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Graph Laplacians and topology

Pavel Kurasov

Abstract. Laplace operators on metric graphs are considered. It is proven that for compact

graphs the spectrum of the Laplace operator determines the total length, the number of connected

components, and the Euler characteristic. For a class of non-compact graphs the same character-

istics are determined by the scattering data consisting of the scattering matrix and the discrete

eigenvalues.

1. Introduction

A quantum graph is a metric graph Γ together with a differential operator act-
ing in the Hilbert space L2(Γ) of square integrable functions on Γ which are coupled
by certain boundary conditions at the vertices. A mathematically rigorous definition
of such operators was given first in the 1980s [11], [13], [14] and [16]. These differen-
tial operators have attracted the attention of both physicists and mathematicians in
recent years due to important applications in physics, e.g. to quantum waveguides
and in nano-physics. Another reason for this growing interest is that differential
operators on graphs with cycles possess properties of both ordinary and partial dif-
ferential operators. Therefore, in the study of inverse problems for quantum graphs,
methods developed in the 1950s and 1960s for one-dimensional problems have had
to be modified substantially – adjusting methods originally developed for partial
differential equations.

In the current article we are going to study the inverse spectral problem for
compact graphs and the inverse scattering problem for non-compact graphs obtained
from compact graphs by attaching several semi-infinite leads. Each of these inverse
problems contains in fact three problems:
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(1) reconstruction of the metric graph;
(2) reconstruction of the differential expressions on the edges;
(3) reconstruction of the coupling conditions at the vertices.
From the very beginning it was realized that the inverse problems in general

cannot be solved uniquely [15], [3] and [20]. One can even prove that the knowledge
of the scattering matrix is not enough to reconstruct any graph with internal sym-
metries [4]. So far, only the case of star-like graphs is fully understood [14] and [17].
Sophisticated spectral analysis of regular trees (see e.g. [27]) shows the difficulties
in solving the inverse problem. It has been proven by different authors that in the
case of finite metric trees, the graphs and the potentials can be reconstructed from
the corresponding scattering matrix or certain spectral data [1], [2], [7] and [29].
But problems involving graphs with cycles appear to be much more complicated.
Therefore it is natural to begin the study of such problems with so-called Laplace
operators on graphs (see Definition 3 below), especially if one takes into account
that potential in the Sturm–Liouville equation cannot in general be reconstructed
from one spectrum. Graph Laplacians are completely determined by the underly-
ing metric graphs and the inverse problem consists of reconstruction of the metric
graph itself. The inverse spectral problem in general does not have a unique solu-
tion due to the existence of isospectral graphs (the corresponding graph Laplacians
have the same spectrum) (see [15] and later [3]). Also the inverse scattering prob-
lem in general cannot be solved uniquely if the set of scattering data consists of
the scattering matrix alone, since there exists different graphs leading to the same
scattering matrix [20] and [4]. An important wide class of graphs uniquely deter-
mined by the spectrum of the corresponding Laplacians is formed by the graphs
with rationally independent lengths of edges. This class was first suggested by
B. Gutkin and U. Smilansky in [15] (see also [19] for a mathematically rigorous
treatment of the problem). It was realized later that the condition of rational inde-
pendence can be weakened [25]. These results are close to the statement proven by
L. Friedlander [12]: generic quantum graphs do not have multiple eigenvalues and
thus generic compact graphs can be reconstructed from the spectrum of the Laplace
operator.

On the other hand the connections between the spectral properties of quantum
graphs and the topological invariants of the underlying metric graphs have not
been studied yet. Such questions have been investigated only for discrete graphs by
S. Novikov [23] and Y. Colin de Verdière [9] and [10].

In the current article we establish the following result:
The number of connected components, the total length, and the Euler charac-

teristic of a metric graph are uniquely determined by the spectrum of the Laplacian
in the case of compact graphs. The same parameters for non-compact graphs (with
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the total length substituted by the length of the compact core) are determined by
scattering data consisting of the scattering matrix and the discrete spectrum.

In other words, it is proven that graphs having the same spectrum or scattering
data have the same size (total length) and essentially the same complexity (the
number of connected components and Euler characteristic). We believe that this
result is important for applications, since it shows that it is impossible to replace
a certain complicated metric graph by a simpler one and preserve the spectral or
scattering data for the corresponding Laplacian. We would like to point out that
the set of scattering data needed does not include any normalization constants
connected with the bound states, in contrast to the case of the one-dimensional
Schrödinger equation.

