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SCHRöDINGER OPERATORS ON GRAPHS:

SYMMETRIZATION AND EULERIAN CYCLES.

G. KARRESKOG, P. KURASOV, AND I. TRYGG KUPERSMIDT

Abstract. Spectral properties of the Schrödinger operator on a finite com-
pact metric graph with delta-type vertex conditions are discussed. Explicit

estimates for the lowest eigenvalue (ground state) are obtained using two dif-

ferent methods: Eulerian cycle and symmetrization techniques. In the case of
positive interactions even estimates for higher eigenvalues are derived.

1. Introduction

Schrödinger operators on metric graphs, or quantum graphs is an important direc-
tion in modern mathematical physics closely related to spectral theory of differential
operators and discrete mathematics [3, 8, 9, 12, 15]. Such operators are used to
model physical phenomena where dynamics is limited to a neighborhood of a metric
graph Γ and thus can be approximately described by a certain differential equa-
tion considered directly on the graph. Such differential equations, one-dimensional
on every edge, possess a lot of properties of partial differential equations due to
non-trivial topology of the underlying graph. Current article is devoted to spec-
tral properties of Schrödinger operators on compact metric graphs formed by a
finite number of edges. Most of the existing literature on this subject is devoted
to spectral properties of Laplacians with so-called standard vertex conditions (see
definition below). The reason to study just Laplacians is not only that the cor-
responding eigenfunction equation on every edge can easily be solved in terms of
exponentials, but also the fact that such an operator is uniquely determined by the
underlying metric graph. Therefore such standard Laplacian is often considered as
the free operator on the graphs Γ and it spectrum is refried to as the spectrum of
the metric graph Γ.

In the case of standard Laplacian the lowest eigenvalue is λ0 = 0 with the eigenfunc-
tion being a constant function Γ. Then an interesting question is the estimate of
the spectral gap - the difference between the first two lowest eigenvalues (of course
assuming that Γ is connected). In recent papers [6, 14] it was proven that among
all metric graphs of the same total length, the spectral gap is minimal for the single
interval graph. The authors used two different approaches: L. Friedlander applied
symmetrization technique, while P. Kurasov and S. Naboko studied behavior of the
spectral gap upon topological perturbations of Γ. These two approaches lead to
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an explicit estimate for the spectral gap in terms of the spectral gap for the single
interval graph. While the first approach leads to an elegant and relatively short
proof of the result, the second approach allows one to deform the original graph in
several steps leading to graphs with smaller and smaller spectral gaps contributing
to our intuition. One of the main goals of the current article is to understand how
do these two approaches work in a more sophisticated case of Schrödinger operators
on metric graphs with delta-type interactions at the vertices. The constant function
in general is not an eigenfunction anymore and the role of the spectral gap is played
by the energy of the ground state - one tries to estimate the value of the lowest
eigenvalue in relation to the total length of the metric graph, sum of intensities of
the delta interactions at the vertices and integrals of the potential.

Spectral properties of Schrödinger operators with nontrivial potential and other
than standard vertex conditions are much less studied. For example one may show
that the asymptotics of the spectrum is related to the Euler characteristic of the
underlying metric graph [10, 11]. Already obtained results show, that spectral
behavior may sometimes be unexpected, which makes research even more exciting.
For example P. Exner and M. Jex [5] showed that making one of the edges longer
may lead to an increase of the ground state, provided the vertex conditions are
of delta-type. This is in contrast to the case of standard conditions where the
eigenvalues of the Laplacian always decrease if one of the edges is made longer.
Thus the second, more practical, goal of the article is to derive explicit estimates
for the ground state of a Schrödinger operator with delta interactions at the vertices
acting on a compact metric graph.

The plan of the paper is follows. In the next section we introduce necessary nota-
tions, discuss which parameters of the graph and of the interaction are important
for the estimates and formulate the main result. Section 3 and 4 are devoted to
the proofs of the main result using the two techniques mentioned above. The last
section is devoted to explicit estimates for higher eigenvalues.

