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Abstract. The Laplace operator on a star graph is considered. The prob-

lem to recover the vertex matching boundary conditions from a part of the

scattering matrix is investigated.

1. Introduction

Differential operator on geometric graphs have been studied from the beginning
of 80-ies [8, 11], but recent interest in nano-structures has led to enormous interest
in mathematical studies of the problem [14, 16, 17, 19]. In this article we discuss
the possibility to reconstruct the matching (boundary) conditions at the unique
vertex of a star graph from the corresponding scattering matrix. This problem
can easily be solved if the total scattering matrix is known (see [15]), and it has
been shown recently that the scattering matrix at a particular value of the energy
can effectively be used to uniquely parameterize the matching conditions [18]. The
problem we are interested in is the possibility to reconstruct the matching conditions
if only a part of the scattering matrix is known, more precisely the principal (v −
1) × (v − 1) block (Sv(k0))v;v, where v is the valency of the vertex. This problem
can be considered as the first step towards reconstruction of the vertex matching
conditions for trees from the corresponding scattering matrix.

The problem of reconstructing the Schrödinger operator on a star graph was
first discussed by N.I. Gerasimenko and B.S. Pavlov [11, 12] using the Gelfand-
Levitan-Marchenko method. The inverse spectral and scattering problems for trees
have intensively been studied in recent years by M. Belishev, M. Brown, R. Carlson,
G. Freiling, A. Vakulenko, R. Weikard, V. Yurko, and the authors [1, 2, 4, 5, 6, 7,
9, 10, 21]. It has been proven that the knowledge of the Dirichlet-to-Neumann
map, or Titchmarsh-Weyl matrix function allows one to calculate the potential for
standard boundary conditions at the vertices. The case of more general boundary
conditions has been discussed in [10], but the whole family of boundary conditions
has not been investigated yet.
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In the current article we consider the most general family of properly connect-
ing self-adjoint boundary conditions. It is discovered that so-called asymptotically
properly connecting conditions play a very important role. Such boundary condi-
tions correspond to vertex scattering matrices Sv(k) tending to the limit matrix
S∞v as k →∞, which cannot be written in the block-diagonal form (after a certain
permutation of the coordinates). It appeared that for such boundary conditions
the principal (v − 1)× (v − 1) block of the scattering matrix known for one partic-
ular value of the energy essentially determines the boundary conditions (up to one
real parameter, which in principle cannot be recovered and provided one additional
easily checked condition is satisfied). Explicit interpretation of this free parameter
is given using unitary equivalent operators. In the second part of the paper it is
shown that knowing in addition the diagonal elements of the principal block for a
finite number of energies one may reconstruct the boundary conditions even in the
case of just properly connecting boundary conditions.

All results are proven so far for the Laplace operator on the star graph with
most general self-adjoint matching conditions at the vertex, but it is not hard
to generalize these conditions to include potentials with compact support using
Boundary Control method [3] following ideas already developed in [1]. It is our
future aim to apply these results to solve the most general inverse problem for trees
consisting of recovering the geometric tree, potential on it and boundary conditions
at the vertices.

The paper is organized as follows. In the following section main notations and
definitions are given. The cases of asymptotically properly connecting and just
properly connecting matching conditions are considered in sections 3 and 4.

2. Scattering on a star graph

Let us denote by Γstar the star graph formed by v edges ∆j = [x2j−1,∞) joined
together at one vertex V = {x2j−1}vj=1. Consider the Laplace operator L = − d2

dx2 in
L2(Γstar) defined on the set of functions from W 2

2 (Γstar \V ) satisfying the following
matching conditions at the vertex

(2.1) i(S − I)ψψψ(V ) = (S + I)∂nψψψ(V ),

where S is a v× v unitary matrix and ψψψ(V ) and ∂nψψψ(V ) are v-dimensional vectors
of the values of ψ and its normal derivative at the vertex V. The unitary matrix
appearing in (2.1) is just the vertex scattering matrix Sv(k), k2 = E for k = 1.
The vertex scattering matrix may be defined by considering scattering waves on
Γstar. Every solution to the equation −ψ′′(k, x) = k2ψ(k, x) can be written as a
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combination of the incoming e−ik|x−x2j−1| and outgoing eik|x−x2j−1| waves:

ψ(k, x) = bje
−ik|x−x2j−1| + aje

ik|x−x2j−1|, x ∈ ∆j .