This result has an important implication: to determine topological charac-
teristics of non-compact metric graphs in the case of Laplacians without discrete
spectrum, it is enough to know the scattering matrix. This result is similar to the
celebrated Levinson theorem [21] developed in full details by G. Borg [5] and [6]
and V. A. Marchenko [22].

The main analytic tool is a generalization of the trace formula connecting the
spectrum of the Laplace operator with the set of closed paths on the geometric
graph. The first version of the trace formula for Laplace operators on graphs was
proven by J.-P. Roth [26] using the heat kernel expansion, but we are going to use the
trace formula in the form (3.13) first presented by J.-P. Roth as well, but no proof
was given. T. Kottos and U. Smilansky used the secular equation ((3.8) below) to
derive this version of the trace formula [18], but without paying attention to the fact
that the secular equation in general does not determine the correct multiplicity of
the eigenvalue zero. Taking this fact into account leads to an extra term in the trace
formula related to the Euler characteristic of the underlying graph. This correction
allows us to establish the main result of the current article concerning the Euler
characteristic of metric graphs. In view of this fact it appears natural to present here
a mathematically rigorous proof of the trace formula, using essentially the approach
suggested in the pioneering paper [18]. Note that the approach in [18] was developed
further in [15] (and later in [19]). These ideas have been extended in a remarkable
series of papers on spectral properties of quantum graphs by U. Smilansky and co-
authors. Probably it is worth mentioning that a similar approach has been used by
R. Carlson to study the inverse problem for directed graphs [8].

2. Definitions

In this section we recall the main definitions and properties of graph Laplacians
in order to establish common language and notation.
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Definition 1. A metric graph Γ=Γ(E, σ) consists of a finite set E of finite or
semi-infinite closed intervals ∆j , j=1, 2, ..., N , called edges, and a partition σ of
the set V={xj} of end points xj of the edges, V=

⋃M
m=1 Vm. The equivalence

classes Vm, m=1, 2, ...,M , will be called vertices, and the number of elements of Vm

will be called the valence of Vm. The finite and semi-infinite intervals will be called
internal and external edges, respectively.

Let us denote by Ni and Ne the number of internal and external (semi-infinite)
edges respectively.

The distance between two points on Γ is the length of the shortest connected
path between these two points. This metric introduces a topology on Γ and gives
a possibility to study continuous pathes on it. In particular consider the fundamen-
tal group for the metric graph assuming that it is connected and compact. Then the
number g of generators in this group is related to the Euler characteristic χ=M−N
via the formula

g= 1−χ.(2.1)

In order to preserve the same relation for non-compact graphs, let us use the fol-
lowing

Definition 2. Let Γ be a graph with Ni internal edges and M vertices, then its
Euler characteristic χ is

χ=M−Ni.(2.2)

Note that external edges do not contribute to the Euler characteristic. Another pos-
sibility would be to compactify the external edges by introducing extra vertices ∞j .
This recipe would lead to the same value of χ.

The metric induced on Γ determines the Hilbert space L2(Γ) of square inte-
grable functions with the standard scalar product 〈f, g〉=∫

Γ
f(x)g(x) dx. Note that

this Hilbert space does not ”feel” the connectivity of the graph and can be written
as the orthogonal sum

L2(Γ)=
N⊕

n=1

L2(∆n).

Definition 3. The Laplace operator L(Γ) is the operator of negative second
derivative in L2(Γ) defined on the domain of functions f from the Sobolev space
⊕N

n=1W
2
2 (∆n) satisfying standard boundary conditions at the vertices

{ ∑
xj∈Vm

∂nf(xj)=0;

f is continuous at Vm;
m= 1, 2, ...,M,(2.3)
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where ∂nf(xj) denotes the normal derivative of the function f at the end point xj :

∂nf(xj)=

{
f ′(xj), if xj is the left end point,

−f ′(xj), if xj is the right end point.

Note that it is the boundary conditions that reflect the connectivity of the
graph. The differentiation in the last definition is just the differentiation along the
interval. We would like to point out the following facts.

(1) A metric graph Γ determines the Laplace operator L(Γ) completely.
(2) It is not important whether the corresponding graph is planar or not.
(3) Vertices of valence 2 may be removed, since the boundary conditions (2.3)

imply that the function and the first derivative are continuous in that case.

