ators A0, A1 defined respectively in H0,H1. The scalar product in the spaces
Hβ, β = 0, 1 will be denoted by 〈·, ·〉β. The orthogonal sum A = A0 ⊕ A1

is a selfadjoint operator acting in the orthogonal sum of the Hilbert spaces
H = H0 ⊕H1

A
(

ψ0

ψ1

)
=

(
A0 0
0 A1

) (
ψ0

ψ1

)
=

(
A0ψ0

A1ψ1

)
.

In what follows we are going to use the natural embedding of the spaces Hβ

into the space H. Thus every element ψ0 ∈ H0 will be identified with the
element (ψ0, 0) ∈ H. Similarly we identify ψ1 ∈ H1 and (0, ψ1) ∈ H. Similar
identification will be used for the operators. For example the operator A0 in



the Hilbert space H0 and the operator A0(ψ0, ψ1) = (A0ψ0, 0) in H will be
identified.

Let us denote by H2(Aβ) the domain of the operator Aβ equiped with the
norm

‖ ϕ ‖2
H2(Aβ)=‖ ϕ ‖2 + ‖ Aβϕ ‖2 .

The conjugated space of all bounded functionals will be denoted by H−2(Aβ).
The norm in this space is defined by

‖ ϕ ‖2
H−2(Aβ)= 〈ϕ,

1

A2
β + 1

ϕ〉.

Consider two elements ϕβ ∈ H−2(Aβ), β = 0, 1 with the unit norms

‖ ϕβ ‖H−2(Aβ)= 1, β = 0, 1.

The restrictions A0
β of the operators Aβ, β = 0, 1 to the domains

Domϕβ
(Aβ) = {ψ ∈ D(Aβ) : 〈ψ, ϕβ〉 = 0}; β = 0, 1

are symmetric operators. We are going to study the case where one of the
restricted operators is densely defined. Suppose that the vector ϕ0 does not
belong to the Hilbert space H0. Then the operator A0 is densely defined.

We denote by Dom(A0) the domain of the restricted operator

Dom(A0) = {Ψ = (ψ0, ψ1) ∈ Dom(A) : 〈ψ0, ϕ0〉0 = 0, 〈ψ1, ϕ1〉1 = 0}.
The operator A0 coincides with the operator A restricted to the domain
Dom(A0).

If the vector ϕ1 does not belong to the Hilbert space H1 then the total
operatorA0 is densely defined and every its selfadjoint extension is an operator,
not an operator relation. Therefore we restrict our consideration to the case
where the operator A0

1 is not densely defined, i.e. ϕ1 ∈ H1.
Let M be the two dimensional subspace of H spanned by the vectors

1
Aβ+i

ϕβ, β = 0, 1:

M = L{ 1

A0 + i
ϕ0,

1

A1 + i
ϕ1}.

Let Γ be a Hermitean operator acting in M . We denote by DomΓ the set of
elements Ψ from Dom(A0∗

0 ) ⊕ Dom(A1) ⊂ H possessing the following repre-
sentation

Ψ = Ψ̃ +
A

A− i
Ξ+(Ψ) +

1

A− i
Ξ−(Ψ) (1)



with Ψ̃ ∈ Dom(A0), Ξ±(Ψ) ∈ M, Ξ− = ΓΞ+.
The operator Γ is acting in the two dimensional subspace Γ : M → M.

The vectors e0 = 1
A0−i

ϕ0, e1 = 1
A1−i

ϕ1 form an orthonormal basis in the two
dimensional subspace M. The operator Γ in this basis is the operator of mul-
tiplication by the 2× 2 Hermitean matrix

Γ =

(
γ00 γ01

γ10 γ11

)
, γβ0β1 = 〈 1

Aβ0 − i
ϕβ0 , Γβ0β1

1

Aβ1 − i
ϕβ1〉β0 . (2)

Lemma 2.1 If
γ01 6= 0 (3)

and/or

γ11 + 〈 1

A1 + i
ϕ1,

A1

A1 + i
ϕ1〉 6= 0, (4)

then every element Ψ ∈ DomΓ possesses the unique representation

Ψ = Ψ̃ +
1

A− i
ΓΞ+ +

A
A− i

Ξ+, (5)

where Ψ̃ ∈ Dom(A0), Ξ+ ∈ M+.

Proof. One needs to prove only the uniqueness of representation (1) because
the domain DomΓ was defined as the set of all vectors possessing the repre-
sentation (5). Let Ψ be an element of DomΓ. Suppose that there exist vectors
Ψ̃, Ψ̃′ ∈ Dom(A0) and Ξ+, Ξ′+ ∈ M such that

Ψ = Ψ̃ +
1

A− i
(Γ +A)Ξ+ = Ψ̃′ +

1

A− i
(Γ +A)Ξ′+.

