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TOPOLOGICAL DAMPING OF AHARONOV-BOHM EFFECT:

QUANTUM GRAPHS AND VERTEX CONDITIONS.

P.KURASOV, AND A. SERIO

Abstract. The magnetic Schrödinger operator on the 8-shaped graph is stud-

ied. It is shown that for specially chosen vertex conditions the spectrum of
the magnetic operator is independent on the flux through one of the loops,
provided the flux through the other loop is zero. Topological reasons for this

effect are explained.

1. Introduction

Transport of quantum particles in nanostructures can be described by Schrödinger
equation on metric graphs, also known as quantum graphs. Spectral theory of quan-
tum graphs is a hot topic in modern mathematical physics and many interesting
properties have been observed and described, see for example recent monographs
on the subject [2, 9, 12]. Propagation of particles in such structures is described by
certain matching conditions at the vertices and by electric and magnetic potentials
on the edges. The vertex conditions reflect the topology of the graph connecting
together limiting values of functions at one particular vertex. The transport along
the edges is governed by the electric potential and reminds the one-dimensional
Schrödinger equation. The magnetic potential plays a role only if the underlying
graph contains cycles and the flux of the magnetic field through the cycles is not
multiple of 2π [4, 8]. Such dependence of the spectrum on the magnetic fluxes is
usually understood as Aharonov-Bohm effect and goes back to [1]. The intuition
behind Aharonov-Bohm effect is that a charged particle going around cycles ”feels”
the magnetic field inside the cycles. If magnetic flux is a multiple of 2π, then the
magnetic potential can be removed and therefore does not influence the spectrum.

In the current article we consider the 8-shape graph with magnetic Schrödinger
operator. Our intuition based on Aharonov-Bohm effect tells that the spectrum
depends on the fluxes of the magnetic field through the two loops and explicit
calculations support this prediction. On the other hand it is discovered that if one
of the fluxes is zero, then the spectrum might be independent of the flux through
the other loop. This fact appears surprising, since no difference to the original
Aharonov-Bohm setting can easily be seen. We use trace formula connecting the
spectrum of the operator to the set of periodic orbits on the underlying metric
graph. It appears that only the orbits going around the loops with nontrivial flux
in opposite directions, and therefore not feeling the flux, contribute to the trace
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Figure 1. The 8-shape graph

formula. We call this observation by topological damping of Aharonov-Bohm effect
and discuss how to obtain other graphs exhibiting the same property.

The article is organized as follows: we first define the graph and the operator and
calculate the spectrum explicitly. In the last section the trace formula is consid-
ered and the reason for the topological damping is explained. The role of vertex
conditions is illuminated.

2. Getting started

Let us consider the metric 8-shape graph Γ∞ formed by two edges E1 = [x1, x2]
and E2 = [x3, x4] joined together at one vertex V = {x1, x2, x3, x4}.

We study the magnetic Schrödinger operator on Γ∞

(1) L =

(
i
d

dx
+ a(x)

)2

with zero electric potential and arbitrary integrable real magnetic potential a. To
make the operator self-adjoint we assume vertex matching conditions of the form:

(2) i(S − I)u⃗ = (S + I)∂u⃗,

where u⃗ and ∂u⃗ are the vectors of all limit values of the function and its normal
extended derivatives at the vertex V

u⃗ =




u(x1)
u(x2)
u(x3)
u(x4)


 , ∂u⃗ =




u′(x1) − ia(x1)u(x1)
− (u′(x2) − ia(x2)u(x2))
u′(x3) − ia(x3)u(x3)

− (u′(x4) − ia(x4)u(x4))


 .

The matrix S is unitary and is used to parametrize all possible matching conditions
making the operator L self-adjoint in L2(Γ∞) when defined on all functions from
the Sobolev space W 2

2 (Γ \ V ) satisfying (2).
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The spectrum of the operator L is pure discrete and consists of eigenvalues accu-
mulating towards +∞. The eigenvalues can be calculated by solving the eigenvalue
equation

(3)

(
i
d

dx
+ a(x)

)2

ψ(x) = λψ(x)

on each of the intervals and substituting the solution into the vertex conditions (2).
Our main interest is the dependence of the spectrum upon magnetic potential a.
The first elementary observation is that magnetic potential can be eliminated on
each of the edges, but not globally leading to new vertex conditions that depend
on the integrals of the magnetic potential along the two loops

(4) ϕj =

∫ x2j

x2j−1

a(x)dx, j = 1, 2.