2. Notations and the main result

Consider any compact connected metric graph Γ obtained from a finite set of com-
pact intervals - edges En = [x2n−1, x2n], n = 1, 2, . . . , N , - by joining together the
ends points xj at vertices Vm, m = 1, 2, . . . ,M. The vertices Vm can be considered
as a partition of the set of all end points V = {xj}2Nj=1. The corresponding Hilbert

space is H = ⊕Nn=1L2(En).

On the edges En one considers the Schrödinger differential expression

(1) − d2

dx2
+ q(x),

where q is a real integrable potential on Γ.
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Connections between the edges are introduced via vertex matching conditions. We
are going to use vertex conditions of delta-type

(2)




u is continuous at Vm,∑
xj∈Vm

∂u(xj) = αmu(Vm),

at every vertex Vm and αm ∈ R. Note that the value u(Vm) is well-defined, since u
is supposed to be continuous on Γ. The real parameter αm is called the strength of
the delta interaction. Conditions corresponding to αm = 0 are called standard or
free.

The operator Lq defined by the differential expression (1) on the domain of functions
from the Sobolev space W 2

2 (Γ \ V) = ⊕Nn=1W
2
2 (En) satisfying delta-type vertex

conditions 2) at all vertices Vm, m = 1, 2, . . . ,M is self-adjoint and has discrete
spectrum [1, 3, 12, 15]. The operator is semibounded from below and the eigenvalues

accumulate to +∞ satisfying Weyl asymptotics λn ∼ π2

L2n
2, where L is the total

length of the graph (the sum of the lengths of all edges L =
∑N
n=1 x2n − x2n−1).

Hence interesting estimates on the eigenvalues may be obtained only if the total
length is fixed. For example in the case of standard vertex conditions (αm = 0)
and zero potential all eigenvalues scale uniformly if one stretches all the edges.

It appears that effective eigenvalue estimates can be obtained in terms of the posi-
tive and negative parts of the interaction introduced below. Under the interaction
we understand the potential q and the strengths αm of the interactions at the
vertices. One may consider these interactions as delta-potentials concentrated at
the vertices. The total interaction I, total positive interaction I+ and total
negative interaction I− of the Schrödinger operator with vertex δ-conditions is
defined as

(3)

I =

∫

Γ

q(x)dx+
M∑

m=1

αm,

I+ =

∫

Γ

q+(x)dx+
∑

αm>0

αm,

I− =

∫

Γ

q−(x)dx−
∑

αm<0

αm,

where q+(x) = (q(x) + |q(x)|)/2 ≥ 0 and q−(x) = (−q(x) + |q(x)|)/2 ≥ 0 are the
positive and negative parts of q(x) = q+(x)− q−(x).

We are going to use Rayleigh estimate, which involves the quadratic form QLq
of

the operator Lq. The domain of the quadratic form is given by the set of functions
from the Sobolev space W 1

2 (Γ \V) which are in addition continuous at the vertices
(note that the second vertex condition in (2) is not preserved). It is very important
for our calculations that the domain of the quadratic form is independent of the
values of the strengths of delta interactions αm. The quadratic form is given by the
formula

(4) QLq (u, u) =

∫

Γ

|u′(x)|2dx+

∫

Γ

q(x)|u(x)|2dx+

M∑

m=1

αm|u(Vm)|2.
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As we already mentioned our goal is to obtain explicit universal estimates on the
lowest eigenvalue, also called the ground state. The Rayleigh quotient gives the
following explicit upper estimate

(5) λ0(Lq) = min
QLq

(u, u)∫
Γ
|u(x)|2dx ≤

I

L ,

if one uses u(x) ≡ 1 as a trial function. It is clear that this estimate is sharp, since
it is realized when q(x) = I/L and conditions at the vertices are standard.

