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The Schrödinger operator on the half-line with periodic background potential
perturbed by a certain potential of Wigner–von Neumann type is considered. The
asymptotics of generalized eigenvectors for λ ∈ C+ and on the absolutely continuous
spectrum is established. The Weyl–Titchmarsh-type formula for this operator is
proven.

1. Introduction

Consider the one-dimensional Schrödinger operator with a real potential which can
be represented as a sum of three terms: a certain periodic function, a Wigner–von
Neumann potential and a certain absolutely integrable function. More precisely, let
q be a real periodic function with period a such that q ∈ L1(0, a) and let q1 ∈
L1(R+). Then the Schrödinger operator Lα is defined by the differential expression

Lα := − d2

dx2 + q(x) +
c sin(2ωx + δ)

(x + 1)γ
+ q1(x) (1.1)

on the set of functions satisfying the boundary condition

ψ(0) cos α − ψ′(0) sinα = 0, (1.2)

where c, ω, δ, ∈ R, α ∈ [0, π) and γ ∈ ( 1
2 , 1]. As shown by Kurasov and Naboko

in [16], the absolutely continuous spectrum of such an operator coincides as a set
with the spectrum of the corresponding periodic operator on R,

Lper = − d2

dx2 + q(x). (1.3)
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Note that the spectrum of Lper has multiplicity 2, while the spectrum of Lα is
simple. Let ψ+(x, λ) and let ψ−(x, λ) be Bloch solutions for Lper and ϕα(x, λ) be
the solution of the Cauchy problem

−ϕ′′
α(x, λ) +

(
q(x) +

c sin(2ωx + δ)
(x + 1)γ

+ q1(x)
)

ϕα(x, λ) = λϕα(x, λ),

ϕα(0, λ) = sinα, ϕ′
α(0, λ) = cos α.

The main result of the present paper is the following theorem, which relates the
spectral density ρ′

α of the operator Lα and the asymptotics of the solution ϕα. We
call it the Weyl–Titchmarsh formula.

Theorem 1.1. Let 2aω/π /∈ Z and q1 ∈ L1(R+), then for almost all λ ∈ σ(Lper)
there exists Aα(λ) such that

ϕα(x, λ) = Aα(λ)ψ−(x, λ) + Aα(λ)ψ+(x, λ) + o(1) as x → +∞ (1.4)

and
ρ′

α(λ) =
1

2π|W{ψ+(λ), ψ−(λ)}||Aα(λ)|2 .

Weyl–Titchmarsh formulae provide an efficient tool to study the behaviour of the
spectral density. The absolutely continuous spectrum of the operator Lα contains
infinitely many critical (resonance) points (see (2.1)) where the type of the asymp-
totics of generalized eigenvectors changes and is not given by a linear combination
of ψ+ and ψ− (as in (1.4)). The embedded eigenvalues of Lα may occur precisely at
these points. In the generic case no eigenvalue occurs, but it is natural to suspect
that the spectral density of Lα vanishes at these points.

Vanishing of the spectral density divides the absolutely continuous spectrum into
independent parts and has a clear physical meaning. This phenomenon is called the
pseudogap. In [19] we study zeros of the spectral density in more detail.

The study of Schrödinger operators with Wigner–von Neumann potentials began
with the classical paper [21], where it was observed for the first time that the poten-
tial c sin(2ωx+δ)/(x+1) may produce an eigenvalue inside the absolutely continuous
spectrum. Later on, such operators attracted the attention of many authors (see,
for example, [1–4, 6, 12–15, 17, 18]). A phenomenon of this nature, an embedded
eigenvalue (‘bound state in the continuum’), was even observed experimentally in
semiconductor heterostructures [7].

The Weyl–Titchmarsh formula for the spectral density in the case of zero periodic
background potential follows directly from the results of [17]. This formula was
proved once again in [3], where the method of Harris–Lutz transformations [11]
was used. In the present paper we also use a modification of this method. Another
approach was suggested in [5], but again in the case of zero periodic background
potential.

Let us briefly outline our method. The Weyl–Titchmarsh-type formula relates
the spectral density to the coefficient in the asymptotics (1.4) of the solution
ϕα. We derive this formula in § 5 following the standard strategy from [20] using
the uniform (in a proper sense) asymptotics of the solution ϕα given by theo-
rem 5.1. It is important to note that establishing the asymptotics only on the
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absolutely continuous spectrum was done in [16] and is not enough. The main
technical difficulty is to establish the asymptotics both on σac(Lper) and C+ and
to show that the coefficient in the asymptotics is analytic and has boundary lim-
its. In § 3, we transform the eigenfunction equation to a linear differential system
in C

2 of the special (Levinson) form, which is easy to analyse. The central part
of these transformations uses the uniform Harris–Lutz method [11] and is simi-
lar to the transformation used by Behncke in [3] (‘complex I + Q’). Our method
uses a different regularization of the formula in order to make it work both on
the real line and in C+. In § 4 we formulate and prove a variation (rather stan-
dard) of the classical Levinson asymptotic theorem [8, lemma 4.2]. We use it
in § 5 to find ‘uniform’ asymptotics of ϕα and prove the Weyl–Titchmarsh-type
formula.

2. Preliminaries

The spectrum of Lper consists of infinitely many intervals (see [9, theorem 2.3.1])

σ(Lper) :=
∞⋃

j=0

([λ2j , µ2j ] ∪ [µ2j+1, λ2j+1]),

where
λ0 < µ0 � µ1 < λ1 � λ2 < µ2 � µ3 < λ3 � λ4 < · · · ,

where λj and µj are the eigenvalues of the Schrödinger differential equation on the
interval [0, a] with periodic and antiperiodic boundary conditions. Spectral proper-
ties of Lper are related to the entire function D(λ) (discriminant) and the function
k(λ) (quasi-momentum), where

k(λ) := −i ln
(

trD(λ) +
√

tr2 D(λ) − 4
2

)
.