Proposition 1. Let L(Γ) be the Laplace operator on the metric graph Γ with
Ne external edges. Then its spectrum is a union of the absolutely continuous spec-
trum [0,∞) of multiplicity Ne and the non-negative discrete spectrum {λn}n with
only one possible accumulating point ∞.

Proof. The operator L(Γ) is a finite-rank perturbation in the resolvent sense
of the orthogonal operator sum

⊕N
j=1 L(∆j). The spectrum of each operator L(∆j)

is either purely discrete (internal edges) or purely absolutely continuous [0,∞) (ex-
ternal edges). Hence the spectrum for compact graphs is purely discrete and ac-
cumulates at ∞. For non-compact graphs the continuous spectrum is absolutely
continuous and fills in the interval [0,∞) with the multiplicity Ne. Possible dis-
crete spectrum eigenfunctions are supported by the compact core Γc of the graph Γ
– the metric graph obtained from Γ by deleting all external edges (see formula (5.1)
below), since only the zero function is a square integrable solution to the equation
−ψ′′=k2ψ on semi-infinite edges. Thus the discrete spectrum of L(Γ) is a subset of
the spectrum of L(Γc). �

It is natural to study the inverse spectral and inverse scattering problems for
compact and non-compact graphs respectively.

3. Trace formula

In this section we are going to study the spectral problem for compact graphs,
i.e. where the graph Γ is built up from finite edges ∆j =[x2j−1, x2j ]. We shall essen-
tially follow the program suggested in [18] and [15] but making it mathematically
rigorous. In order to establish the secular equation (see (3.8) below) for the spec-
trum of the Laplace operator L(Γ) let us note that every eigenfunction ψ(x, k),
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corresponding to the energy λ=k2 is a solution to the differential equation

− d2

dx2
ψ(x, k)= k2ψ(x, k),(3.1)

on the edges, satisfying the boundary conditions (2.3) at the vertices. For k �=0
every solution to (3.1) can be written using either a basis of incoming or one of
outgoing waves

ψ(x, k)= a2j−1e
ik|x−x2j−1|+a2je

ik|x−x2j |(3.2)

= b2j−1e
−ik|x−x2j−1|+b2je

−ik|x−x2j |, x∈∆j = [x2j−1, x2j ].

The amplitudes �a={aj}2N
j=1 and�b={bj}2N

j=1 are related by the edge scattering matrix

�b=Se�a, where Se(k)=

⎛

⎜
⎝

S1
e 0 ...

0 S2
e ...

... ... ...

⎞

⎟
⎠ , and Sj

e =
(

0 eikdj

eikdj 0

)

,(3.3)

where dj is the length of ∆j . The second relation between the amplitudes is obtained
by considering the boundary conditions at the vertices Vm one by one. For that
purpose it is convenient to use the following representation for the solution to (3.1),
using only amplitudes related to every end point xj from Vm,

ψ(x, k)= aje
ik|x−xj|+bje−ik|x−xj|.

Then the boundary conditions are fulfilled if and only if
{
aj +bj=al+bl, xj , xl∈Vm
∑

xj∈Vm
(aj−bj)=0.

(3.4)

Let the vectors �am and �bm denote the amplitudes of all incoming and outgoing
waves for the vertex Vm, m=1, 2, ...,M , respectively. Then (3.4) imply that �am

and �bm are connected through the unitary vertex scattering matrix

(Sm
v )ij =

⎧
⎪⎪⎨

⎪⎪⎩

2
vm

, i �=j,
2−vm

vm
, i=j,

, where vm is the valence of Vm,(3.5)

as follows

�am =Sm
v
�bm, m= 1, 2, ...,M.(3.6)
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The last equation implies that
⎛

⎜
⎜
⎜
⎝

�a1

�a2

...

�aM

⎞

⎟
⎟
⎟
⎠

=Sv

⎛

⎜
⎜
⎜
⎜
⎝

�b1

�b2

...
�bM

⎞

⎟
⎟
⎟
⎟
⎠
, with Sv =

⎛

⎜
⎝

S1
v 0 ...

0 S2
v ...

... ... ...

