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SPECTRAL GAP FOR COMPLETE GRAPHS:

UPPER AND LOWER ESTIMATES

P.KURASOV

Abstract. Lower and upper estimates for the spectral of the Laplacian on
a compact metric graph are discussed. New upper estimates are presented
and existing lower estimates are reviewed. The accuracy of these estimates
is checked in the case of complete (not necessarily regular) graph with large

number of vertices.

1. Introduction

Let Γ be a compact connected metric graph formed by a finite number of compact
edges En, n = 1, 2, . . . , N. Let us denote by L(Γ) the corresponding Laplace oper-
ator defined on W 2

2 -functions u satisfying standard matching/boundary conditions
at every vertex:

(1)

{
u is continuous,
the sum of normal derivatives is equal to zero.

The operator L(Γ) is self-adjoint and is completely determined by the metric graph
Γ. The spectrum is nonnegative and consists of an infinite sequence of eigenvalues
λj of finite multiplicity tending to +∞. The lowest eigenvalue (the ground state) is
zero λ0 = 0 and the corresponding eigenfunction is just a constant function on Γ.
The multiplicity of λ0 is one, since the graph is connected. Our main interest here
is the distance between the first two eigenvalues to be called the spectral gap.
Since λ0 = 0 the spectral gap coincides with λ1. For general introduction into the
theory differential operators on metric graphs see [2, 6, 11].

The spectral gap is not only an important parameter determining asymptotic be-
havior of solutions to non-stationary Schrödinger equation, but is closely related to
connectivity properties of graphs (see [1] for a generalization of Cheeger’s constant
for discrete graphs [3]).

The aim of the current paper is to discuss lower and upper estimates for the
spectral gap for the Laplacian on a metric graph. We review existing lower estimates
and obtain new effective upper estimates. Applicability of these estimates is checked
in the case of complete graphs with large number of vertices. Note that it is not
assumed that the graphs are regular, i.e. all edges have the same length. In
particular obtained estimates allow to prove that the spectral gap remains open
in the limit of large number of vertices, provided the lengths of the edges remain
separated from zero.
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2. Lower estimates

The following lower estimate for the spectral gap has been proven in [4] and [5]

(2)
π2

L2
≤ λ1(Γ).

This estimate can be improved by factor 4 if the graph Γ is of even degree (i.e. all
vertices have even degree)

(3) 4
π2

L2
≤ λ1(Γ).

Cheeger’s ideas allow to prove another one lower estimate [9, 10]

(4)
h(Γ)2

4
≤ λ1(Γ),

where the Cheeger constant is defined as

(5) h(Γ) = infP
|P |

min{L(Γ1),L(Γ2)}
,

where the minimum is taken over all cuts P of Γ dividing the graph into two
components Γ1 and Γ2. |P | denotes the number of points in P. This formula is
obtained using co-area formula is a direct generalization of the classical Cheeger’s
formula obtained for Laplacian on Riemannian manifolds [3].

3. Upper estimate

3.1. The first estimate. We follow here approach suggested in [7]. Any eigenfunc-
tion corresponding to the first excited eigenvalue λ1(Γ) should attain both positive
and negative values. Therefore one may obtain a surprisingly effective estimate
by cutting the graph Γ into two disjoint components. One can think about these
components as certain models for the nodal domains for the first eigenfunction, also
in general they do not coincide. The estimate we are going to prove is valid for
arbitrary even non-complete metric graphs Γ.

The idea is to cut of several edges in Γ, so that the remaining graph graph is not
connected anymore. Let us denote the edges to be deleted by Enj and introduce
the set S = ∪s

j=1Enj . If the resulting graph Γ\S is not connected, then we say that
S is a proper cut of Γ. The set Γ \ S may consist of several connected components.
Let us denote by Γ1 and Γ2 any separation of Γ \ S into two nonintersecting sets

Γ1 ∪ Γ2 = Γ \ S, Γ1 ∩ Γ2 = ∅.
We assume in this section that Γ contains no loops, i.e. edges adjusted to one

vertex. This is not an important restriction. Really, consider any graphs Γ with
a loop, mark any point on the loop and put a new vertex at this point. The new
metric graph obtained in this way contains no loops but the corresponding Laplace
operator is unitary equivalent to the Laplace operator on the original graph.