We can choose the branch of k(λ) so that (as follows from the properties of D(λ),
see [9, theorem 2.3.1])

k(λ0) = 0,

k(µ0) = k(µ1) = π,

k(λ1) = k(λ2) = 2π,

...

where

k(λ) ∈ R if λ ∈ σ(Lper),
k(λ) ∈ C+ if λ ∈ C+.

The eigenfunction equation for Lper,

−ψ′′(x) + q(x)ψ(x) = λψ(x), x ∈ R,
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has two solutions (Bloch solutions) ψ+(x, λ) and ψ−(x, λ) satisfying quasi-periodic
conditions

ψ+(x + a, λ) ≡ eik(λ)ψ+(x, λ),

ψ−(x + a, λ) ≡ e−ik(λ)ψ−(x, λ).

They are determined uniquely up to multiplication by coefficients depending on λ.
It is possible to choose these coefficients so that Bloch solutions have the following
properties:

(1) ψ+(x, λ), ψ−(x, λ) for every x � 0 and their Wronskian W{ψ+(λ), ψ−(λ)} are
analytic functions of λ in C+ and continuous up to σ(Lper) \ {λj , µj , j � 0};

(2) for λ ∈ σ(Lper) \ {λj , µj , j � 0} one has ψ+(x, λ) ≡ ψ−(x, λ);

(3) the Wronskian does not have zeros and for λ ∈ σ(Lper) \ {λj , µj , j � 0} one
has W{ψ+(λ), ψ−(λ)} ∈ iR+.

Bloch solutions can also be written in the form

ψ+(x, λ) = eik(λ)x/ap+(x, λ),

ψ−(x, λ) = e−ik(λ)x/ap−(x, λ),

where the functions p+(x, λ) and p−(x, λ) have period a in the variable x and the
same properties as ψ+(x, λ) and ψ−(x, λ) with respect to the variable λ.

As we mentioned earlier, the operator Lα was studied in [16], where the asymp-
totics of the generalized eigenvectors was obtained. Kurasov and Naboko showed
that in every band of σ(Lper) ([λj , µj ] if j is even and [µj , λj ] if j is odd) there exist
two critical points νj,+ and νj,− determined by the equalities

k(νj,+) = π

(
j + 1 −

{
aω

π

})
and k(νj,−) = π

(
j +

{
aω

π

})
, (2.1)

where by {·} we denote the fractional part. Critical points do not coincide with
each other and with the ends of bands, if

2aω

π
/∈ Z. (2.2)

3. Reduction of the eigenfunction equation to a linear system of
Levinson form

In this section we transform the eigenfunction equation for Lα to a linear 2 × 2
system with the coefficient matrix being a sum of the diagonal and summable
matrices.

Consider the eigenfunction equation for Lα,

−ψ′′(x) +
(

q(x) +
c sin(2ωx + δ)

(x + 1)γ
+ q1(x)

)
ψ(x) = λψ(x). (3.1)

For every
λ ∈ C+ ∪ (σ(Lper) \ {λj , µj , j � 0})
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let us make the following substitution:(
ψ(x)
ψ′(x)

)
=

(
ψ−(x, λ) ψ+(x, λ)
ψ′

−(x, λ) ψ′
+(x, λ)

)
u(x). (3.2)

Writing (3.1) as

(
ψ(x)
ψ′(x)

)′

=

⎛
⎝ 0 1

q(x) +
c sin(2ωx + δ)

(x + 1)γ
+ q1(x) − λ 0

⎞
⎠ (

ψ(x)
ψ′(x)

)

and substituting (3.2) into it, we get

u′(x) =
c sin(2ωx + δ)/(x + 1)γ + q1(x)

W{ψ+(λ), ψ−(λ)}

×
(

−ψ+(x, λ)ψ−(x, λ) −ψ2
+(x, λ)

ψ2
−(x, λ) ψ+(x, λ)ψ−(x, λ)

)
u(x). (3.3)

Let us introduce another vector-valued function v,

v(x) :=
(

e−ik(λ)(x/a) 0
0 eik(λ)(x/a)

)
u(x), (3.4)

and the matrix

R(1)(x, λ) :=
q1(x)

W{ψ+(λ), ψ−(λ)}

(
−p+(x, λ)p−(x, λ) −p2

+(x, λ)

p2
−(x, λ) p+(x, λ)p−(x, λ)

)
. (3.5)

Then system (3.3) is equivalent to

v′(x) =
( (

−ik(λ)/a 0
0 ik(λ)/a

)
+

c sin(2ωx + δ)
(x + 1)γW{ψ+(λ), ψ−(λ)}

×
(

−p+(x, λ)p−(x, λ) −p2
+(x, λ)

p2
−(x, λ) p+(x, λ)p−(x, λ)

)
+ R(1)(x, λ)

)
v(x). (3.6)

Let us search for a differentiable matrix-valued function Q(x) such that

Q(x), Q′(x) = O(1/xγ)

as x → +∞ and such that the substitution

v(x) = eQ(x)ṽ(x) (3.7)

leads to a system for the vector-valued function ṽ of the form

ṽ′(x) =
( (

−ik/a 0
0 ik/a

)
+

c sin(2ωx + δ)
(x + 1)γW{ψ+, ψ−}

×
(

−p+(x)p−(x) 0

0 p+(x)p−(x)

)
+ R(2)(x)

)
ṽ(x),
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where the remainder R(2)(x) also belongs to L1(0,∞). Using that

e±Q(x) = I ± Q(x) + O

(
1

x2γ

)
,

(e±Q(x))′ = ±Q′(x) + O

(
1

x2γ

)

as x → +∞ we obtain

ṽ′(x) =
( (

−ik/a 0
0 ik/a

)
+

c sin(2ωx + δ)
(x + 1)γW{ψ+, ψ−}

×
(

−p+(x)p−(x) −p2
+(x)

p2
−(x) p+(x)p−(x)

)
− Q′(x)

−
[
Q(x),

(
−ik/a 0

0 ik/a

) ]
+ R(1)(x) + O

(
1

x2γ

))
ṽ(x), (3.8)

where [
Q(x),

(
−ik/a 0

0 ik/a

) ]

is the commutator of the two matrices. Our aim is to cancel the anti-diagonal entries
of (

−p+(x)p−(x) −p2
+(x)

p2
−(x) p+(x)p−(x)

)

in (3.8) by properly choosing Q. To this end, Q has to satisfy the following equation:

Q′(x) +
[
Q(x),

(
−ik/a 0

0 ik/a

) ]
=

c sin(2ωx + δ)
(x + 1)γW{ψ+, ψ−}

(
0 −p2

+(x)

p2
−(x) 0

)
.