Substitution into the matching conditions (2.1) determines connection between the
amplitudes of incoming and outgoing waves

(2.2) aaa = Sv(k)bbb,

where Sv(k) is the vertex scattering matrix

(2.3) Sv(k) =
(k + 1)S + k − 1
(k − 1)S + k + 1

, k 6= 0.

This formula allows one to establish explicit connection between vertex scattering
matrices for different values of the energy parameter (see [15])

(2.4) Sv(k) =
(k + k0)Sv(k0) + k − k0

(k − k0)Sv(k0) + k + k0
, k, k0 6= 0.

The unitary matrix S parameterizes the boundary conditions in the unique way
and therefore encodes all information concerning these conditions. In particular,
one may understand whether the boundary conditions connect all edges properly or
not. In what follows we shall need the notion of asymptotically properly connecting
boundary conditions. It is possible to prove that for k → ∞ the vertex scatter-
ing matrix Sv(k) tends to a certain limit. If the boundary conditions are properly
connecting there is no guarantee, that the limit scattering matrix corresponds to
properly connecting conditions. In other words it may happen that the connection
between certain channels becomes weak and therefore for large energies the corre-
sponding vertex is seen as two (or more) independent vertices. Let us therefore use
the following

Definition 1. Vertex boundary conditions are called properly connecting if
the vertex cannot be divided into two (or more) vertices so that the boundary con-
ditions connect together only boundary values belonging to each of the new vertices.
Vertex boundary conditions are called asymptotically properly connecting if
the limit scattering matrix S∞v corresponds to certain properly connecting bound-
ary conditions.

It is clear that every asymptotically properly connecting boundary condition
is properly connecting. In the rest of this article we consider first asymptotically
properly connecting and then just properly connections matching conditions.

Criteria for S to be properly connecting is rather simple: the matching condi-
tions are properly connecting if and only if the matrix S cannot be transformed into
a block-diagonal form by a permutation of the indices. To understand whether S is
asymptotically properly connecting or not one has to use its spectral representation
as a unitary matrix. Let us denote by Neiθj the eigensubspace corresponding to
the eigenvalue eiθj . Then it is possible to prove that the limit scattering matrix
S∞v = limk→∞ Sv(k) has eigenvalues ±1 with the following eigensubspaces [13, 18]

(2.5) N∞−1 = N−1 and N∞1 = Cv 	N−1 = N⊥−1.

Then it is not hard to prove the following

Proposition 1 (Theorem 6.5 from [18]). The boundary conditions are asymp-
totically properly connecting if and only if N−1 is not perpendicular to any coordi-
nate subspace.
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By coordinate subspace we mean any subspace in Cn spanned by one or several
vectors from the standard basis, which does not coincide with Cn

3. Recovering of the asymptotically properly connecting matching
conditions

In this section we discuss the possibility to reconstruct the matching conditions
from the principal (v−1)× (v−1) block (Sv(k))v;v of the vertex scattering matrix.
This part of the matrix is obtained when we send plane waves along the first v− 1
edges and measure the reflected waves coming along the same edges. Let us discuss
first whether this reconstruction is unique or not. Consider the following unitary
transformation in L2(Γstar)

(3.1) (Tθf)(x) =
{
f(x), x ∈ ∆j , j = 1, 2, ..., v − 1;
eiθf(x), x ∈ ∆v.