It appears that particular form of the magnetic potential does not play any role.
The following transformation

(5) Ua : u(x) 7→ exp

(
−i
∫ x

x2j−1

a(y)dy

)
u(x)

maps the operator L into the operator L = UaLU
−1
a given by the same differential

expression but with zero magnetic potential

(6) L = − d2

dx2

on the set of functions from W 2
2 (Γ \ V ) satisfying vertex conditions

(7) i(Sϕ1,ϕ2 − I)u⃗ = (Sϕ1,ϕ2 + I)∂nu⃗,

which are obtained from (2) by substituting the matrix S with

(8) Sϕ1,ϕ2 = DSD−1, D =




1 0 0 0
0 e−iϕ1 0 0
0 0 1 0
0 0 0 e−iϕ2


 ,

and the vector of extended derivatives ∂u⃗ - with the vector of normal derivatives

∂nu⃗ =




u′(x1)
−u′(x2)
u′(x3)

−u′(x4)


 .

The integrals ϕj can be interpreted as fluxes of the magnetic field through the
corresponding loops.

In general the spectrum of the operator L depends on the fluxes, but it might hap-

pen that only the sum of the fluxes counts. For example if S =




0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0




then the graph Γ∞ is equivalent to the loop of length L = x2 −x1 +x4 −x3 and the
spectrum obviously depends on the sum of the of the fluxes ϕ1 + ϕ2. This case is
not interesting, since the anomalous behavior of the spectrum is due to the choice
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of vertex conditions that do not respect the geometry of the graph: the vertex V
can be divided into two vertices V1 = {x1, x4} and V2 = {x2, x3} and the vertex
conditions connect separately the boundary values corresponding to the two new
vertices. Such boundary conditions do not correspond to the 8-shaped graph but
rather to the loop graph.

Another degenerate example is when S =




0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0


. In this case every

second eigenvalue depends only on ϕ1 and all other - only on ϕ2. The vertex condi-
tions connect together the pairs of end points (x1, x2) and (x3, x4) separately. The
corresponding metric graph is not Γ∞ but rather two separate loops formed by the
two edges. This case is not interesting for us either.

In what follows we study the magnetic Schrödinger operator corresponding to the
vertex conditions given by the following vertex scattering matrix:

(9) S =




0 0 α β
0 0 −β α
α −β 0 0
β α 0 0


 , α, β ∈ R, α2 + β2 = 1.

This unitary matrix connects together boundary values at all four end points and
therefore is properly connecting. One may visualize this by the following picture,
where all possible scattering processes are indicated by curves. It will be shown

Figure 2. Visual representation of the connections given by the
vertex conditions with S given by (9): the curves indicate possible
passages.

that interesting effects can be observed if the probabilities of these passages are
equal, which corresponds to the choice α = β = 1/

√
2:

(10) S =




0 0 1√
2

1√
2

0 0 − 1√
2

1√
2

1√
2

− 1√
2

0 0
1√
2

1√
2

0 0


 .

3. Explicit calculation of the spectrum.

Our immediate goal is to derive the equation describing the spectrum of the op-
erator L depending on the fluxes ϕ1 and ϕ2 and parameters α and β. All nonzero
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eigenvalues of L can be calculated using the vertex and edges scattering matrices
[3, 5, 6, 7, 10]. The matrix S and therefore the matrix Sϕ1,ϕ2 = DSD−1 appearing
in the vertex conditions is not only unitary, but also Hermitian. It follows that
the corresponding vertex scattering matrix Sv does not depend on the energy and
coincides with Sϕ1,ϕ2

(11) Sv ≡ Sϕ1,ϕ2 =




0 0 α eiϕ2β
0 0 −e−iϕ1β e−i(ϕ1−ϕ2)α
α −eiϕ1β 0 0

e−iϕ2β ei(ϕ1−ϕ2)α 0 0


 .