(3.9)
The latter is equivalent (after multiplication by(

e−ikx/a 0
0 eikx/a

)

from the right and by its inverse from the left) to

( (
eikx/a 0

0 e−ikx/a

)
Q(x)

(
e−ikx/a 0

0 eikx/a

) )′

=
c sin(2ωx + δ)

(x + 1)γW{ψ+, ψ−}

(
0 −p2

+(x)e2ikx/a

p2
−(x)e−2ikx/a 0

)
. (3.10)

For every

µ ∈ σ(Lper) \ {λj , µj , νj,+, νj,−, n � 0}
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and for the values of λ from some neighbourhood of the point µ (which we will
specify later) let us take the following solution of (3.10):(

eikx/a 0
0 e−ikx/a

)
Q(x, λ, µ)

(
e−ikx/a 0

0 eikx/a

)

=
c

W{ψ+(λ), ψ−(λ)}

×

⎛
⎜⎝

0∫ x

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(λ)t/a dt

(t + 1)γ
−

∫ ∞

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(µ)t/a dt

(t + 1)γ∫ ∞

x

sin(2ωt + δ)p2
+(t, λ)e2ik(λ)t/a dt

(t + 1)γ

0

⎞
⎟⎠

(this is our choice of constants of integration that depend on µ). This leads to

Q(x, λ, µ)

:=
c

W{ψ+(λ), ψ−(λ)}

×

⎛
⎜⎜⎜⎜⎜⎝

0

e2ik(λ)x/a

( ∫ x

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(λ)t/a dt

(t + 1)γ

−
∫ ∞

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(µ)t/a dt

(t + 1)γ

)

e−2ik(λ)x/a

∫ ∞

x

sin(2ωt + δ)p2
+(t, λ)e2ik(λ)t/a dt

(t + 1)γ

0

⎞
⎟⎟⎟⎟⎟⎠ . (3.11)

In particular, for λ = µ,

Q(x, µ, µ) =
c

W{ψ+(µ), ψ−(µ)}

×

⎛
⎜⎝ 0

−e2ik(µ)x/a

∫ ∞

x

sin(2ωt + δ)ψ2
−(t, µ) dt

(t + 1)γ

e−2ik(µ)x/a

∫ ∞

x

sin(2ωt + δ)ψ2
+(t, µ) dt

(t + 1)γ

0

⎞
⎟⎠ .

(3.12)
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Formula (3.12) does not make sense if µ ∈ C+, due to the divergence of the integral
in the lower entry. But it has analytic continuation in the spectral parameter from
the point µ. As was mentioned in § 1, a similar transformation was used in [3]
and was called the ‘complex I + Q’ transformation. Nevertheless, here we need
analyticity with respect to λ, and to this end we introduce an additional parameter
µ. The rest of this section is devoted to proving uniform (with respect to λ) estimates
for the entries of Q, which we need to establish uniform asymptotics of the solution.

Let us denote

ε(µ) := 1
2

min
n∈Z

{∣∣∣∣2k(µ)
a

+ 2ω +
2πn

a

∣∣∣∣,
∣∣∣∣2k(µ)

a
− 2ω +

2πn

a

∣∣∣∣
}

.

Consider some β > 0 and the set

U(β, µ) := {λ ∈ C+ : 2ε(λ) � ε(µ), 0 � Im 2k(λ)/a � 1,

|Re k(λ) − k(µ)| � β Im k(λ)}.

The set U(β, µ) is compact and contains the point µ. For every β1 < β it contains
some neighbourhood of the vertex of the sector

|Re λ − µ| � β1

k′(µ)
Im λ.

Note that k′(µ) is positive for µ ∈ σ(Lper) \ {λj , µj , j � 0}.

Lemma 3.1. Let β > 0 and

µ ∈ σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}.

Then there exists c1(β, µ, γ) such that, for every x � 0 and λ ∈ U(β, µ),

‖Q(x, λ, µ)‖, ‖Q′(x, λ, µ)‖ <
c1(β, µ, γ)
(x + 1)γ

holds.

Proof. Note first that

k(λ) ∈ R for λ ∈ σ(Lper)

and

k(λ) ∈ C+ for λ ∈ C+.

Let us denote the entries of Q(x, λ, µ) as follows:

Q(x, λ, µ) =
(

0 Q12(x, λ)
Q21(x, λ, µ) 0

)
.

Let us first estimate the entry Q12. Let f be a periodic function with period a such
that f ∈ L1(0, a). Its Fourier coefficients will be denoted by

fn :=
1
a

∫ a

0
f(x)e−2πinx/a dx.
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Lemma 3.2. If
{fn}+∞

n=−∞ ∈ l1(Z)

and ξ ∈ C+ is such that
aξ

2π
/∈ Z,

then ∣∣∣∣e−iξx

∫ ∞

x

eiξtf(t) dt

(t + 1)γ

∣∣∣∣ � 2
( +∞∑

n=−∞

|fn|
|ξ − 2πn/a|

)
1

(x + 1)γ
(3.13)

(i.e. the expression on the left-hand side exists and is estimated by that on the
right-hand side).

Proof. Consider x1 > x. Since the Fourier series converges absolutely, we have

e−iξx

∫ x1

x

eiξt

(t + 1)γ

( +∞∑
n=−∞

fne2πnt/a

)
dt =

+∞∑
n=−∞

fne−iξx

∫ x1

x

ei(ξ+2πn/a)t

(t + 1)γ
dt.

(3.14)
Integrating by parts and estimating the absolute value, we get

∣∣∣∣e−iξx

∫ x1

x

ei(ξ+2πn/a)t dt

(t + 1)γ

∣∣∣∣
� 1

‖ξ + 2πn/a‖ ×
(

1
(x + 1)γ

+
1

(x1 + 1)γ
+ γ

∫ x1

x

dt

(t + 1)γ+1

)

=
2

|ξ + 2πn/a|(x + 1)γ
.