⎞

⎟
⎠ .(3.7)

Note that the matrices Se and Sv possess the block representations (3.3) and (3.7)
in different bases. Clearly a vector �a determines an eigenfunction of the Laplace
operator if and only if the following equation holds

det(S(k)−I)= 0, where S(k)=SvSe(k).(3.8)

The matrix S(k) is unitary for real k since it is a product of two unitary matrices.
It is easy to see that

‖S(k)‖< 1 for Im k > 0 and ‖S−1(k)‖< 1 for Im k < 0,(3.9)

since the matrix Sv is unitary (independent of k) and the matrix Se(k) satisfy (3.9).
Equation (3.8) determines the spectrum of L(Γ) with correct multiplicities for

all non-zero values of the energy, but the multiplicity ma(0) of the zero eigenvalue
given by this equation, i.e. the dimension of Ker(S(k)−I), to be called algebraic
multiplicity, may be different from the dimension ms(0) of the zero eigensubspace
of L(Γ), to be called spectral multiplicity. The following theorem connects these
multiplicities with the Euler characteristics of Γ.

Theorem 1. Let Γ be a compact metric graph with C connected components
and Euler characteristic χ, and let L(Γ) be the corresponding Laplace operator.
Then λ=0 is an eigenvalue with spectral multiplicity ms(0)=C and algebraic mul-
tiplicity ma(0)=2C−χ.

Proof. Spectral multiplicity. Every eigenfunction for eigenvalue zero is a so-
lution to the differential equation −d2/dx2ψ(x, 0)=0 on every edge and satisfies
boundary conditions (2.3) at every vertex. Every such function is continuous on Γ
and therefore attains its maximum on Γ. It is a linear function of x on every edge
and therefore the maximum is attained at (at least) one of the vertices. Consider
the normal derivatives at such a vertex. All these derivatives are less than or equal
to zero (a maximum point), but their sum is equal to zero. We conclude that the
function is equal to its maximum on all neighboring intervals and at all directly
connected vertices. Repeating the same arguments we conclude that the function
is constant on every connected component of Γ. Hence the dimension of the zero
eigensubspace, ms(0), is equal to the number C of connected components.
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Algebraic multiplicity. The calculation of the dimension of the kernel of the
matrix Ker (SvSb(0)−I) can be carried out by using standard methods of linear al-
gebra [19] and [24], but we shall calculate this dimension directly from the original
equations (3.3) and (3.4) in order to clarify the relation between the algebraic mul-
tiplicity and the number g of generators of the fundamental group for Γ. Therefore
we assume first that the graph is connected.

In the case k=0 the system (3.3) takes the form a2j−1=b2j and a2j =b2j−1,

and the coefficients bj can be excluded from (3.4). Thus we get the following linear
system with 2N unknowns

{
a2j−1+a2j=a2l−1+a2l, j, l=1, 2, ..., N ;
∑

j:xj∈Vm
(aj−aj−(−1)j )=0, m=1, 2, ...,M.

(3.10)

The first series of equations implies that the function ψ(x, 0) is constant on the
whole graph Γ,

ψ(x, 0)= a2j−1+a2j ≡ c, j= 1, 2, ..., N

(as is expected for simply connected graphs). The reason that the spectral and
algebraic multiplicities may be different is that the constant function ψ(x, 0)=c
may be represented by different vectors �a.

With every edge ∆j we associate the flux f(∆j)(1) defined as follows

f(∆j)= a2j−1−a2j.(3.11)

Then the second set of equations (3.10) implies that the total flux through every
vertex is zero,

∑

∆j starts at vm

f(∆j)=
∑

∆j ends at vm

f(∆j), m= 1, 2, ...,M.(3.12)

Let us prove that the dimension of the space of solutions to this system of equations
is equal to the number g of generators for the fundamental group.

(1) The interpretation of f(∆j) as a flux can be justified by the following reasoning. The
probability flux into the interval ∆j =[x2j−1, x2j ] from the left and right end points is given by

|a2j−1|2−|b2j−1|2 and |a2j |2−|b2j |2, respectively. Then the unitarity of the edge scattering matrix
Se expresses the fact that the total probability flux for each edge is zero. In the case λ=0 the
coefficients aj and bj may be chosen real and the probability flux through the edge from the left
to the right end point is given by

|a2j−1|2−|b2j−1|2 = a2
2j−1−a2

2j =(a2j−1−a2j)(a2j−1+a2j)= f(∆j)c.