This transformation does not change the differential operator but do change the
matching conditions at the vertex, i. e. the operator Lθ = T−1

θ LTθ is given by the
same differential expression −d2/dx2, but the matrix S in boundary conditions
(2.1) has to be substituted with

(3.2) Sθ = RθS
0R−θ, S0 = S,

where Rθ is the following v × v matrix:

(3.3) Rθ = diag {1, 1, ..., 1, eiθ} =


1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 eiθ

 .

It is clear that this transformation does not change the block (Sv(k))v;v of the
matrix S. The same holds for the vertex scattering matrix, since (2.3) implies that

(3.4) Sθv(k) = RθS
0
v(k)R−θ,

where Sθv(k) is the vertex scattering matrix corresponding to the new conditions.
The following theorem implies that the knowledge of the principal (v−1)×(v−1)

block of the vertex scattering matrix allows one to reconstruct the whole matrix
up to one real parameter corresponding to the transformation Tθ, provided the
boundary conditions at the vertex are asymptotically properly connecting.

Theorem 1. Consider the set of v×v vertex scattering matrices Sv determined
by certain asymptotically properly connecting vertex boundary conditions and having
the same principal (v− 1)× (v− 1) block (Sv(k0))v;v with det((Sv(k0))v;v + 1) 6= 0.
This family of matrices can be described by one real phase parameter so that

(3.5) Sθv(k) = RθS
0
v(k)R−θ,

where Rθ is given by (3.3) and S0
v(k) is a certain particular member of the family.

Proof. Reconstruction of an unitary matrix from its principal (v−1)×(v−1)
block in general contains two arbitrary phase parameters and can be carried out
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using the fact that the entries of an unitary matrix satisfy the normalization and
orthogonality conditions:∑v

j=1 |sij |2 = 1,
∑v
i=1 |sij |2 = 1;∑v

j=1 sijslj = 0,
∑v
i=1 sijsil = 0.

Assume that the principal (v − 1)× (v − 1) block (Sv(k0))v;v of the matrix Sv(k0)
is known. Consider the last row in Sv(k0). The absolute values of svj(k0), j =
1, 2, ..., v − 1 can be calculated from the normalization conditions. At least one of
these numbers is different from zero, otherwise the matrix Sv(k0) is block-diagonal
and does not correspond to asymptotically properly connecting boundary condi-
tions. Consider any such different from zero element, say with the index v1. All
possible values of this element can be described by one real phase parameter α as
follows sv1 = |sv1|eiα. Then all other elements svj , j = 2, ..., v − 1 can be recon-
structed using orthogonality conditions. In the same way one may consider the
last column and introduce a parameter β ∈ R such that s1v = |s1v|eiβ . Then the
element svv is uniquely determined.7

Let us summarize our calculations by stating the following result: the family
of vertex scattering matrices having the same principal (v − 1)× (v − 1) block can
be described by two real parameters so that

(3.6) Sα,βv (k0) = RαS
0
v(k0)Rβ ,

where S0
v(k0) is a certain particular member of the family. It remains to prove

that the subfamily corresponding to asymptotically properly connecting matching
conditions is described by just one parameter using (3.5). Assume that S0

v(k0) is
a particular member of the subfamily. Every vertex scattering matrix correspond-
ing to asymptotically properly connecting boundary conditions has eigenvalue −1,
which implies that

det(Sα,βv (k0) + I) = 0⇒ det(S0
v(k0) +R−(α+β)) = 0.