Substituting into (3.14) yields

∣∣∣∣e−iξx

∫ x1

x

eiξtf(t) dt

(t + 1)γ

∣∣∣∣ � 2
( +∞∑

n=−∞

|fn|
|ξ − 2πn/a|

)
1

(x + 1)γ
.

By Cauchy’s criterion the integral∫ ∞

x

eiξtf(t) dt

(t + 1)γ

exists and the desired estimate (3.13) follows.

Formula (3.11) implies that

Q12(x, λ)

=
ce2iωx+iδ

2iW{ψ+(λ), ψ−(λ)}e−i(2k(λ)/a+2ω)x
∫ ∞

x

p2
+(t, λ)ei(2k(λ)/a+2ω)t dt

(t + 1)γ

− ce−2iωx−iδ

2iW{ψ+(λ), ψ−(λ)}e−i(2k(λ)/a−2ω)x
∫ ∞

x

p2
+(t, λ)ei(2k(λ)/a−2ω)t dt

(t + 1)γ
. (3.15)
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Denote the Fourier coefficients of the function p2
+(·, λ) by bn(λ),

bn(λ) :=
1
a

∫ a

0
p2
+(x, λ)e−2πinx/a dx.

Then lemma 3.2 applied to (3.15) gives

|Q12(x, λ)|

� |c|
|W{ψ+(λ), ψ−(λ)}|

1
(x + 1)γ

×
+∞∑

n=−∞
|bn(λ)|

(
1

|2k(λ)/a + 2ω + 2πn/a| +
1

|2k(λ)/a − 2ω + 2πn/a|

)

� 2|c|
ε(µ)|W{ψ+(λ), ψ−(λ)}|

( +∞∑
n=−∞

|bn(λ)|
)

1
(x + 1)γ

. (3.16)

Let us now estimate the entry Q21. Formula (3.11) implies that

Q21(x, λ, µ)

=
ce2ik(λ)x/a

W{ψ+(λ), ψ−(λ)}

( ∫ x

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(λ)t/a dt

(t + 1)γ

−
∫ ∞

0

sin(2ωt + δ)p2
−(t, λ)e−2ik(µ)t/a dt

(t + 1)γ

)

=
ce2ik(λ)x/a

W{ψ+(λ), ψ−(λ)}

∫ x

0

sin(2ωt + δ)p2
−(t, λ)(e−2ik(λ)t/a − e−2ik(µ)t/a) dt

(t + 1)γ

− ce2ik(λ)x/a

W{ψ+(λ), ψ−(λ)}

∫ ∞

x

sin(2ωt + δ)p2
−(t, λ)e−2ik(µ)t/a dt

(t + 1)γ
.

Define

QI
21(x, λ, µ) :=

ce2ik(λ)x/a

W{ψ+(λ), ψ−(λ)}

×
∫ x

0

sin(2ωt + δ)p2
−(t, λ)(e−2ik(λ)t/a − e−2ik(µ)t/a) dt

(t + 1)γ

and

QII
21(x, λ, µ) := − ce2ik(λ)x/a

W{ψ+(λ), ψ−(λ)}

∫ ∞

x

sin(2ωt + δ)p2
−(t, λ)e−2ik(µ)t/a dt

(t + 1)γ
,

so that
Q21(x, λ, µ) = QI

21(x, λ, µ) + QII
21(x, λ, µ).

The second term can be estimated in the same manner as Q12(x, λ) using lemma
3.2. Denote by

b̂n(λ) :=
1
a

∫ a

0
p2

−(x, λ)e−2πinx/a dx
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the Fourier coefficients of p2
−(·, λ). Then,

|QII
21(x, λ, µ)|

� |c|
|W{ψ+(λ), ψ−(λ)}|

1
(x + 1)γ

×
+∞∑

n=−∞
|b̂n(λ)|

(
1

|2k(λ)/a − 2ω − 2πn/a| +
1

|2k(λ)/a + 2ω − 2πn/a|

)

� 2|c|
ε(µ)|W{ψ+(λ), ψ−(λ)}|

( +∞∑
n=−∞

|b̂n(λ)|
)

1
(x + 1)γ

(3.17)

(using that k(µ) ∈ R and k(λ) ∈ C+).
To estimate QI

21 we shall need the following lemma.

Lemma 3.3. Let ε, β > 0, then there exists c2(ε, β, γ) such that, for every ξ1 and
ξ2,

0 � Im ξ1 � 1, |ξ1|� ε,

ξ2 ∈ R, |ξ2|� ε,

|Re ξ1 − ξ2| � β Im ξ1

and for every x � 0 ∣∣∣∣eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ

∣∣∣∣ <
c2(ε, β, γ)
(x + 1)γ

holds.

Proof. Integrating by parts, we get

eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ
=

ieiξ1x(ξ1 − ξ2)
iξ1ξ2

+
ei(ξ1−ξ2)x

iξ2(x + 1)γ

+
i

ξ1(x + 1)γ
+

γeiξ1x(ξ1 − ξ2)
iξ1ξ2

∫ x

0

e−iξ2t dt

(t + 1)γ+1

− γeiξ1x

iξ1

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ+1 .

Consider the new constant

c3(γ) := max
x�0

xγe−x.

For every x � 0 and ξ1 considered,

(Im ξ1)γe− Im ξ1x � c3(γ)eIm ξ1

(x + 1)γ
� ec3(γ)

(x + 1)γ
.

Using that
|Re ξ1 − ξ2| � β Im ξ1,
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which is equivalent to
|ξ1 − ξ2| �

√
β2 + 1 Im ξ1,

the integral can be estimated as

∣∣∣∣eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ

∣∣∣∣ � 2ec3(γ)
√

β2 + 1
ε2(x + 1)γ

+
2

ε(x + 1)γ

+
γ

ε

∣∣∣∣eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ+1

∣∣∣∣.
The last term can be split into three parts as follows:

∣∣∣∣eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ+1

∣∣∣∣
� e− Im ξ1x

[ ∫ 1/ Im ξ1

0
+

∫ x/2

1/ Im ξ1

+
∫ x

x/2

]
|e−iξ1t − e−iξ2t| dt

(t + 1)γ+1 .