Hence f(∆j) coincides with the flux up to multiplication by the constant c.
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Assume that Γ is a tree (N=M−1), then the only possible flux is zero. First
we note that the flux on all loose edges is zero. Then it is clear that the flux is zero
on all edges connected by at least one of the end points to loose edges. Continuing
in this way we conclude that the flux is zero on the whole tree.

Assume now, that Γ is an arbitrary connected graph. Then by removing certain
N−(M−1) edges it may be transformed to a certain tree T. Let us denote the
removed edges by ∆1,∆2, ...,∆N−M+1 so that

T = Γ\
N−M+1⋃

j=1

∆j .

Every edge ∆j determines one non-trivial class of closed pathes on T∪∆j . Let us
denote by lj the shortest pass from this class. To each path lj we associate the basic
flux fj supported by lj ,

fj(∆k)=

{
±1, if ∆k∈lj ,
0, if ∆k /∈lj ,

where the sign in the last formula depends on whether the path lj runs along ∆k

in the positive (+) or negative (−) direction. Without loss of generality we assume
that fj(∆j)=1. Every such flux satisfies the system of equations (3.12).

Consider any flux f on Γ satisfying the conservation law (3.12). We claim that
it can be written as a linear combination of the basic fluxes fj . Really the flux

f−
N−M+1∑

j=1

f(∆j)fj

is supported on the tree T , it satisfies (3.12) and therefore it is equal to zero.
Summing up we conclude that for connected graphs the algebraic multiplicity

of the zero eigenvalue is given by

ma(0)= 1+N−(M−1)= 2−χ.
Since the Euler characteristic χ is additive for non-connected graphs, it is

straightforward to see that the formula ma(0)=2C−χ holds in the general case. �

This theorem implies that two graph Laplacians can be isospectral only if the
underlying graphs have the same number of connected components. It can clearly
be seen from the proof that the spectral and algebraic multiplicities for connected
graphs are equal only if the fundamental group is trivial, i.e. if the graph is a tree.

We now prove the trace formula relating the spectrum of the Laplace operator
with the set of closed continuous paths on the graph Γ. We consider only closed



104 Pavel Kurasov

paths p on Γ which do not turn back in the interior of any edge, but which may
turn back at any vertex. If the graph has no loops (compact edges attached by
both end points to one and the same vertex), then every closed continuous path is
uniquely determined by the sequence of edges which this path goes along. Cyclic
permutations of the sequences lead to the same closed path. It might be helpful to
view such paths as periodic orbits of a point particle moving on the metric graph.
This particle is moving freely along the edges, but may be reflected by the vertices.
By a primitive path of p, prim(p), we denote any closed continuous path, such that
the path p can be obtained by repeating the path prim(p).

Theorem 2. (Trace formula) Let Γ be a compact metric graph with Euler
characteristic χ and total length L, and let L(Γ) be the corresponding Laplace op-
erator. Then the following two trace formulae establish the relation between the
spectrum {k2

n}n of L(Γ) and the set P of closed paths on the metric graph Γ

u(k)≡ 2ms(0)δ(k)+
∑

kn �=0

(δ(k−kn)+δ(k+kn))(3.13)

=χδ(k)+
L
π

+
1
π

∑

p∈P
l(prim(p))S(p) cos kl(p),

and
√

2πû(l)= 2ms(0)+
∑

kn �=0

2 cosknl(3.14)

=χ+2Lδ(l)+
∑

p∈P
l(prim(p))S(p)(δ(l−l(p))+δ(l+l(p))),

where
(1) ms(0) is the multiplicity of the eigenvalue zero(2);
(2) p is a closed path on Γ;
(3) l(p) is the length of the closed path p;
(4) prim(p) is one of the primitive paths for p;
(5) S(p) is the product of all vertex scattering coefficients along the path p.