The differential operator on the edges does not contain any electric or magnetic
potential, hence the plane waves penetrate the edges without any reflection but
gaining extra phases. The corresponding edge scattering matrix is

(12) Se =




0 eikℓ1 0 0
eikℓ1 0 0 0

0 0 0 eikℓ2

0 0 eikℓ2 0


 ,

where ℓj = x2j − x2j−1, j = 1, 2 are the lengths of the edges. Then all nonzero
eigenvalues are given by the solutions of the equation

(13) det (Se(k)Sv − I) = 0,

which is equivalent to
(14)

det




−1 0 −eikℓ1e−iϕ1β eikℓ1e−i(ϕ1−ϕ2)α
0 −1 eikℓ1α eikℓ1eiϕ2β

eikℓ2e−iϕ2β eikℓ2ei(ϕ1−ϕ2)α −1 0
eikℓ2α −eikℓ2eiϕ1β 0 −1


 = 0

(15)

⇔ 1 +
(
α2 + β2

)2
e2ik(ℓ1+ℓ2) + 2

(
cos(ϕ1 + ϕ2)β

2 − cos(ϕ1 − ϕ2)α
2
)
eik(ℓ1+ℓ2) = 0.

Taking into account that α2 + β2 = 1 and eik(ℓ1+ℓ2) ̸= 0 we arrive at the following
secular equation

(16) cos k(ℓ1 + ℓ2) = α2 cos(ϕ1 − ϕ2) − β2 cos(ϕ1 + ϕ2).

The right hand side of this equation is a constant between −1 and 1 and hence
solutions to the equation form two periodic in k sequences. The corresponding
eigenvalues λ = k2 in general depend on both magnetic fluxes ϕ1 and ϕ2.

Interesting phenomenon occurs if one choses α = β = 1/
√

2, i.e. the matrix S given
by (10). The secular equation (16) takes the form

(17)
cos k(ℓ1 + ℓ2) =

cos(ϕ1 − ϕ2) − cos(ϕ1 + ϕ2)

2

= sinϕ1 sinϕ2.

It follows, that if one of the magnetic fluxes is an integer multiple of π, then the
spectrum is independent of the other flux. This is a trivial consequence of the
secular equation (17), but we are interested in having an intuitive explanation of
this phenomena. Aharonov-Bohm effect tells us that the spectrum of a system like
magnetic Schrödinger operator on Γ∞ should depend on the magnetic fluxes. This
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dependence is damped only in very special cases. What is so special when one of
the fluxes is zero? An explicit answer to this question is given in the following
section. We use the trace formula connecting the spectrum of a quantum graph to
the set of periodic orbits on the underlying metric graph.

In what follows we are interested in this special case, when one of the fluxes is zero.
Without loss of generality we may assume that ϕ1 = 0.

First of all, let us determine whether λ = 0 is an eigenvalue of the operator Lor
not. k = 0 is a solution to the secular equation only if sinϕ1 sinϕ2 = 1. If one of
the fluxes is zero, then k = 0 is not a solution to the secular equation. It follows
that the so-called algebraic multiplicity1 ma(0) [10, 6] of the zero eigenvalue is zero.

Let us turn to calculation of the spectral multiplicity ms(0) - the number of linearly
independent solutions to the equation Lψ = 0. In order to underline that only the
length of the edges are important, let us parameterize the edges as follows

[x1, x2] = [0, ℓ1], [x3, x4] = [0, ℓ2].

All solutions to the differential equation are then given by:

(18) ψ(x) =

{
a1x+ b1 If x ∈ [x1, x2],

a2x+ b2 If x ∈ [x3, x4].

Then at the endpoints we have

(19) ψ⃗ =




b1
a1l1 + b1

b2
a2l2 + b2


 , ∂nψ⃗ =




a1

−a1

a2

−a2


 .

The matrix Sϕ1,ϕ2 is unitary and Hermitian, hence its eigenvalues are just ±1.
Therefore the vertex conditions (7) are satisfied if and only if both the left and
right hand sides are equal to zero:




− 1
2 0 1

2
√

2
e−iϕ2

2
√

2

0 − 1
2 − eiϕ1

2
√

2
eiϕ1−iϕ2

2
√

2
1

2
√

2
− e−iϕ1

2
√

2
− 1

2 0
eiϕ2

2
√

2
e−iϕ1+iϕ2

2
√

2
0 −1

2







a1

−a1

a2

−a2


 = 0,(20)