Let us estimate these three integrals separately.

(1)

e− Im ξ1x

∫ 1/ Im ξ1

0

|e−iξ1t − e−iξ2t| dt

(t + 1)γ+1 = e− Im ξ1x

∫ 1/ Im ξ1

0

|e−i(ξ1−ξ2)t − 1| dt

(t + 1)γ+1 .

Introduce the constant

c4(β) := max
|x|�

√
β2+1

|ex − 1|
|x| .

Since for the first interval

|−i(ξ1 − ξ2)t| � |ξ1 − ξ2|
Im ξ1

�
√

β2 + 1,

we have

e− Im ξ1x

∫ 1/ Im ξ1

0

|e−iξ1t − e−iξ2t| dt

(t + 1)γ+1

� e− Im ξ1x

∫ 1/ Im ξ1

0

c4(β)
√

β2 + 1 Im ξ1t dt

(t + 1)γ+1

� ec3(γ)c4(β)
√

β2 + 1(Im ξ1)1−γ

(x + 1)γ

∫ 1/ Im ξ1

0

dt

(t + 1)γ

=
ec3(γ)c4(β)

√
β2 + 1((1 + Im ξ1)1−γ − (Im ξ1)1−γ)

(x + 1)γ(1 − γ)

� 21−γec3(γ)c4(β)
√

β2 + 1
(1 − γ)(x + 1)γ

.
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(2) For x � 2/ Im ξ1 we have

e− Im ξ1x

∫ x/2

1/ Im ξ1

|e−iξ1t − e−iξ2t| dt

(t + 1)γ+1

� e− Im ξ1x/2
∫ x/2

1/ Im ξ1

(eIm ξ1(t−x/2) + e− Im ξ1x/2) dt

(t + 1)γ+1

� 2e− Im ξ1x/2
∫ ∞

1/ Im ξ1

dt

tγ+1

� 2γ+1ec3(γ)
γ(x + 2)γ

.

For x < 2/ Im ξ1 the integral is negative.

(3)

e− Im ξ1x

∫ x

x/2

|e−iξ1t − e−iξ2t| dt

(t + 1)γ+1 �
∫ x

x/2

2 dt

(t + 1)γ+1 <
2γ+1

γ(x + 2)γ
.

Combining these estimates, we get∣∣∣∣eiξ1x

∫ x

0

(e−iξ1t − e−iξ2t) dt

(t + 1)γ+1

∣∣∣∣ <
c2(ε, β, γ)
(x + 1)γ

with

c2(ε, β, γ) :=
2ec3(γ)

√
β2 + 1

ε2 +
2
ε

+
γ

ε

(
21−γec3(γ)c4(β)

√
β2 + 1

1 − γ
+

2γ+1ec3(γ)
γ

+
2γ+1

γ

)
.

This completes the proof of the lemma.

Let us continue to estimate QI
21

QI
21(x, λ, µ) =

+∞∑
n=−∞

cb̂n(λ)eiδ+2iω+2πinx/a

2iW{ψ+(λ), ψ−(λ)} ei(2k(λ)/a−2ω−2πn/a)x

×
∫ x

0

(e−i(2k(λ)/a−2ω−2πn/a)t − e−i(2k(µ)/a−2ω−2πn/a)t) dt

(t + 1)γ

−
+∞∑

n=−∞

cb̂n(λ)e−iδ−2iω+2πinx/a

2iW{ψ+(λ), ψ−(λ)} ei(2k(λ)/a+2ω−2πn/a)x

×
∫ x

0

(e−i(2k(λ)/a+2ω−2πn/a)t − e−i(2k(µ)/a+2ω−2πn/a)t) dt

(t + 1)γ
.

Applying lemma 3.3, we get

|QI
21(x, λ, µ)| � |c|c2(ε(µ), β, γ)

|W{ψ+(λ), ψ−(λ)}|

( +∞∑
n=−∞

|b̂n(λ)|
)

1
(x + 1)γ

. (3.18)
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Therefore, combining the estimates (3.16), (3.18) and (3.17) the matrix Q can be
estimated as follows:

‖Q(x, λ, µ)‖

� 1
(x + 1)γ

|c|
|W{ψ+(λ), ψ−(λ)}|

×

√√√√ 4
ε2(µ)

( +∞∑
n=−∞

|bn(λ)|
)2

+
(

2
ε(µ)

+ c2(ε(µ), β, γ)
)2( +∞∑

n=−∞
|b̂n(λ)|

)2

.

Let us now estimate the Fourier coefficients. For n �= 0 we have

bn(λ) =
1
a

∫ a

0
p2
+(x, λ)e−2πinx/a dx = − a

4π2n2

∫ a

0
(p2

+(x, λ))′′e−2πinx/a dx.

Thus,

|bn(λ)| � a

4π2n2

∫ a

0
|(p2

+(x, λ))′′| dx. (3.19)

In terms of the corresponding Bloch solution, the second derivative of p2
+ is

(p2
+(x, λ))′′ = 2e−2ik(λ)x/a

(
ψ′′

+(x, λ)ψ+(x, λ) − 2k2(λ)
a2 ψ2

+(x, λ)

+(ψ′
+(x, λ))2 − 4ik(λ)

a
ψ′

+(x, λ)ψ+(x, λ)
)

.

Let us estimate the norm in L1(0, a) of the function ψ′′
+(·, λ). From the equation

ψ′′
+(x, λ) = (q(x) − λ)ψ+(x, λ)

we see that

‖ψ′′
+(·, λ)‖L1(0,a) � (‖q‖L1(0,a) + |λ|a) max

x∈[0,a]
|ψ+(x, λ)|.