In the last equality we may use that the determinant is linear with respect to the
entry with the index vv to get

0 = det(S0
v(k0) + I) + (e−i(α+β)− 1) det(Sv(k0))v;v = (e−i(α+β)− 1) det(Sv(k0))v;v,

where we have taken into account that det(S0
v(k0)+I) = 0. It follows that α = −β,

since det(Sv(k0))v;v 6= 0. We have proven that all possible Sv(k) satisfy (3.5) for
k = k0. Then formula (2.4) implies that (3.5) holds for any real k. �

It follows that in the case of asymptotically properly connecting matching con-
ditions the vertex scattering matrix for all values of the energy can be recovered
from its principal (v − 1) × (v − 1) block given for a certain value of the energy
parameter k up to one real parameter connected with the unitary transformation
given by (3.4) (provided det((Sv(k0))v;v + I) 6= 0). The corresponding Laplace
operators are all unitary equivalent to each other.

We would like to mention that the result just proven is an extension of Theorem
1 from [15], where it is shown that the knowledge of the (whole) scattering matrix
for a certain energy allows one to reconstruct the boundary conditions at the vertex
and therefore determine the vertex scattering matrix for all other values of the
energy.

7Only if the matrix Sv(k0) is block-diagonal, the element svv has to be chosen with unit
absolute value but otherwise arbitrarily, but this case cannot occur under our assumptions.
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4. Recovering of the properly connecting matching conditions

In the rest of this article we discuss the possibility to recover the matching
conditions from the principal (v − 1) × (v − 1) block of the scattering matrix
given for different energies, but without assuming that the boundary conditions
are asymptotically properly connecting. It is assumed that the boundary condi-
tions are just properly connecting. This restriction is not essential, since in the
case of not properly connecting conditions one may solve the inverse problem for
each block separately. The only case that has to be excluded is where the last
edge is not connected to the rest of the star graph. It is clear that in this case no
information concerning the boundary condition for edge number v is contained in
the principal (v − 1)× (v − 1) block of the scattering matrix.

In the following theorem we are proving that the knowledge of the principal
block (Sv(k))v;v for several energies allows one to reconstruct the boundary condi-
tions at the vertex up to the unitary transformation given by (3.2) and (3.3).

Theorem 2. Consider the set of v × v vertex scattering matrices Sv deter-
mined by certain properly connecting vertex boundary conditions and having the
same principal (v − 1)× (v − 1) block (Sv(k0))v;v, k0 > 0. Assume in addition that
these matrices have the same diagonal elements sjj(kn), j = 1, 2, ..., v − 1 for cer-
tain different kn > 0, kn 6= k0, n = 1, 2, ..., 2v− 3. Then this family of matrices can
be described by one real phase parameter so that

(4.1) Sθv(k) = RθS
0
v(k)R−θ,

where Rθ is given by (3.3) and S0
v(k) is a certain particular member of the family.

Proof. Assume that one particular unitary matrix S0
v(k0) has been calculated

from the value of its principal (v−1)×(v−1) block. Then any other unitary matrix
with the same principal block is given by (3.6). This formula includes two arbitrary
parameters and it remains to show, that the knowledge of v − 1 diagonal elements
allows one to eliminate one of these parameters.

Consider one of the matrices Sα,βv (k0) from the two-parameter family described
by (3.6). Then the scattering matrix for all values of the energy parameter k can
be calculated using (2.4)

(4.2) Sα,βv (k) =
(k + k0)Sα,βv (k0) + k − k0

(k − k0)Sα,βv (k0) + k + k0

.

In particular, its element with the index 11 is

(4.3)

(
Sα,βv (k)

)
11

=
k + k0

k − k0
− 4kk0

k2 − k2
0

(
Sα,βv (k0) +

k + k0

k − k0

)−1

11

=
k + k0

k − k0
− 4kk0

k2 − k2
0

(
S0
v(k0) +

k + k0

k − k0
R−α−β

)−1

11

,

where we used the fact that the matrices Rθ do not change the principle (v − 1)×
(v − 1) block and, in particular, the element with the index 11. In what follows we
are going to use the notion of rejected minor. Let A be any quadratic n×n matrix,
then the rejected minor Ai;j is the quadratic matrix of dimension (n− 1)× (n− 1)
obtained from A by rejecting the row i and the column j. Similarly the rejected
minor Ai1,i2;j1,j2 is obtained from the matrix A by rejecting the rows i1, i2 and the
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columns j1, j2 [20]. With these notations the diagonal element of the scattering
matrix can be calculated
(4.4)(
Sα,βv (k)