1
2 0 1

2
√

2
e−iϕ2

2
√

2

0 1
2 − eiϕ1

2
√

2
eiϕ1−iϕ2

2
√

2
1

2
√

2
− e−iϕ1

2
√

2
1
2 0

eiϕ2

2
√

2
e−iϕ1+iϕ2

2
√

2
0 1

2







b1
a1l1 + b1

b2
a2l2 + b2


 = 0.(21)

We omit tedious computations and give just a sketch. From the first equation we
obtain a1 = a2 = 0, then plugging this result into the second equation we obtain
b1 = b2 = 0 for any values of ϕ2. This proves that λ = 0 is not an eigenvalue and
hence the spectral multiplicity (as well as the algebraic multiplicity) is zero in this
case.

1The algebraic multiplicity is the order of zero in the secular equation.



TOPOLOGICAL DAMPING OF AHARONOV-BOHM EFFECT 7

Summing up the spectrum of the magnetic Schrödinger operator on Γ∞ is given by
the solutions of the secular equation

(22) cos kL = 0, L = ℓ1 + ℓ2,

provided one of the magnetic fluxes is zero.

4. Topological reasons for damping

We have seen that in the case ϕ1 = 0 the spectrum does not depend on the flux ϕ2

- the Aharonov-Bohm effect is damped which contradicts our intuition. The main
goal of this section is to explain that this effect has a topological explanation. We
are going to use trace formula (see [3, 5, 10, 6, 13]) connecting the spectrum of a
quantum graph to the set of periodic orbits on the metric graph. It will be shown
that orbits that ”feel” the magnetic flux ϕ2 give zero total contribution into the
trace formula.

Under a periodic orbit we understand any oriented closed path on the graph Γ∞,
which is allowed to turn back at vertices only. Paths having opposite directions are
considered to be different. The trace formula for the Laplace operator on a metric
graph can be written as [3, 5, 10, 6, 13]:

(23) u(k) := 2ms(0)δ(k) +
∑

kn ̸=0

(δ(k − kn) + δ(k + kn))

= (2ms(0) −ma(0)) δ(k) +
L
π

+
1

π

∑

p∈P
l(prim (p))Sv(p) cos kl(p),

where

• L = ℓ1 + ℓ2 is the total length of the graph,
• ms(0) is the (spectral) multiplicity of the eigenvalue zero;
• ma(0) is the algebraic multiplicity of the eigenvalue zero - the order of zero

given by the secular equation (16);
• p is a closed path on Γ;
• P is the set of closed paths;
• l(p) is the length of the closed path p;
• prim (p) is one of the primitive paths for p;
• Sv(p) is the product of all vertex scattering coefficients along the path p.

This formula was proven for the Laplace operator with standard vertex conditions
(assuming that the functions are continuous and the sum of normal derivatives is
zero), but just the same proof holds in the case where the vertex conditions are
described by vertex scattering matrices which are independent of the energy [11]. In
the considered case the vertex scattering matrices Sv are Hermitian and therefore
independent of the energy.

The fluxes ϕ1 and ϕ2 are contained in the products Sv(p), since the entries of
Sv ≡ Sϕ1,ϕ2 depend on the fluxes (see formula (11)). Therefore it is natural to
expect that the left hand side also depends on the fluxes as well. On the other
hand the left hand side in (23) is determined by the spectrum of L which in the
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case ϕ1 = 0 is independent of ϕ2. More precisely, the spectrum is determined by
cos kL = 0 (we have already shown that λ = 0 is not an eigenvalue in this case,
ms(0) = 0)

(24) kn =
π

2L +
π

Ln, n = 0, 1, 2, 3, . . .

Then the left hand side of trace formula can be written as

u(k) =
∑

kn ̸=0

(δ(k − kn) + δ(k + kn))

=
∑

n∈Z
δ
(
k −

( π
2L +

π

Ln
))

=
∑

m∈Z
δ
(
k − π

2Lm
)

−
∑

m∈Z
δ
(
k − π

Lm
)
.

We use now Poisson summation formula

∑

n∈Z
δ(x− Tn) =

1

T

∑

m∈Z
e
−i2πm

T
x

and rewrite the last expression as follows:

(25) u(k) =
∑

n∈Z
δ
(
k −

( π
2L +

π

Ln
))

=
2L
π

∑

m∈Z
e−i4Lmk − L

π

∑

m∈Z
e−i2Lmk.