Our main result is the following lower estimate for the ground state:

Theorem 1. Let Γ be a finite compact metric graph of total length L and let Lq
be a Schrödinger operator on Γ defined by (1) and delta vertex conditions (2) with
the total negative strength I−, and the total positive strengths I+ (given by (3)).
Then the ground state λ0(Lq) is bounded by λ0(L), where L is the Laplace operator

L = − d2

dx2 on the single interval [0,L] defined on functions satisfying the following
Robin boundary conditions

(6) u′(0) = I+u(0), u′(L) = I−u(L).

In other words λ0(Lq) is always greater or equal to the lowest solution to the secular
equation

(7)

(
k +

I−I+
k

)
tan kL = I+ − I−, k =

√
λ.

In what follows we present two different proofs of the theorem following approaches
due to S. Naboko and one of the authors in the first proof (Eulerian cycle technique)
and due to L. Friedlander in the second (symmetrization technique). The proofs
are equivalent, but shed light on different spectral properties of quantum graphs.

3. Eulerian cycle technique

We start this section by proving that eigenvalues of a Schrödinger operator on a
graph depend monotonically upon topological perturbations of the metric graph.
Corresponding results are elementary and have already been proven in [2, 13] for
the Laplacian with standard vertex conditions.

Theorem 2. Let Γ be a finite compact metric graph, and let Γ′ be another metric
graph obtained from Γ by splitting one of the vertices, say vertex Vm into two vertices
Vm′ and Vm′′ . The corresponding strengths αm′ and αm′′ at the new vertices are
chosen arbitrarily subject to the condition

(8) αm = αm′ + αm′′ ,

where αm is the strength of the delta interaction at the original vertex Vm. Let
us denote by Lq and L′q the Schrödinger operators defined by the same differential
expression on the graphs Γ and Γ′, the same strengths of the delta interactions at
all preserved vertices and with delta interactions at the vertices αm, αm′ , and αm′′

as described above. Then the eigenvalues for L′ are majorized by the corresponding
eigenvalues for L:

(9) λn(L) ≥ λn(L′).
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Proof. Observe that any function defined on the metric graph Γ can also be consid-
ered as a function on Γ′ and vice versa. Moreover if a function u on Γ is continuous
at the vertex Vm, then the corresponding function on Γ′ is continuous at Vm′ and
Vm′′ . On the other hand a function continuous on Γ′ does not necessarily lead to
a function continuous on Γ, since the values of the original function at the vertices
Vm′ and Vm′′ may be different. The above analysis shows that the following in-
clusion holds for the domains of the quadratic forms DQ(Lq) ⊂ DQ(L′

q). The n-th

eigenvalue can be calculated using min-max principle for the Rayleigh quotient

(10) λn(Lq) = max
An ⊂ DQ

dim(An) = n


 min

u ⊥ An

u ∈ DQ

QLq
(u, u)∫

Γ

|u(x)|2dx


 .

Taking into account that the Rayleigh quotients for the operator Lq and L′q are
identical while the set of allowed trial functions is bigger for L′q we conclude that
(9) holds. �

Note that we did not use the particular form of matching conditions at the pre-
served vertices. It follows that the theorem holds even if other than delta matching
conditions are introduced at these vertices. We are ready to give the first proof of
Theorem 1.

Proof of Theorem 1 using Eulerian cycle. Let λ0(L) denote the lowest eigenvalue
of the Schrödinger operator Lq with δ-conditions, acting on a metric graph Γ of the
total length L, with the total positive and negative interaction equal to I+ and I+
respectively.