This implies that

Ψ̃− Ψ̃′ = − 1

A− i
(Γ +A)(Ξ+ − Ξ′+). (6)

The latter equality implies the equality

Ψ̃− Ψ̃′ +
1

A− i
(Γ + i)(Ξ+ − Ξ′+) = −(Ξ+ − Ξ′+).

The left-hand side of the latter equality belongs to the domain Dom(A). The
right hand side is a linear combination of the vectors 1

A0−i
ϕ0 and 1

A1−i
ϕ1. The



element 1
A0−i

ϕ0 does not belong to the domain Dom(A). Thus the equality
holds only if there exist some constant c such that

Ξ+ − Ξ′+ = c
1

A1 − i
ϕ1.

The difference Ψ̃− Ψ̃′ belongs to the domain Dom(A0) and one can apply the
operator A− i to the equality (6)

(A− i)(Ψ̃− Ψ̃′) = −c(Γ +A)
1

A1 − i
ϕ1.

Projection into the space M leads to the equation

0 = −cPM(Γ + A1)
1

A1 − i
ϕ1.

The latter equation written in the basis { 1
A0+i

ϕ0,
1

A1+i
ϕ1} is equivalent to the

following 2× 2 linear system

0 = −cγ01

0 = −c(γ11 + 〈 1
A1+i

ϕ1,
A1

A1+i
ϕ1〉1) .

Thus the constant c is trivial if at least one of the equations (3) and/or (4) is
not satisfied. This ends the proof of the lemma. 2

We have proven the uniqueness of the representation (5) under some con-
ditions. The element Ψ̃ can be obtained by the formula

Ψ̃ = Ψ− 1

A− i
(A+ Γ)

1

PMAPM + Γ
PM(A− i)Ψ.

One has to prove now that Ψ̃ ∈ (A− i)−1[HªM−]. The following calculation
prove the desired property

PM(A− i)Ψ̃ = PM(A− i)Ψ− PM(A+ Γ)
1

PMAPM + Γ
PM(A− i)Ψ = 0.

We are going to discuss the conditions (3) and (4) in more detail. The
condition (3) implies that the components ψ0 and ψ1 of the elements from the
domain DomΓ are independent. This implies that every selfadjoint operator
AΓ with the domain DomΓ is equal to a certain extension of the symmetric
operator A0 which is equal to the orthogonal sum of two selfadjoint operators
acting in the Hilbert spaces H0 and H1 (so-called separated extension). The



resolvent of such extension restricted to the Hilbert space H0 is an orthogonal
resolvent. Such resolvents have been studied in [2, 3, 4].

The conditions (3) and (4) together imply that the resolvent restricted to
the space H1 is a resolvent of a selfadjoint relation, not an operator. But
in this case the selfadjoint extension of A0 is separated. Physically relevant
are only connected extensions and extensions with trivial extension space H1,
since only the resolvent restricted to the subspace H0 is used in applications.

3 Perturbed operator.

The Γ-modified operator AΓ is defined on DomΓ using the representation (5)
by the formula

AΓΨ = AΓ

(
Ψ̃ +

1

A− i
ΓΞ+(Ψ) +

A
A− i

Ξ+(ψ)
)

= AΨ̃ + (A− i)−1(−1 +AΓ)Ξ+(Ψ). (7)

Theorem 3.1 Let the operator Γ in M be Hermitean. If Γ01 6= 0 then the
Γ-modified operator AΓ is selfadjoint on the domain DomΓ.

Proof. If Γ01 6= 0, then every element from the domain DomΓ possesses the
unique representation (5). We show first that the operator AΓ is symmetric.



Let U, V ∈ DomΓ(A)

〈U,AΓV 〉 − 〈AΓU, V 〉

= 〈Ũ +
1

A− i
(Γ +A)Ξ+(U),A0Ṽ +

1

A− i
(−1 +AΓ)Ξ+(V )〉−

−〈A0Ũ +
1

A− i
(−1 +AΓ)Ξ+(U), Ṽ +

1

A− i
(Γ +A)Ξ+(V )〉

= 〈Ũ ,A0Ṽ 〉+ 〈 1

A− i
(Γ +A)Ξ+(U),A0Ṽ 〉

+〈Ũ ,
1

A− i
(−1 +AΓ)Ξ+(V )〉

+〈 1

A− i
(Γ +A)Ξ+(U),

1

A− i
(−1 +AΓ)Ξ+(V )〉

−〈A0Ũ , Ṽ 〉 − 〈 1

A− i
(−1 +AΓ)Ξ+(U), Ṽ 〉

−〈A0Ũ ,
1

A− i
(Γ +A)Ξ+(V )〉

−〈 1

A− i
(−1 +AΓ)Ξ+(U),

1

A− i
(Γ +A)Ξ+(V )〉

= 〈Ξ+(U), (A− i)Ṽ 〉 − 〈(A− i)Ũ , Ξ+(V )〉
+〈(−1 + ΓA)

1

A2 + 1
(Γ +A)

−(Γ +A)
1

A2 + 1
(−1 +AΓ)Ξ+(U), Ξ+(V )〉

= 0.