With any set S as described above let us associate the Cheeger quotient

(6) cS(Γ) = min
Γ1, Γ2 : Γ1 ∪ Γ2 = Γ \ S;

Γ1 ∩ Γ2 = ∅

L(Γ)
∑

En⊂S ℓ
−1
n

L(Γ1)L(Γ2)
,
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Consider the function g defined as follows

(7) g(x) =





1, x ∈ Γ1;
−1, x ∈ Γ2;
ℓ−1
n (−dist (x,Γ1) + dist (x,Γ2)) , x ∈ En ⊂ S,

where the distances dist (x,Γj), j = 1, 2 are calculated along the corresponding
interval x ∈ En. The continuous function g is constructed in such a way, that it is
equal to ±1 on Γ1 and Γ2 and is linear on the edges connecting Γ1 and Γ2. But the
mean value of the function might be different from zero. In that case the function
g has to be modified so that it will be orthogonal to the ground state. Consider
then the function f which is not only continuous, but also orthogonal to the ground
state:

f(x) = g(x) − L(Γ)−1⟨g, 1⟩L2(Γ).

The Rayleigh quotient for the function f gives an upper estimate for the spectral
gap:

(8) λ1(Γ) ≤
∫
Γ

|f ′(x)|2dx∫
Γ

|f(x)|2dx .

Let us calculate the Dirichlet integral and the norm of f :

(9)

∥ f ′ ∥2
L2(Γ) = ∥ g′ ∥2

L2(Γ)=
∑

En⊂S

∫
En

(−2ℓ−1
n )2dx = 4

∑
En⊂S ℓ

−1
n ;

∥ f ∥2
L2(Γ) = ∥ g ∥2

L2(Γ) −L(Γ)−1⟨g, 1⟩2
≥ L(Γ1) + L(Γ2) − L(Γ)−1 (L(Γ1) − L(Γ2))

2

≥ 4L(Γ1)L(Γ2)
L(Γ) .

This gives the following upper estimate for λ1(Γ)

(10) λ1(Γ) ≤ cS(Γ),

where we use (6). We have proven the following

Theorem 1. Let Γ be a connected metric graph without loops, then the spectral
gap is estimated from above by Cheeger’s constant
(11)

λ1(Γ) ≤ C(Γ) := min
S−proper cut of Γ

min
Γ1, Γ2 : Γ1 ∪ Γ2 = Γ \ S

Γ1 ∩ Γ2 = ∅

L(Γ)
∑

En⊂S ℓ
−1
n

L(Γ1)L(Γ2)
.

Proof. The result follows immediately from estimate (10) taking into account that
the set S dividing Γ into disconnected components is arbitrary. �

Note that the subgraphs used in the latter theorem does not necessarily coin-
cide with the nodal domains for the first eigenfunction. Moreover the function f
introduced above is not an eigenfunction corresponding to λ1(Γ). Nevertheless this
function substituted into the Rayleigh quotient gives a good upper approximation
for the spectral gap.
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3.2. The second (improved) estimate. Our choice of the function g above was
rather ruff and therefore the equality in the obtained estimate is never achieved.
One may improve the estimate by considering a more realistic candidate for the
first eigenfunction. Let us choose the function g as follows (instead of (7)):

(12) g(x) =





1, x ∈ Γ1;

cos dist (x,Γ1)
ℓn

π = − cos dist (x,Γ2)
ℓn

π, x ∈ En ⊂ S;

−1, x ∈ Γ2.