Following [14] consider the graph Γ(2), constructed from Γ by for every edge En
between two vertices of Γ adding another edge between the two vertices of the same
length as En, and doubling the strength of the delta conditions in all the vertices.
We also define the value of the potential in each point on a new edge, by mirroring
the values of the potential on the original edge. This doubles the total positive and
negative interaction. Γ(2) may be called the double cover of Γ. The corresponding

operator will be denoted by L
(2)
q . For any eigenfunction un on Γ, another function

u
(2)
n can be defined on Γ(2) by letting it assume the same value as un on the old and

new edges. Clearly all u
(2)
n fulfill the eigenvalue equation for the same eigenvalues,

and the vertex conditions, giving that each eigenvalue of Γ, is also an eigenvalue of
Γ(2). The reverse is however not always true. This implies that

λ0(Lq) ≥ λ0(L(2)
q ).

All vertices of Γ(2) are of even degree. By a well-known theorem by Euler [4, 7],
there must thus be an Eulerian cycle on the graph, meaning that there exists a path
starting and ending in the same vertex, that visits every edge exactly once. This
cycle can be obtained by cutting the graph Γ(2) at certain vertices. The resulting

graph to be denoted by Γ̂ is a loop of length 2L with several delta interactions on it.
We assume that the cutting is performed in such a way that positive and negative
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interaction are preserved. The corresponding Schrödinger operator will be denoted

by L̂. By Theorem 2 we have the following estimates:

λ0(Lq) ≥ λ0(L(2)
q ) ≥ λ0(L̂q).

We have proven that the ground state is always greater or equal to the ground state
of the Schrödinger operator on the loop of double length and doubled interaction.
Our immediate aim is to prove that concentrating all negative and all positive
interactions to two points on the loop only diminishes the ground state energy.

For any graph with the ground state eigenfunction u0 there must be two points
xmax, xmin ∈ Γ, such that |u0(xmax)| ≥ |u0(x)| and |u0(x)| ≥ |u0(xmin)| for all x.

Together with the original loop graph Γ̂ and Schrödinger operator on it, consider
the same loop with Laplace operator L̃ having two delta interactions of strength
−2I− and 2I+ introduced at the points xmax and xmin respectively. Then the

eigenfunction u0 on Γ̂ is a perfect trial function for the new operator L̃ and the
corresponding Rayleigh quotient gives an upper estimate for the ground state:

λ0(L̂q) =

∫

Γ̂

|u′0(x)|2dx+

∫

Γ̂

q(x)|u0(x)|2dx+
∑

v

αv|u(v)|2

∫

Γ̂

|u0|2dx

≥

∫

Γ̂

|u′0(x)|2dx− 2I−|u(xmax)|2 + 2I+|u(xmin)|2
∫

Γ̂

|u0|2dx
≥ λ0(L̃).

Our last step is to prove that the ground state is minimal if the points xmax and
xmin are situated symmetrically (so that the distance in-between is precisely L),
of course provided the total length 2L and total positive and negative parts of the
interaction 2I± are preserved. Consider the general non-symmetric case and let us
denote by `1 and `2 the lengths of the two edges between the points xmin and xmax

on the loop, `1 + `2 = 2L.

Let us parametrize the two edges as [0, `1] and [0, `2] so that the left ends points
and the right end points are joined at two vertices carrying positive and negative
delta interactions of strengths 2I+ and −2I− respectively. It will be convenient
to denote the components of functions on these intervals using lower indices as
u1(x) and u2(x). Every eigenfunction not only satisfies the equation −u′′j (x) =
λuj(x), j = 1, 2, on each interval, but also delta-conditions at the end points

{
u1(0) = u2(0),
u′1(0) + u′2(0) = 2I+u1(0),

{
u1(`1) = u2(`2),
u′1(`1) + u′2(`2) = 2I−u1(`1).

Writing general solution to the differential equation as

uj = aj cos kx+ bj
sin kx

k
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we arrive at the following system of equations on aj , bj



a1 = a2,

b1 + b2 = 2I+a1,

a1 cos k`1 + b1
sin k`1
k

= a2 cos k`2 + b2
sin k`2
k

,

−a1k sin k`1 + b1 cos k`1 − a2k sin k`2 + b2 cos k`2 = 2I−

(
a1 cos k`1 + b1

sin k`1
k

)
.