The first two scalar products in the latter formula are equal to zero because
Ξ+(U), Ξ−(V ) ∈ M and Ũ , Ṽ ∈ Dom(A0). The third scalar product is equal
to zero due to the following operator equality

(−1 + ΓA)
1

A2 + 1
(Γ +A) = ((A+ Γ)A−A2 − 1)

1

A2 + 1
(Γ +A) =

= (A+ Γ)
A

A2 + 1
(Γ +A)− (Γ +A) = (A+ Γ)

1

A2 + 1
(−1 +AΓ).

Thus we have proved that the operator AΓ is symmetric.
To prove that the operator AΓ is selfadjoint we are going to calculate its

resolvent, i.e. the solution of the equation

(AΓ − λ)−1F = U



for arbitrary F ∈ H and arbitrary λ, =λ 6= 0. The latter equality implies that

F = (AΓ − λ)
(
Ũ +

1

A− i
(A+ Γ)Ξ+(U)

)
=

= (A− λ)Ũ +
1

A− i
(−1 +AΓ− λ(A+ Γ)) Ξ+(U).

Applying the operator A−i
A−λ

and projecting into the subspace M one gets the
following equation

PM
A− i

A− λ
F = (Γ−Q(λ))Ξ+(U),

where

Q(λ) = PM
1 + λA
A− λ

PM .

The vector Ξ+(U) can be calculated, since the operator Γ−Q(λ) has nontrivial
imaginary part and is therefore invertible

Ξ+(U) =
1

Γ−Q(λ)
PM

A− i

A− λ
F. (8)

Projection into the orthogonal complement of M gives the equality

Ũ =
1

A− i
(1− PM)

A− i

A− λ
F +

1

A− i
(1− PM)

1 + λA
A− λ

Ξ+(U). (9)

Combining formulas (8) and (9) one gets the solution

U =
1

A− λ
F +

A+ i

A− λ

1

Γ−Q(λ)
PM

A− i

A− λ
F. (10)

The element U belongs to the domain DomΓ. The domain of the resolvent
coincides with the Hilbert space H. It is necessary to prove that the kernel of
the calculated resolvent operator is trivial. Suppose that

1

A− λ
F +

A+ i

A− λ

1

Γ−Q(λ)
PM

A− i

A− λ
F = 0.

The first term in the latter equality is an element from the domain Dom(A).
The second term is equal to a linear combination of the vectors 1

A0−λ
ϕ0 and

1
A1−λ

ϕ1. The vector 1
A0−λ

ϕ0 does not belong to the domain Dom(A). Thus
there exists a certain constant c such that

F = cϕ0.



This implies that

1

A0 − λ
ϕ0 +

A+ i

A− λ

1

Γ−Q(λ)
〈 1

A0 + i
ϕ0,

A0 − i

A0 − λ
ϕ0〉0 1

A0 + i
ϕ0 = 0.

The latter equality holds only if the operator (Γ − Q(λ))−1 is diagonal. This
implies that the matrix Γ has to be diagonal, i.e. Γ01 = 0. We got thus a
contradiction which proves the statement, ending the proof of the theorem. 2

The resolvent of the constructed selfadjoint operator AΓ is given by the
formula (10). That formula coincides with the formula for the resolvent of the
operator AΓ constructed using a densely defined restricted operator.

4 Operators with internal structure and gen-

eralized resolvents.

The following theorem can be proven (see [5] for details):

Theorem 4.1 Let A0 be a selfadjoint operator acting in the Hilbert space H0

and let A0
0 be its restriction to the domain Domϕ0 = {ψ ∈ Dom(A) : 〈ψ, ϕ0〉0 =

0} where ϕ0 ∈ H−2(A0)\H0. Let R(λ) be a generalized resolvent corresponding
to a certain generalized extension of the operator A0

0. Then there exists a
generalized perturbation with internal structure of the operator A0 such that
its resolvent restricted to the Hilbert space H0 coincides with the generalized
resolvent R(λ).

We note that it is enough to consider only connected selfadjoint extensions
of the operator A0 in H and selfadjoint extensions of the operator A0

0 in H0 to
prove the latter theorem. Therefore to obtain all generalized perturbations of
the densely defined operator A0

0 one can consider only the selfadjoint extensions
that are operators, not operator relations. The result announced here for
arbitrary symmetric operator A0

0 with deficiency indices (1, 1) has been already
proven for the point perturbations of the Laplace operator in [10].
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