Since the functions

e−ik(λ)x/a, ψ+(x, λ), ψ′
+(x, λ)

are continuous in both variables on the set

[0, a] × U(β, µ),

and hence attain their maximums, we have that the integral∫ a

0
|(p2

+(x, λ))′′| dx

is bounded on U(β, µ). For n = 0,

b0(λ) =
1
a

∫ a

0
p2
+(x, λ) dx =

1
a

∫ a

0
e−2ik(λ)x/aψ2

+(x, λ) dx
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and is also bounded. The same argument is valid for b̂n. Finally, we see that there
exists c5(β, µ) such that, for every λ ∈ U(β, µ),

|bn(λ)|, |b̂n(λ)| � c5(β, µ)
n2 + 1

.

The Wronskian W{ψ+(λ), ψ−(λ)} does not have zeros in U(β, µ). Also, in the
formula for the derivative of Q,

Q′(x, λ, µ) =
c sin(2ωx + δ)

(x + 1)γW{ψ+(λ), ψ−(λ)}

(
0 −p2

+(x, λ)

p2
−(x, λ) 0

)

−
[
Q(x, λ, µ),

(
−ik(λ)/a 0

0 ik(λ)/a

) ]
,

the functions ±k(λ)/a, ±c sin(2ωx + δ)p2
±(x, λ) are bounded for (x; λ) ∈ [0; +∞) ×

U(β, µ). Hence, there exists c1(β, µ, γ) such that for every λ ∈ U(β, µ) and x � 0
the following estimates hold:

‖Q(x, λ, µ)‖, ‖Q′(x, λ, µ)‖ � c1(β, µ, γ)
(x + 1)γ

.

This completes the proof of the theorem.

Let us study the properties of the remainder

R(2)(x, λ, µ)

:= e−Q(x,λ,µ)

×
( (

−ik(λ)/a 0
0 ik(λ)/a

)
+

c sin(2ωx + δ)
(x + 1)γW{ψ+(λ), ψ−(λ)}

×
(

−p+(x, λ)p−(x, λ) −p2
+(x, λ)

p2
−(x, λ) p+(x, λ)p−(x, λ)

)
+ R(1)(x, λ)

)
eQ(x,λ,µ)

−
(

−ik(λ)/a 0
0 ik(λ)/a

)
− e−Q(x,λ,µ)(eQ(x,λ,µ))′

− c sin(2ωx + δ)
(x + 1)γW{ψ+(λ), ψ−(λ)}

(
−p+(x, λ)p−(x, λ) 0

0 p+(x, λ)p−(x, λ)

)
.

(3.20)

Lemma 3.4. The remainder R(2) given by (3.20) possesses the following properties:

(1) R(2)(·, λ, µ) ∈ L1(0,∞) and the integral∫ ∞

0
‖R(2)(x, λ, µ)‖ dx

converges uniformly with respect to λ ∈ U(β, µ);
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(2) one has
(R(2)(x, µ, µ))21 = (R(2)(x, µ, µ))12,

(R(2)(x, µ, µ))22 = (R(2)(x, µ, µ))11.

}
(3.21)

Proof. The first assertion follows directly from lemma 3.1.
The property of matrices from the second assertion is preserved under summa-

tion and multiplication of such matrices, as well as taking the inverse. We can
see from (3.5) and (3.12) that R(1)(x, µ) and Q(x, µ, µ) possess this conjugation
property. Therefore,

Q′(x, µ, µ), eQ(x,µ,µ), (eQ(x,µ,µ))′

and, finally, R(2)(x, µ, µ) (from (3.20)) also possess this property. It should be taken
into account that W{ψ+(µ), ψ−(µ)} is purely imaginary.

Let us define

ν(x, λ) := − ik(λ)
a

− c sin(2ωx + δ)p+(x, λ)p−(x, λ)
(x + 1)γW{ψ+(λ), ψ−(λ)} .

Finally, we obtain a system of the Levinson form

ṽ′(x) =
( (

ν(x, λ) 0
0 −ν(x, λ)

)
+ R(2)(x, λ, µ)

)
ṽ(x). (3.22)

4. A Levinson-type theorem for 2 × 2 systems

In this section, we prove two statements that give a uniform estimate and asymp-
totics of solutions to certain 2×2 differential systems. The approach is the same as
for the Levinson theorem [8], but the difference is that we are interested in prop-
erties of solution with a given initial condition. Note that concrete values of all
appearing constants are important, since they will be needed to prove the uniform
asymptotics. In this sense, we can say that in these lemmas the uniform estimates
and asymptotics are proven.

Consider the system

u′
1(x) =

( (
λ(x) 0

0 −λ(x)

)
+ R(x)

)
u1(x) (4.1)

for x � 0, where u1(x) is a two-dimensional vector function and R(x) is a 2 × 2
matrix with complex entries.

Lemma 4.1. Assume that ∫ ∞

0
‖R(t)‖ dt < ∞ (4.2)

and that there exists a constant M such that for every x � y it holds that∫ y

x

Re λ(t) dt � −M.
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Then every solution u1 to (4.1) satisfies the estimate

‖u1(x)‖ � ‖u1(0)‖ exp
( ∫ x

0
Re λ(t) dt

)

×
√

1 + e4M exp
(√

1 + e4M

∫ ∞

0
‖R(t)‖ dt

)
. (4.3)

Proof. First transform system (4.1) by variation of parameters. Define

Λ(x) :=
(

λ(x) 0
0 −λ(x)

)

and take

u1(x) = exp
( ∫ x

0
Λ(t) dt

)
u2(x) or u2(x) := exp

(
−

∫ x

0
Λ(t) dt

)
u1(x). (4.4)

After substitution, (4.1) becomes

u′
2(x) = exp

(
−

∫ x

0
Λ(t) dt

)
R(x)u1(x). (4.5)

Integrating this from 0 to x and returning to the function u1, on the left-hand side
we get

u1(x) = exp
( ∫ x

0
Λ(t) dt

)
u1(0) +

∫ x

0
exp

( ∫ x

t

Λ(s) ds

)
R(t)u1(t) dt. (4.6)

Now multiply this expression by

exp
(

−
∫ x

0
Λ(s) ds

)

and define

u3(x) := exp
(

−
∫ x

0
Λ(t) dt

)
u1(x). (4.7)

We get the following equation for u3 considered in L∞((0,∞); C2):

u3(x) =

⎛
⎝1 0

0 exp
(

− 2
∫ x

0
λ(s) ds

)⎞
⎠ u1(0)

+
∫ x

0

⎛
⎝1 0

0 exp
(

− 2
∫ x

t

λ(s) ds

)⎞
⎠ R(t)u3(t) dt. (4.8)

The norm of the operator V ,

V : u 	→
∫ x

0

⎛
⎝1 0

0 exp
(

− 2
∫ x

t

λ(s) ds

)⎞
⎠ R(t)u(t) dt,
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is bounded by

‖V ‖ �
√

1 + e4M

∫ ∞

0
‖R(t)‖ dt

and the norm of the jth power is bounded by

‖V j‖ � 1
j!