Proof. Consider the following distribution determined entirely by the spectrum
of the Laplace operator

u(k)= 2ms(0)δ(k)+
∑

kn �=0

(δ(k−kn)+δ(k+kn)),(3.15)

where the sum is taken over all non-zero eigenvalues respecting their multiplicity.
The sum is converging in the distributional sense, since the eigenvalues accumu-

(2) It is equal to the number C of connected components in accordance with Theorem 1.
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late towards ∞. (One may prove that Weyl asymptotics is valid.) All non-zero
points (including correct multiplicity) can be obtained as zeros of the analytic (just
a combination of exponentials) function

f(k)= det(S(k)−I).(3.16)

It follows that the distribution (3.15) can be obtained by integrating the logarithmic
derivative of f(k) around the zeroes. We here present formal calculations which are
valid in the distributional sense (for details see [19])

u(k)= (2ms(0)−ma(0))δ(k)

+
1

2πi

(
d

dk
log det(S(k−i0)−I)− d

dk
log det(S(k+i0)−I)

)

=χδ(k)+
1

2πi

(

Tr
d

dk
log(S(k−i0)−I)−Tr

d

dk
log(S(k+i0)−I)

)

=χδ(k)+
1

2πi
Tr

d

dk

(

−
∞∑

n=1

1
n
S−n(k−i0)+logS(k−i0)+

∞∑

n=1

1
n
Sn(k+i0)

)

=χδ(k)+
1

2πi
Tr

+∞∑

n=−∞
Sn(k)S′(k),

where we have taken into account that under Tr the matrices may be permutated
cyclically. We have also used that ‖S±1(k±i0)‖<1 so that the expansions are in
fact converging. Taking into account that S′(k)=SvS′

e(k)=SvSe(k)iD=S(k)iD,
where D is the following diagonal matrix

D= diag{d1, d1, d2, d2, ..., dN , dN},
we see that the distribution u can be calculated as a trace of the infinite sum of
matrices:

u(k)=χδ(k)+
1
2π

(

Tr
∞∑

n=−∞
Sn(k)D

)

.

The contribution from the zero term in the sum is just TrD=2L. A term with
number n gives a non-zero contribution only if there is a path p on Γ with the
discrete length (= the number of vertices the path comes across) n. Every such
path contributes twice as many times as the discrete length of the primitive path
prim p. (This will be exactly the number of different pathes if we would distinguish
between the pathes with different initial points and having different orientations.)
Each contribution is then equal to l(p)S(p)eikl(p)+l(p)S(p)e−ikl(p). Summing up we
obtain the result. �
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This statement was used to prove that graphs with rationally independent
lengths of edges are uniquely determined by the spectra of the corresponding Laplace
operators. But the trace formula has another important implication described in
the following section.

4. Uniqueness results for inverse spectral problem

In this section we again consider only compact graphs. Then the Euler char-
acteristic of the underlying metric graph can be calculated as follows.

Theorem 3. Let Γ be a compact metric graph and L(Γ) be the corresponding
Laplace operator. Then the Euler characteristics χ(Γ) is uniquely determined by the
spectrum {λn}n of the Laplace operator L(Γ),

χ= 2ms(0)+ lim
t!∞

∑

kn �=0

2t
kn

sin
kn

t

(
2 cos

kn

t
−1

)
, k2

n =λn.(4.1)

Proof. Let ϕ be any C∞
0 (R) function with the following properties

0 /∈ suppϕ and
∫ ∞

−∞
ϕ(x) dx= 1.

Consider the scaled sequence ϕt(x)=tϕ(tx) having the same properties. Then for-
mula (3.14) implies the limit

χ(Γ)=
√

2π lim
t!∞ û[ϕt].(4.2)

The function ϕ in the proof can be chosen equal to a step function, for example

ϕ(l)=

{
1, 1≤l≤2,

0, otherwise,

since for sufficiently large t the support of ϕt belongs to the regular support of the
distribution û. The Fourier transform of ϕt is

ϕ̂t(k)=
eik/t

√
2π

eik/t−1
ik/t

.

Formula (3.13) can now be used in order to get (4.1) for the Euler characteristic
of Γ. �

This theorem implies that Laplacians on two metric graphs having different
Euler characteristics are not isospectral. Taking in addition into account that the
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eigenvalues satisfy Weyl’s asymptotic law [28] and that the spectral multiplicity of
the eigenvalue zero is equal to the number of connected components (Theorem 1)
we can formulate the following result.

Uniqueness theorem 1. If two Laplace operators on compact graphs have
the same spectrum {λn}n then the underlying metric graphs have the same

(1) number of connected components ;
(2) total length;
(3) Euler characteristic.

The result concerning Euler characteristic appears substantial, while the re-
maining two points are recalled here for the sake of completeness.