We again shift the function by a constant:

(13) f(x) = g(x) − L(Γ1) − L(Γ2)

L(Γ)
.

and calculate explicitly the norms appearing in the Rayleigh quotient

(14)
∥ f ′ ∥2

L2(Γ) =
∑

En⊂S

(
π
ℓn

)2 ∫
En

sin2 dist (x,Γ1)
ℓn

πdx

= π2

2

∑
En⊂S ℓ

−1
n ,

(15) ∥ f ∥2
L2(Γ)=∥ g ∥2

L2(Γ) − (L(Γ1) − L(Γ2))
2

L(Γ)
,

∥ g ∥2
L2(Γ)= L(Γ1) + L(Γ2) +

1

2
L(S).

The Rayleigh quotient gives the following estimate for the second eigenvalue

(16)

λ1(Γ) ≤
∥ f ′ ∥2

L2(Γ)

∥ f ∥2
L2(Γ)

=
π2

2

∑
En⊂S ℓ

−1
n

L(Γ1) + L(Γ2) + 1
2L(S) − (L(Γ1)−L(Γ2))2

L(Γ)

=
π2L(Γ)

∑
En⊂S ℓ

−1
n

8L(Γ1)L(Γ2) + 3(L(Γ1) + L(Γ2))L(S) + L2(S)
.

The new obtained estimate is not as explicit as the estimate (11), but its advantage
is that the equality is attained if the graph Γ is a loop and the subgraphs Γ1 and
Γ2 are given by two opposite points on the loop.

3.3. The third (universal) estimate. Let us use the same idea to get an upper
estimate, which does not require considering proper cuts, since it is not clear which
proper cut gives the best estimate.

We shall need the following definition: A graph Γ is called bipartite if the
vertices can be divided into two sets V1 and V2, so that the edges connect only
vertices from different sets. In other words the vertices in Γ can be colored by two
colors, so that neighboring vertices have different colors.

Theorem 2. The spectral gap for the Laplace operator on a metric graph Γ satisfies
the following upper estimates

(17) λ1(Γ) ≤ π2

L(Γ)
4

∑

En⊂Γ

ℓ−1
n .
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If the metric graph Γ is bipartite, then the upper estimate can be improved by the
factor 4 as follows

(18) λ1(Γ) ≤ π2

L(Γ)

∑

En⊂Γ

ℓ−1
n .

Proof. Let us start from the second formula. Assume that the graph Γ is bipartite.
Then the graphs Γ1 and Γ2 appearing in Cheeger’s estimate (16) can be chosen
equal to vertex sets V1 and V2 from the definition of a bipartite graph. The proper
cut set S contains all edges. In other words we cut all edges in the graph Γ. Since
L(Γ1) = L(Γ2) = 0 and L(S) = L(Γ) we get the following estimate

λ1(Γ) ≤ π2

L(Γ)

∑

En⊂Γ

ℓ−1
n .

The upper estimate for arbitrary graphs can be proven by the following trick:
any metric graph Γ can be turned into a bipartite graph by introducing new vertices
in the middle of every edge. Then the sets V1 and V2 can be chosen equal to the
unions of old and new vertices respectively. Then already proven estimate gives

λ1(Γ) ≤ π2

L(Γ)
2

∑

En⊂Γ

(ℓn/2)−1.

Factor 2 in front of the sum appears due to the fact that every edge in Γ is divided
into two smaller edges of lengths ℓ/2. �

4. Complete graphs: how good obtained estimates are?

In what follows we are going to discuss how good obtained estimates work for
the complete (not necessarily regular) graphs.

The aim of this note is to provide effective estimates for the spectral gap of a
complete graph assuming that the lengths of edges may be different. We would like
to exclude graphs with very short and very long edges and therefore assume that
the lengths ℓn of all edges satisfy the following

Assumption 1.

(19) 0 < ℓmin ≤ ℓn ≤ ℓmax < ∞.

Note that only complete graphs will be considered in the rest of this note. The
number of vertices will be denoted by M , so the number of edges is N = M(M −
1)/2.

4.1. Regular complete graphs: formula for the spectral gap. Let us consider
first the regular complete graph KM , i.e. a complete graph on M vertices with all
edges having the same length to be denoted by ℓ. Then the total length of the graph
is

L =
M(M − 1)

2
ℓ.

Our immediate goal is to calculate the spectrum of the corresponding Laplacian
L(KM ).
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V0

V1

V2

V3

V4

V5

Figure 1. Complete graph K6.