The system has a nontrivial solution if and only if the determinant is zero

(11) − (1− cos 2kL)− I− − I+
k

sin 2kL = 2
I−I+
k2

sin k`1 sin k`2.

This equation can be rewritten as

(12) sin2 kL+ (I− − I+)
sin kL
k

cos kL+ (I−I+)
sin2 kL
k2

= I−I+
sin2 k∆`

k2
,

where we used the notation ∆` = (`1− `2)/2. The equation determines all nonzero
eigenvalues of the operator, since we used cos and sin functions as basic solutions
to the differential equation. (The case λ = 0 is special, since the solutions to the
eigenfunction equation are linear functions.) Similarly the nonzero spectrum in the
symmetric case `1 = `2 = L is given by the smallest zero of the analytic function

f(λ) := sin2 kL+ (I− − I+)
sin kL
k

cos kL+
I−I+

2

sin2 kL
k2

,

which is precisely the left hand side of equation (12). The function f(λ) is real on
the real axis and tends to −∞ as λ → −∞. Hence the lowest eigenvalue occurs
when the graph of the function crosses the real axis. The right hand side of equation
(12) is a nonnegative function, since I± ≥ 0 and therefore the smallest solution to
equation (12) lies to the right of the smallest zero of the function f. To prove
our claim it remains to check that λ = 0 is an eigenvalue for the non symmetric
problem `1 6= `2 only if it is also an eigenvalue for the symmetric case `1 = `2,
which is elementary.

The statement of the theorem follows from the fact that the ground state of the
Laplacian on the loop with two delta interactions situated symmetrically coincides
with the ground state of the Laplacian on the interval of half length with Robin
boundary conditions (6). �

The estimate can be improved if we know that the original graph is balanced, i.e.
all vertices have even degree. Using the first proof we do not need to double the
edges before Eulerian cycle is chosen. Hence the estimate from below is given by
the ground state of the Laplace operator on the loop of length L (instead of 2L)
and we have the following

Corollary 1. Let all assumptions of Theorem 1 be satisfied. Assume in addition
that the metric graph Γ is balanced. Then the ground state for the Schrödinger
operator on Γ is estimated from below by the ground state of the Laplace operator
on the interval [0,L/2] with Robin boundary conditions at the end points:

(13) u′(0) = I+/2 u(0), u′(L/2) = I−/2 u(L/2).
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4. Symmetrization technique

In this section we follow closely the article [6], where symmetrization technique was
applied to obtain estimates for the spectral gap for the standard Laplacian.

Proof of Theorem 1 using symmetrization technique. We first use the same idea as
in the first proof and substitute the original Schrödinger operator L on Γ with
the Laplace operator L with just two delta interactions of strengths −I− and I+.
Estimate for the ground state of L is done following ideas from the article [6].

Let u0 be the ground state eigenfunction for the Schrödinger operator L. Let us
denote by xmin and xmax the points of minimum and maximum for |u(x)|2. Consider
the Laplace operator L on Γ defined on the domain of functions satisfying delta
boundary conditions at the points xmin and xmax

(14)

{ ∑
xmin

∂u(xmin) = I+u(xmin);∑
xmax

∂u(xmin) = −I−u(xmax);

where the sums are taken over all end points of the edges joined together at
xmin, xmax. If any of these points is an inner point on an edge, then the sum contains
just two terms, otherwise the number of terms is equal to degree of the vertex.

The function u0 is a continuous function on Γ and therefore can be used to estimate
the ground state of the operator L

(15)

λ0(L) ≤

∫

Γ

|u′0(x)|2dx− I−|u(xmax)|2 + I+|u(xmin)|2
∫

Γ

|u0|2dx

≤

∫

Γ

|u′0(x)|2dx+

∫

Γ

q(x)|u0(x)|2dx+
∑

v

αv|u(v)|2

∫

Γ̂

|u0|2dx
= λ0(L).