(√
1 + e4M

∫ ∞

0
‖R(t)‖ dt

)j

.

Hence,

u3(x) = (I − V )−1

(
1 0

0 exp(−2
∫ x

0 λ(s) ds)

)
u1(0)

and

‖u3‖L∞((0,∞),C2) � exp
(√

1 + e4M

∫ ∞

0
‖R(t)‖ dt

)√
1 + e4M‖u1(0)‖.

Returning to u1, we arrive at the estimate (4.3).

The next lemma states the asymptotics of the solution.

Lemma 4.2. Let all conditions of lemma 4.1 be satisfied. Then the following asymp-
totics hold:

(1) if ∫ ∞

0
Re λ(t) dt < +∞, (4.9)

then every solution u1 of (4.1) has the asymptotics

u1(x)

=

(
exp(

∫ x

0 λ(s) ds) 0

0 exp(−
∫ x

0 λ(s) ds)

)

×
(

u1(0) +
∫ ∞

0

(
exp(−

∫ t

0 λ(s) ds) 0

0 exp(
∫ t

0 λ(s) ds)

)
R(t)u1(t) dt + o(1)

)

as x → +∞;

(2) if ∫ ∞

0
Re λ(t) dt = +∞, (4.10)

then every solution u1 of (4.1) has the asymptotics

u1(x) = exp
( ∫ x

0
λ(s) ds

)

×
( (

1 0
0 0

) (
u1(0) +

∫ ∞

0
exp

(
−

∫ t

0
λ(s) ds

)
R(t)u1(t) dt

)
+ o(1)

)
as x → +∞.
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Proof. Asymptotics 1. Consider the function u2 given by (4.4) and integrate (4.5):

u2(x) = u1(0) +
∫ x

0
exp

(
−

∫ t

0
Λ(s) ds

)
R(t)u1(t) dt. (4.11)

Since for every x � y we have the estimate∫ y

x

Re λ(s) ds �
∫ y

x

|Re λ(s)| ds �
∫ ∞

0
|Re λ(s)| ds �

∫ ∞

0
Re λ(s) ds + 2M,

the exponent under the integral in (4.11) is bounded. The solution u1(t) is also
bounded in this case, due to lemma 4.1. Hence the integral in (4.11) converges as
x → +∞ and there exists

lim
x→+∞

u2(x) = u1(0) +
∫ ∞

0
exp

(
−

∫ t

0
Λ(s) ds

)
R(t)u1(t) dt.

Returning to u1, we obtain the answer.
Asymptotics 2. Consider the function u3 given by (4.7) and the correspond-

ing equation (4.8). It follows from lemma 4.1 that u3(t) is bounded, and hence
Lebesgue’s dominated convergence theorem implies that the following limit exists:

lim
x→+∞

u3(x) =
(

1 0
0 0

) (
u1(0) +

∫ ∞

0
R(t)u3(t) dt

)
.

This is equivalent to the announced asymptotics for u1.

5. Asymptotics for the solution ϕ and Weyl–Titchmarsh-type formula

In this section, we put together the results obtained earlier to find the asymptotics of
the solution ϕα(x, λ) and prove the Weyl–Titchmarsh-type formula for the operator
Lα. Consider the set

U(β) :=
⋃

µ∈σ(Lper)\{λj ,µj ,νj,+,νj,−,j�0}
U(β, µ),

which belongs to C+ and contains

σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}

as part of its boundary. The value of β is arbitrary here.

Theorem 5.1. Let 2aω/π /∈ Z and q1 ∈ L1(R+), then the solution ϕα of the
Cauchy problem

−ϕ′′
α(x, λ) +

(
q(x) +

c sin(2ωx + δ)
(x + 1)γ

+ q1(x)
)

ϕα(x, λ) = λϕα(x, λ), x ∈ R+,

ϕα(0, λ) = sinα, ϕ′
α(0, λ) = cos α

has the following asymptotics: for every λ ∈ U(β) there exists Aα(λ) such that



420 P. Kurasov and S. Simonov

(1) if λ ∈ C+ ∩ U(β), then

ϕα(x, λ) = Aα(λ)ψ−(x, λ) + o(eIm k(λ)x/a),

ϕ′
α(x, λ) = Aα(λ)ψ′

−(x, λ) + o(eIm k(λ)x/a)

as x → +∞,

(2) if λ ∈ σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}, then

ϕα(x, λ) = Aα(λ)ψ−(x, λ) + Aα(λ)ψ+(x, λ) + o(1),

ϕ′
α(x, λ) = Aα(λ)ψ′

−(x, λ) + Aα(λ)ψ′
+(x, λ) + o(1)

as x → +∞.

The function Aα is analytic in the interior of U(β) and has boundary values on

σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}.