This formula represents the distribution u(k) as a formal exponential series. This
series is independent of ϕ2, while the series on the right hand side of (23) formally
contain ϕ2, since Sv(p) depend on the second flux. Let us examine the series over
all periodic orbits in more detail in order to understand the reason why all terms
containing ϕ2 cancel. It appears that the reason is mostly topological.

The algebraic multiplicity of the eigenvalue zero is zero ma = 0 (k = 0 is not a
solution to cos kL = 0) and the right hand side of trace formula can be written as

u(k) =
L
π

+
1

π

∑

p∈P
l(prim (p))Sv(p) cos kl(p).

Let us note first that the sum in the trace formula contains contributions from the
paths that go around the left and right loops equally many times. This is due to
the fact that the coefficients 12, , 21, 34 and 43 in the vertex scattering matrix are
zero

(Sv)12 = (Sv)21 = (Sv)34 = (Sv)43 = 0.

Therefore the length of each path with nontrivial Sv(p) is an integer multiple of the
total length L := ℓ1 + ℓ2.

The sum over all paths is taken over all closed paths and l(prim p) is the length of
the corresponding primitive path. It will be convenient for us to distinguish paths
with different starting edges - the first edges the path comes across. Then the sum∑

p∈P l(prim (p))Sv(p) cos kl(p) can be written as two sums - over the paths that
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go around the left loop first and over the paths that go around the right loop first:

(26)

u(k) =
L
π

+
1

π

∑

p∈P
l(prim (p))Sv(p) cos kl(p)

=
L
π

+
ℓ1
π

∑

p∈Pl

Sv(p) cos kl(p) +
ℓ2
π

∑

p∈Pr

Sv(p) cos kl(p),

where Pl,r denote the sets of paths where paths with different starting edges are
considered different. The lower indices l and r indicate whether the path goes
around the left or the right loop first. Each of the two sums can be treated in a
similar way.

Let us consider first the series
∑

p∈Pl
Sv(p) cos kl(p) over all paths starting by going

into the left edge. After going around the left loop the path should go around
the right loop and then again around the left one: the left and right loops appear
one after another. Every such path can be uniquely parameterized by a series of
indices νj = ± indicating whether the path goes around the left or right path in
the positive (+) (clockwise following the orientation of the edges) or negative (−)
(anti clockwise) direction. All odd indices correspond to the left loop, all even - to
the right loop. The number of signs is even, which reflects the fact that every such
path goes around the left and right loops equal number of times. For example the
path indicted on Figure 4 is parameterized as (+,−,+,+).

Figure 3. A path of length 2(l1 + l2).

Let us turn to the calculation of the coefficients Sv(p). The path indicated on Figure
4 has coefficient Sv(p) equal to

Sv(p) = (Sv)14(Sv)32(Sv)13(Sv)42

= eiϕ2β · (−e−iϕ1β) · α · ei(ϕ1−ϕ2)α

= −e2iϕ1α2β2 =
−1

4
ei2ϕ1 .

One may calculate the same product using the original vertex scattering matrix
(10), but taking into account that each time when the path goes along the left
or right loop the product gains the phase coefficient e±iϕ1 or e±iϕ2 , respectively.
The sign corresponds to positive or negative direction. Each time when the path
crosses the middle vertex, Sv(p) gets an extra term ± 1√

2
. Note that only coefficients

corresponding to the transitions 2 → 3 and 3 → 2 have minus sign, all other
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coefficients are positive

Sv(p) = eiϕ1︸︷︷︸
left loop
positive

1√
2︸︷︷︸

2→4

e−iϕ2︸ ︷︷ ︸
right loop
negative

1√
2︸︷︷︸

3→1

eiϕ1︸︷︷︸
left loop
positive

−1√
2︸︷︷︸

2→3

eiϕ2︸︷︷︸
right loop
positive

1√
2︸︷︷︸

4→1

=
−1

4
ei2ϕ1 .

It will be convenient to see the product Sv(p) corresponding to the path (ν1, ν2, . . . , ν2n)
divided into three factors

• the product of all phase factors

ei
∑n

j=1 ν2j−1ϕ1 · ei
∑n

j=1 ν2jϕ2 ;

• the product of absolute values of scattering coefficients
(

1√
2

)2n

=
1

2n
;

• the product of sign factors ±1.