It follows that to estimate the ground state it is not only enough to consider Lapla-
cians with two delta interactions, but it is also enough to consider trial functions
having their minima and maxima at the points supporting the interactions. Fol-
lowing ideas of symmetrization technique we are going to compare the Rayleigh
quotient for the operator L and trial function u0 with the Rayleigh quotient for the
Laplace operator L in L2[0,L] (introduced above in the formulation of Theorem 1)
and a certain ”symmetrized” trial function u∗ constructed from u0.

The function u∗ on the interval [0,L] is the unique nondecreasing continuous func-
tion such that

u∗(0) = u0(xmin), u∗(L) = u0(xmax)

and

m(t) := measure {x ∈ S : u0(x) < t} = measure {s ∈ [0,L] : u∗(s) < t} .
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The function u∗ constructed in this way satisfies

(16)

∫

Γ

|u0(x)|2dx =

∫ L

0

|u∗(x)|2dx.

The number of preimages of t under u0(x) is finite, since u satisfies the eigenfunction
equation on each interval. Let us denote the number of preimages by n(t).Obviously

(17) n(t) ≥ 1,

since the function u0 is continuous.

The co-area formula implies
∫

S

|u′0(x)|2dx =

∫ u0(xmax)

u0(xmin)

∑

x:u0(x)=t

|u′0(t)|dt.

Cauchy-Schwartz inequality then gives

(18)

∑

x:u0(x)=t

|u′0(x)| ≥ n(t)2


 ∑

x:u0(x)=t

1

|u′0(x)|



−1

≥


 ∑

x:u0(x)=t

1

|u′0(x)|



−1

=
1

m′(t)
.

where we also used (17). Therefore we have

(19)

∫

S

|u′0(x)|2dx ≥
∫ u0(xmax)

u0(xmin)

dt

m′(t)
.

The same argument can be applied to the function u∗ with the only difference that
all inequalities turn into equalities and there is no need to use (17). Finally we get:

(20)

∫

S

|u′0(x)|2dx ≥
∫ L

0

|(u∗)′(s)|2ds.

It follows that the Rayleigh quotients satisfy the inequality:

(21)

QL(u0, u0)

‖ u0 ‖2
≥

∫

Γ

|u′0(x)|2dx+ I+|u0(xmin)|2 − I−|u0(xmax)|2
∫

Γ
|u0(x)|2dx

≥

∫ L

0

|u∗′(x)|2dx+ I+|u∗(0)|2 − I−|u∗(L)|2
∫ L

0
|u∗(x)|2dx

=
QL(u∗, u∗)

‖ u∗ ‖2

and therefore we have

(22) λ0(L) ≥ λ0(L).

�
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Corollary 1 can also be proven using symmetrization technique but requires slightly
more work than in the first approach. We first note that the number n(t) of
preimages of t under u0(t) is at least 2

(23) n(t) ≥ 2,

since there exists an Eulerian cycle on Γ and u0 can be considered as a continuous
function on such cycle. Then formula (18) can be modified as follows

(24)
∑

x:u0(x)=t

|u′0(x)| ≥ n(t)2

m′(t)
≥ 4

m′(t)
.

Consider now another one function u∗∗ defined on the interval s ∈ [0,L/2]

u∗∗(s) = u∗(2|s|), s ∈ [0,L/2].

It is clear that
∫ L/2

0

|u∗∗(s)|2ds =
1

2

∫ L

0

|u∗(s)|2ds =
1

2

∫

Γ

|u0(x)|2dx,
∫ L/2

0

|(u∗∗)′(s)|2ds = 2

∫ L

0

|(u∗)′(s)|2ds ≤ 1

2

∫

Γ

|u′0(x)|2dx,

and the ground state λ0 for Laplacian on [0,L/2] with Robin conditions (13) at the
end points provides a lower estimate

(25)

λ0 ≤

∫ L/2

0

|u∗∗′(x)|2dx+ I+/2 |u∗∗(0)|2 − I−/2 |u∗∗(L/2)|2
∫ L/2

0

|u∗∗(x)|2dx

≤
1/2

(∫

Γ

|u′0(x)|2dx+ I+ |u0(xmin)|2 − I−|u0(xmax)|2
)

1/2

∫

Γ

|u0(x)|2dx
≤ λ0(L).