The vertices in the graph can be numbered as Vj , j = 0, 1, 2, . . . ,M−1. Consider
the rotation operator R : Vj 7→ Vj+1. We keep the same notation for the induced
map between the edges. It is clear that RM = I and RL(KM ) = L(KM )R, hence
the eigenfunctions ψ for the Laplacian can be constructed being quasi invariant

Rψz = z−mψz, z = ei 2π
M , m = 0, 1, 2, . . . ,M − 1.

It is then clear that every such function ψ is completely determined by its values
on the edges attached to one of the vertices, say V0. These edges will be called the
fundamental domain in what follows.
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a

za

z2a

z3a

z4a

z5a

Figure 2. The fundamental domain for ψz.
Values of the function are marked.

Let us denote by a the value of the function ψz at the zero vertex: ψz(V0) =
a. It follows that ψz(Vj) = zja. It will be convenient to identify every edge Ej

connecting V0 and Vj with its own copy of the interval [0, ℓ], where x = 0 corresponds
to V0. Then the function ψz can be reconstructed on all edges belonging to the
fundamental domain

ψz(x) = −a sin k(x− ℓ)

sin kℓ
+ zja

sin kx

sin kℓ
, x ∈ Ej , k ̸= nπ

ℓ
, n ∈ N.

The function constructed in this way is continuous at V0 and it remains to check
that the condition on the sum of normal derivatives is satisfied

(20)
M−1∑

j=1

(
−ak cos kℓ

sin kℓ
+ zjak

1

sin kℓ

)
= 0.

Consider first the case z = 1. Equation (20) implies

cos kℓ− 1 = 0 ⇒ k = 0,
2π

ℓ
,
4π

ℓ
, . . . .

k = 0 corresponds to the ground state constant eigenfunction, which is invariant
under the rotation R.

For z ̸= 1 (20) implies that

(21) (M − 1) cos kℓ+ 1 = 0,

where we used that z + z2 + . . . zM−1 = −1. It follows that the eigenvalue λ1(KM )
has multiplicity M − 1 and is given by

(22) k1(KM ) =
1

ℓ
arccos

(
− 1

M − 1

)
.
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Here we took into account that the smallest nonzero k solving sin kℓ = 0 is π/ℓ and
it is always greater than the calculated k1(KM ).

Hence we have shown that for the complete regular graph KM the spectral gap
is given by

(23) λ1(KM ) =
M2(M − 1)2

4L2

(
arccos

(
− 1

M − 1

))2

∼
M→∞

π2

16L2
M4,

and its value increases proportionally to M4. Hence no universal upper estimate
for the spectral gap for a graph of a fixed total length is available unless we restrict
the number of vertices.

4.2. Lower estimates. Our aim is to prove that the spectral gap for complete
graphs does not go to zero as the number of vertices tends to infinity, provided the
lengths of the edges satisfy Assumption 1.

Consider first the universal estimate obtained by Friedlander-Kurasov-Naboko

(24) λ1 ≥ π2

L(Γ)2
≥ π2

ℓ2max

4

M2(M − 1)2
→M→∞ 0.

Hence this estimate is not good for our purposes, since it does not allow one to
prove that the spectral gap remains closed in the limit M → ∞.

Let us turn to Cheeger’s estimate (3). The problem working with this estimate
is that we do not know, which open subset Y does minimize the quotient. But we
may try to get a lower estimate for the Cheeger constant

(25) h := inf
P

|P |
miniL(Γi)

,

where the infimum is taken over all edge-cuts P of the graph Γ dividing it into two
parts denoted by Γ1 and Γ2. Here L(Γi) is the total length of Γi and |P | is the
number of edge cuts.

Consider the complete graph KM with M vertices. It is not easy to understand
which particular cut minimizes the Cheeger quotient, especially since we do not
know the precise values of the dodge lengths. But we may estimate this constant
from below. Assume that the minimizing cut P divides KM into two graphs Γ1

and Γ2 with M1 and M2 vertices respectively. (Note, we do not assume to know
M1.) Without loss of generality we require that M1 ≤ M2.