Our next claim is that only paths that every second time go around the right loop in
a different direction give a contribution into the trace formula. Consider the path p′

that contains the sequence (. . . , +︸︷︷︸
2m

, +︸︷︷︸
2m+1

, +︸︷︷︸
2m+2

. . . ). Then the contribution from

the path p′′ obtained from p′ by reversing the edge with the number 2m + 1, i.e.
given by (. . . , +︸︷︷︸

2m

, −︸︷︷︸
2m+1

, +︸︷︷︸
2m+2

. . . ), cancels the contribution from p′. Really, the

phase contributions from p′ and p′′ are the same, the absolute values are also the
same, while the product of signs for p′ contains (−1)×1 corresponding to transitions
3 → 2 and 1 → 4, in contrast to the product 1 × 1 appearing in the product for
p′′ (corresponds to the transitions 3 → 1 and 2 → 4, all other coefficients are the
same). Similarly contributions from the paths given by (. . . , −︸︷︷︸

2m

, −︸︷︷︸
2m+1

, −︸︷︷︸
2m+2

. . . )

and (. . . , −︸︷︷︸
2m

, +︸︷︷︸
2m+1

, −︸︷︷︸
2m+2

. . . ) cancel each other.

Assume now that the path p′ contains the sequence (. . . , +︸︷︷︸
2m

, +︸︷︷︸
2m+1

, −︸︷︷︸
2m+2

. . . ), then

the contribution from p′′ corresponding to (. . . , +︸︷︷︸
2m

, −︸︷︷︸
2m+1

, −︸︷︷︸
2m+2

. . . ) is just the

same. It follows that only the paths of the form (ν1,+, ν3,−, ν5,+, ν7,−, . . . ) and
(ν1,−, ν3,+, ν5,−, ν7,+, . . . ) survive in the series. Every such path has discrete
length (the number of edges it comes across) being multiple of 4. The phase con-
tribution from such paths is zero, since we assumed ϕ1 = 0. It follows that the
sum over the periodic paths starting with the left loop does not depend on ϕ2.
Similar result holds for the other sum explaining the reason why the spectrum of
the magnetic Schrödinger operator on Γ∞ does not depend on ϕ2, provided ϕ1 = 0.

Let us continue to calculate the sum over the periodic orbits. We have seen that
only orbits of lengths 2nL (discrete length 4n) make a contribution to the se-
ries. Consider for example the orbits of length 2L. Only the orbits of the form
(ν1,+, ν3,−) and (ν1,−, ν3,+) give nonzero contributions. The phase contribution
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is ei0 = 1. The absolute value contribution is
(

1√
2

)4

= 1
4 . The sign contribution

is −1. Alltogether there are 4 × 2 such orbits, since the signs ν1, ν3 can be chosen
freely. So the total contribution to the series is: −ℓ12 cos k2L.

Similarly contribution from the orbits of length 2nL is ℓ12(−1)n cos k2Ln. Taking
into account contribution from the paths from Pr (starting by first going around
the right loop) we get the following expression

u(k) =
L
π

+
1

π
(ℓ1 + ℓ2︸ ︷︷ ︸

=L

)
∞∑

n=1

2(−1)n cos k2Ln

=
L
π

+
L
π

( ∞∑

m=1

(
2eik4Lm − eik2Lm

)
+

∞∑

m=1

(
2e−ik4Lm − e−ik2Lm

)
)

=
2L
π

∑

m∈Z
e−ik4Lm − L

π

∑

m∈Z
e−ik2Lm,

which coincides with the expression (25) obtained using the left hand side of trace
formula (23).

Carried out calculations show the reason, why Aharonov-Bohm effect is not present
if one of the fluxes is zero: contributions from the periodic orbits going with non-
zero flux cancel each other. On the other hand, if one of the fluxes is not zero, then
the spectrum depends on the other flux as can be seen from equation(16). Similar
result holds even if one of the fluxes is an integer multiple of π. It is not so difficult
to propose different examples of graphs, where similar effects are observed. Trace
formula together with our explicit calculations provides a recipe to construct such
graphs.
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