Note that this proof involves both symmetrization and Eulerian cycle and shows
how these two methods may be combined.

5. Bounds on higher eigenvalues λn, n ≥ 1.

We first prove that the eigenvalues depend monotonically upon the potential q and
strengths of the delta interactions αm. Monotonicty of the eigenvalues follow from
the monotonicity of the corresponding quadratic forms.

Proposition 1. Each of the eigenvalues of a Schrödinger operator on a metric
graph Γ with δ-conditions at the vertices depend positively (non-negatively) on the
strengths of each of the matching conditions, and the value of the potential on the
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edges. In other words let Lq and L̂q̂ be two Schrödinger operators sharing the same
underlying metric graph and such that

αm ≤ α̂m m = 1, 2, . . . ,M,(26)

q(x) ≤ q̂(x) ∀x ∈ Γ,(27)

then

(28) λn(Lq) ≤ λn(L̂q̂)

for any n = 0, 1, 2, . . .

Proof. Let us remind that the domains of the quadratic forms for L and L̂q̂ coincide
and the following obvious inequality holds
(29)

QLq (u, u) =

∫

Γ

|u′(x)|2 +

∫

Γ

q(x)|u(x)|2dx+

M∑

m=1

αm|u(Vm)|2

≤
∫

Γ

|u′(x)|2 +

∫

Γ

q̂(x)|u(x)|2dx+

M∑

m=1

α̂m|u(Vm)|2 = QL̂q̂
(u, u),

for any admissible function u from the domain of the quadratic form. Taking into
account that the n-th eigenvalue can be estimated via the Rayleigh quotient (10)
as before. Then (28) follows from the inequality for the quadratic forms, since the
sets of admissible functions are equal. �

Let us continue our analysis assuming that the interactions are nonnegative, i.e.
I− = 0. This means that the potential is nonnegative and all strengths of vertex
interactions are nonnegative.) The proof extends upon a result of L. Friedlander in
[6] which gives a lower bounds for Laplace operators on metric graphs with standard
vertex conditions. In our notations this case corresponds to I− = I+ = 0.

Proposition 2 (following Theorem 1 from [6]). The eigenvalues λn, n = 0, 1, . . . ,
of the Laplace operator L on a metric graph Γ, of total length L and with standard
vertex conditions is bounded from below by

(30) λn(L) ≥
(

(n+ 1)π

2L

)2

, n = 1, 2, 3...

with equality only when Γ is the star graph with n + 1 edges of the same length if
n ≥ 2, and equality for n = 1 only if Γ is the single interval of length L.

Proof. A proof of this proposition using symmetrization technique can be found
in [6]. We present here a sketch of the proof using Eulerian cycles, but for odd
eigenvalues only, the same method applied to even eigenvalues does not give the
best possible estimate. We follow closely the proof of Theorem 1 presented in
Section 3. Let Γ be any finite compact metric graph, Γ(2) - its ”double“ cover, and

Γ̂ - an Eulerian cycle. As before we have the following estimates

λn(L) ≥ λn(L(2)) ≥ λn(L̂) =
π2

L2

[
n+ 1

2

]2

,



12 G. KARRESKOG, P. KURASOV, AND I. TRYGG KUPERSMIDT

where the last equality holds, since L̂ is nothing else than the Laplacian on the loop
of length 2L. The integer part

[
n+1

2

]
can be simplified if n is odd leading precisely

to estimate (30). For even n we get λn(L) ≥
(
nπ
2L
)2

instead of (30) which is not
optimal. �

Precisely the same bound can be proven to hold for any quantum graph with I− = 0.