The number of cuts can easily be calculated
(26)

|P | =
M(M − 1)

2︸ ︷︷ ︸
number of edges in Γ

− M1(M1 − 1)

2︸ ︷︷ ︸
number of edges in Γ1

− M2(M2 − 1))

2︸ ︷︷ ︸
number of edges in Γ2

We have assumed that M1 ≤ M2, therefore it is natural that L(Γ1) ≤ L(Γ2),
but it does not really matter, since we get

(27)

L(Γ1) ≤ ℓmax





M1(M1 − 1)

2︸ ︷︷ ︸
number of edges in Γ1

+ |P |︸︷︷︸
number of cutted edges





= ℓmax

{
M(M − 1)

2
− M2(M2 − 1))

2

}
.
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It follows that

(28)

h ≥ M(M − 1) −M1(M1 − 1) −M2(M2 − 1))

ℓmax {M(M − 1) −M2(M2 − 1))}
=

1

ℓmax

{
1 − M1(M1 − 1)

M(M − 1) −M2(M2 − 1)

}

=
1

ℓmax

{
1 − M1(M1 − 1)

M1(M1 − 1) + 2M1M2

}

>
1

ℓmax

{
1 − M1(M1 − 1)

M1(M1 − 1) + 2M1(M1 − 1)

}

=
2

3ℓmax
.

With this we get the following estimate for the spectral gap:

(29) λ1 ≥ 1

4
h2 >

1

9ℓ2max

.

Our conclusion: the spectral gap remain finite even for large complete graphs,
provided Assumption 1 holds.

4.3. Upper estimates. We examine now the upper estimates obtained in Sec-
tion3. We consider arbitrary not necessarily regular complete graph KM satisfying
Assumption 1.

We start with the first estimate (11). Since we do not know precise values of the
edge lengths, it is impossible to check which particular proper cut minimizers the
upper estimate. But it is not really necessary, we may assume as before that the
graphs Γ1 and Γ2 contain M1 and M2 vertices (M1 ≤ M2).

Let us estimate the quantities appearing in (11):

(30)

L ≤ ℓmaxM(M − 1)/2;

∑
En⊂S ℓ

−1
n ≤ ℓ−1

min (M(M − 1) −M1(M1 − 1) −M2(M2 − 1)) /2;

L(Γj) ≥ ℓminMj(Mj − 1)/2, j = 1, 2.

These estimates imply

(31) λ1(KM ) ≤ ℓmax

ℓ3min

M(M − 1)2M1M2

M1(M1 − 1)M2(M2 − 1)
.

Since the numbers M1 and M2 are arbitrary subject to M1 +M2 = M we have the
following estimates

λ1(KM ) ≤ 2
ℓmax

ℓ3min

M(M − 1)minM1+M2=M
1

(M1 − 1)(M2 − 1)

and

(32) λ1(KM ) ≤ 2
ℓmax

ℓ3min

M(M − 1)

([
M

2

]
− 1

)−2

.

In the limit of large M we get

(33) λ1(KM ) ≤ 8
ℓmax

ℓ3min

.

If the graph is in addition regular ℓmax = ℓmin = ℓ we have

(34) λ1(KM ) ≤ 8ℓ−2, M → ∞
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to be compared with the precise value

λ1(KM ) ∼ π2

4
ℓ−2.

We conclude that the estimate (11) predicts correct asymptotic behavior for the
spectral gap of complete graphs, but the constants are of course not precise.

The second estimate gives approximately the same result, also calculations are
not very explicit. Let us turn to the third estimate, which gives us

(35) λ1(KM ) ≤ π2

M(M − 1)ℓmin
4M(M − 1)ℓ−1

min = 4π2ℓ−2
min.

If the graph is regular, then the estimate takes the form

(36) λ1(KM ) ≤ 4π2ℓ−2,

which is worse than (34), but the difference is not enormous.
Summing up obtained lower and upper estimates provide rather good approxi-

mations for the spectral gap for complete not necessarily regular graphs.
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