)
11

= σ−
(
σ − 1

σ

)
det(S0

v(k0) + σ)1;1 + σ(e−iγ − 1) det(S0
v(k0) + σ)1,v;1,v

det(S0
v(k0) + σ) + σ(e−iγ − 1) det(S0

v(k0) + σ)v;v
,

where σ = k+k0
k−k0 , γ = α+β and k 6= k0. All determinants appearing in this formula

are different from zero, since the matrix S0
v(k0) is unitary and σ > 1 (remember that

k > 0). This formula shows that in general situation the knowledge of
(
Sα,βv (k)

)
11

for a certain k 6= k0 allows one to calculate γ (up to unessential factor 2π). This is
impossible if and only if

(
Sα,βv (k)

)
11

does not depend on γ, i.e. the equality
(4.5)
det(S0

v(k0) + σ) det(S0
v(k0) + σ)1,v;1,v − det(S0

v(k0) + σ)1;1 det(S0
v(k0) + σ)v;v = 0

holds. It might happen that γ cannot be recovered even if the element 11 of
Sα,βv (k) is known for all k > 0. This occurs if (4.5) holds for all σ > 0 (remember
that σ = k+k0

k−k0 ). Using Jacobi identity (Section 3.6.1 from [20])
(4.6)

det(S0
v(k0) + σ) det(S0

v(k0) + σ)1,v;1,v

= det(S0
v(k0) + σ)1;1 det(S0

v(k0) + σ)v;v − det(S0
v(k0) + σ)1;v det(S0

v(k0) + σ)v;1

condition (4.5) can be written as

(4.7) det(S0
v(k0) + σ)1;v det(S0

v(k0) + σ)v;1 = 0,

and it holds for σ = kn+k0
kn−k0 , n = 1, 2, ..., 2v − 3. This implies that at least one

of the determinants, say det(S0
v(k0) + σ)v;1 is equal to zero for v − 1 different

values of σ. But this determinant is a polynomial in σ of order v − 2 with the
zero and leading coefficients equal to det(S0

v(k0))v;1 and (S0
v(k0))1v respectively. It

follows that det(S0
v(k0))v;1 = 0 = (S0

v(k0))1v, but taking into account that S0
v(k0) is

unitary det(S0
v(k0))v;1 = 0 implies that (S0

v(k0))v1 = 0. Summing up we see that the
parameter γ cannot be recovered from (Sv(k))11 only if (S0

v(k0))1v = (S0
v(k0))v1 =

0.
Consider now any element (Sv(k))mm, m = 2, ..., v − 1. Similar analysis im-

plies that the parameter γ can be recovered from (Sv(kn))mm, n = 1, 2, ..., 2v − 3
unless the entries (S0

v(k0))1m and (S0
v(k0))m1 are equal to zero. In other words the

parameter γ can be calculated from one of the diagonal elements (Sv(k))mm, m =
1, ..., v − 1, unless all entries (S0

v(k0))1m and (S0
v(k0))m1 m = 1, ..., v − 1 are equal

to zero. But this means that S0
v(k0) has a block diagonal form and hence the

corresponding boundary conditions are not properly connecting. �

This theorem can be improved, which we would like to illustrate by the fol-
lowing example. Let v = 3. Then the parameter γ cannot be recovered from
(Sv(kn))11, n = 1, 2, 3 only if (S0

v(k0))13 = 0 and det(S0
v(k0))3;1 = 0, which implies

that at least one of the entries (S0
v(k0))12 and (S0

v(k0))23 is equal to zero. Hence
Sv(k0) is block-diagonal and the boundary conditions are not properly connecting.
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