5. Uniqueness results for inverse scattering problems

The uniqueness result proven for compact graphs are generalized in this section
to include non-compact graphs. Let Γ be a non-compact graph with Ni internal
(finite) edges ∆j =[x2j−1, x2j ], j=1, 2, ..., Ni, and Ne external (semi-infinite) edges
∆Ni+j=[x2Ni+j ,∞), j=1, 2, ..., Ne. Let us denote by Γc the compact core of the
graph Γ obtained by cutting off the external edges

Γc = Γ\Γ∞, where Γ∞ =
Ne⋃

j=1

∆Ni+j .(5.1)

Note that it may happen that the chopped vertices have valence 2. In this case the
two neighboring intervals must be substituted by one edge, but we do not want to
dwell at this point.

In order to study the absolutely continuous spectrum one introduces the scat-
tering matrix S(k) which is the Ne×Ne unitary matrix connecting the amplitudes
of the scattered waves on the semi-infinite edges. Let ψ(x, k) be a solution to the
differential equation (3.1) on the edges satisfying the boundary conditions (2.3) at
the vertices. Then on the semi-infinite edges this function is equal to a combination
of incoming and outgoing plane waves:

ψ(x, k)|x∈[x2Ni+j ,∞) =αje
ik|x−x2N+j|+βje

−ik|x−x2N+j|.(5.2)

Then the scattering matrix connects the amplitudes of the incoming e−ik|x−x2N+j|

and outgoing eik|x−x2N+j| waves

S(k) : �β �−!�α.(5.3)

In [20] and [4] it was shown that the knowledge of the scattering matrix is not
sufficient to reconstruct the Euler characteristic of the graphs, but it appears that
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the knowledge of the scattering matrix and the discrete spectrum is enough to
calculate χ.

Theorem 4. Let Γ be a non-compact metric graph with the compact core Γc

and Ne semi-infinite edges attached to it. Then the spectrum of the Laplace operator
L(Γc) is uniquely determined by the scattering data (S(k), {λn}n) for L(Γ).

Proof. Consider any eigenfunction ψ( · , kn) of L(Γc) corresponding to a certain
eigenvalue µn=k2

n. Let us continue this function to the rest of Γ by taking into
account its values at the chopped vertices as follows:

ψ(x, kn)=ψ(x2Ni+j , kn) cos kn|x−x2Ni+j |, x∈ [x2Ni+j ,∞).(5.4)

If all ψ(x2Ni+j , kn), j=1, 2, ..., N1, are zero, then the corresponding function is
a (discrete spectrum) eigenfunction for the operator L(Γ) and therefore k2

n coin-
cides with one of the λm.

If at least one of the values at the chopped vertices is not zero, then the
extended function is a generalized eigenfunction corresponding to the absolutely
continuous spectrum. Considering the asymptotics of this function we conclude
that the corresponding scattering matrix should have eigenvalue 1, i.e.

det(S(k)−I)= 0.(5.5)

On the other hand every solution to this equation determines an eigenfunction
of L(Γc).

Hence we conclude that the spectrum of L(Γc) is given by the eigenvalues λm

of L(Γ) and the solutions to (5.5). �

This theorem allows us to generalize the uniqueness theorem proven for com-
pact graphs.

Uniqueness theorem 2. If two Laplace operators on non-compact graphs
have the same scattering data (S(k), {λn}n) then the underlying metric graphs have
the same

(1) number of connected components ;
(2) total length of the compact core;
(3) Euler characteristic.

The number of connected components can be calculated directly summing up
(1) the number of compact connected components equal to the multiplicity of

the eigenvalue E=0;
(2) the number of non-compact components equal to the maximal number of

unitary blocks in the scattering matrix S(k).
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The total length of the compact core depends of course on the way we cut
off the semi-infinite edges. It is possible to cut off the semi-infinite edges without
chopping the vertices, but at certain points Oj∈(x2N+j ,∞). This corresponds in
some sense to a new parametrization of the scattering waves and leads to a slightly
different scattering matrix.

The counterexamples constructed in [20] show two graphs with the same scat-
tering matrix but different Euler characteristics. These examples do not contradict
our result, since the discrete spectra of the corresponding Laplacians are different.
The result we have proven states that additional knowledge of the discrete spec-
trum allows one to calculate the Euler characteristic. A formula similar to (4.1)
can be derived. At the same time the theorem implies that if a graph Laplacian
has no discrete spectrum, then the Euler characteristic of the underlying graph is
determined by the scattering matrix only.
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