Theorem 3. Let Lq be a Schrödinger operator on a finite compact metric graph
Γ of total length L with delta vertex conditions. If the interaction is nonnegative
(I− = 0), then the n-th eigenvalue λn(Lq), n ≥ 1, is bounded from below by the
n-th eigenvalue of the regular star graph with n + 1 edges and standard conditions
at all vertices, i.e. inequality

(31) λn(Lq) ≥
(

(n+ 1)π

2L

)2

, n = 1, 2, 3...

holds. The equality is realized only for the regular star graph with n+1 edges, q(x) ≡
0, and a δ-condition of strength I at the middle vertex and standard conditions at
all other vertices.

Proof. Let us denote by L the Laplace operator on Γ defined by standard vertex
conditions. Then by Theorem 1

λn (Lq) ≥ λn(L),

since the interaction is nonnegative (q(x) ≥ 0, αm ≥ 0). Then estimate (31) follows
easily from Friedlander’s result (Proposition 2).

The important question is whether the bound is sharp, i.e. whether there exists
a graph with length L and a Schrödinger operator of nonnegative strength I for
which the inequality becomes an equality.

The eigenvalues of the regular star graph with n + 1 edges, with q(x) ≡ 0, and
with αm = 0 for all Vm but the middle vertex V1 where α1 = I, can be calculated
using straightforward calculations. The first excited eigenvalue has multiplicity n
and therefore the eigenvalue λn

λn =

(
(n+ 1)

2

)2 (π
L
)2

.

The corresponding eigenfunction is equal to zero at the central vertex and therefore
does not feel the delta interaction there. As the result I = α1 does not enter the
estimate, which coincides with the estimate obtained by Friedlander for the case of
standard Laplacian. It was also proven in [6] that the graph minimizing the n-th
eigenvalue of the standard Laplacian is unique. We get automatically uniqueness
for the Schrödinger operator as well, since any graph minimizing the n-th eigenvalue
of the Schrödinger operator with nonnegative interactions minimizes also the n-th
eigenvalue of the standard Laplacian. �

It is not possible to find an upper bound for each eigenvalue for a general quantum
graph only restricted by a given length and a given interaction. The first and the
n:th eigenvalue of the regular star graph with n + 1 edges, and the interaction
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concentrated to the middle vertex, are the same and are given by
(

(n+1)
2

)2 (
π
L
)2

.

If we let the number of edges go to infinity we see that also λ1 goes to infinity, so
no upper bound can exist. If we however take into account the specific set of edges
{En}Nn=1 of the graph, and the potential on them, then the upper bound is given
by the corresponding eigenvalue for the Schrödinger operator on the flower graph
ΓF obtained from the original graph Γ by identifying all its vertices

(32) λn(Lq(Γ)) ≤ λn(Lq(ΓF)).

This follows directly from Theorem 2 if one assumes that the strength of the delta
interaction in the unique vertex of the flower graph is taken equal to the sum of

stregths in the original graph
∑M
m=1 αn keeping the total interaction unchanged.

Γ

α3

α1 α2

→ α = α1 + α2 + α3

ΓF

Figure 1. An example of a graph and its corresponding flower graph.

6. Conclusions

We have compared the two methods to obtain explicit estimates for eigenvalues
for quantum graphs. The symmetrization technique allows one to obtain effective
estimates not only for the ground state, but for all higher eigenvalues. Eulerian
cycle approach provides an interesting insight to the problem, but applied to higher
eigenvalues it gives not the best estimates for all even eigenvalues. It might be
interesting to see how this method can be generalized to get estimates for λ2n, n =
1, 2, . . .

7. Acknowledgements

The work of PK was partially supported by the Swedish Research Council (Grant
D0497301) and ZiF-Zentrum für interdisziplinäre Forschung, Bielefeld (Cooperation
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