Proof. We are going to omit the index α here since the value of the boundary
parameter is fixed throughout this proof. According to (3.2) and (3.4) we write(

ϕ(x)
ϕ′(x)

)
=

(
ψ−(x, λ) ψ+(x, λ)

ψ′
−(x, λ) ψ′

+(x, λ)

)(
eik(λ)x/a 0

0 e−ik(λ)x/a

)
vϕ(x, λ). (5.1)

This is the definition of vϕ, a solution of (3.6) corresponding to ϕ. Let us fix the
point

µ ∈ σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}
and consider λ ∈ U(β, µ). The function

ṽϕ(x, λ, µ) := e−Q(x,λ,µ)vϕ(x, λ)

is a solution to (3.22) corresponding to ϕ. Let us see that the conditions of lemma 4.1
are satisfied for system (3.22) uniformly with respect to λ ∈ U(β, µ). First of all we
have estimate (4.2) from lemma 3.4 and

Re ν(x, λ) =
Im k(λ)

a
− Re

(
c sin(2ωx + δ)p+(x, λ)p−(x, λ)

(x + 1)γW{ψ+(λ), ψ−(λ)}

)
.

Estimating the second term in the same way as in lemma 3.1 we have∣∣∣∣
∫ y

x

Re
c sin(2ωt + δ)p+(t, λ)p−(t, λ)
(t + 1)γW{ψ+(λ), ψ−(λ)} dt

∣∣∣∣
� |c|a

π|W{ψ+(λ), ψ−(λ)}|

×
( ∞∑

n=−∞
|b̃n(λ)|

(
1

|2aω/π + 2n| +
1

|2aω/π − 2n|

))
1

(x + 1)γ
,

where
b̃n(λ) :=

1
a

∫ a

0
p+(x, λ)p−(x, λ)e−2πinx/a dx
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are Fourier coefficients for p+(·, λ)p−(·, λ). Analogously to (3.19) we have

|b̃n(λ)| � a

4π2n2

∫ a

0
|(ψ+(x, λ)ψ−(x, λ))′′| dx.

So there exists c6(β, µ) such that for every λ ∈ U(β, µ) and n �= 0

|b̃n(λ)| � c6(β, µ)
n2 ,

while

|b̃0(λ)| � c6(β, µ).

Finally, there exists c7(β, µ) such that

∣∣∣∣
∫ y

x

Re
c sin(2ωt + δ)p+(t, λ)p−(t, λ)
(t + 1)γW{ψ+(λ), ψ−(λ)} dt

∣∣∣∣ � c7(β, µ)

for every 0 � x � y and λ ∈ U(β, µ). Thus, we can take

M(λ) ≡ c7(β, µ)

for these values of λ. Lemma 4.1 gives the estimate

‖ṽϕ(x, λ, µ)‖ � ‖ṽϕ(0, λ, µ)‖eIm k(λ)x/ac8(β, µ), (5.2)

where

c8(β, µ) :=
√

1 + e4c7(β,µ) exp
(√

1 + e4c7(β,µ) max
λ∈U(β,µ)

∫ ∞

0
‖R(2)(t, λ)‖ dt

)
.

The conditions of lemma 4.2 are also satisfied; (4.9) holds for λ ∈ R ∩ U(β, µ)
and (4.10) holds for λ ∈ C+∩U(β, µ). So, lemma 4.2 gives the following asymptotics:

(i) for λ ∈ C+ ∩ U(β, µ),

ṽϕ(x, λ, µ)

= exp
(

− ik(λ)
x

a
−

∫ x

0

c sin(2ωt + δ)p+(t, λ)p−(t, λ) dt

(t + 1)γW{ψ+(λ), ψ−(λ)}

)

×
( (

1 0
0 0

) (
ṽϕ(0, λ, µ)

+
∫ ∞

0
exp

(
ik(λ)

t

a
+

∫ t

0

c sin(2ωs + δ)p+(s, λ)p−(s, λ) ds

(s + 1)γW{ψ+(λ), ψ−(λ)}

)

× R(2)(t, λ, µ)ṽϕ(t, λ, µ) dt

)
+ o(1)

)
;
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(ii) for λ = µ,

ṽϕ(x, µ, µ)

=

⎛
⎜⎝exp

(
− ik(µ)

x

a
−

∫ x

0

c sin(2ωt + δ)p+(t, µ)p−(t, µ) dt

(t + 1)γW (ψ+(µ), ψ−(µ))

)
0

0

exp
(

ik(µ)
x

a
+

∫ x

0

c sin(2ωt + δ)p+(t, µ)p−(t, µ) dt

(t + 1)γW (ψ+(µ), ψ−(µ))

)
⎞
⎟⎠

×

⎛
⎜⎝ṽϕ(0, µ, µ)

+
∫ ∞

0

⎛
⎜⎝exp

(
ik(µ)

t

a
+

∫ t

0

c sin(2ωs + δ)p+(s, µ)p−(s, µ) ds

(s + 1)γW (ψ+(µ), ψ−(µ))

)
0

0

exp
(

− ik(µ)
t

a
−

∫ t

0

c sin(2ωs + δ)p+(s, µ)p−(s, µ) ds

(s + 1)γW (ψ+(µ), ψ−(µ))

)
⎞
⎟⎠

×R(2)(t, µ, µ)ṽϕ(t, µ, µ) dt + o(1)

⎞
⎟⎠ .

(5.3)

Since Q(x, λ, µ) = O(1/(x + 1)γ), we can define, for λ ∈ U(β, µ), that

A(λ, µ) :=
〈(

1
0

)
, exp

(
−

∫ ∞

0

c sin(2ωt + δ)p+(t, λ)p−(t, λ) dt

(t + 1)γW{ψ+(λ), ψ−(λ)}

)

×
(

e−Q(0,λ,µ)vϕ(0, λ)

+
∫ ∞

0
exp

(
ik(λ)

t

a
+

∫ t

0

c sin(2ωs + δ)p+(s, λ)p−(s, λ) ds

(s + 1)γW{ψ+(λ), ψ−(λ)}

)

× R(2)(t, λ, µ)eQ(t,λ,µ)vϕ(t, λ) dt

)〉

(where 〈·, ·〉 stands for the scalar product in C
2), which yields

lim
x→+∞

vϕ(x, λ)eik(λ)x/a =
(

A(λ, µ)
0

)
. (5.4)
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From this, we see that the coefficient A(λ, µ) does not depend on µ, so we will
denote it by A(λ). Relation (5.1) can be written as

vϕ(x, λ) =
1

W{ψ+(λ), ψ−(λ)}

(
ψ′

+(x, λ)ϕ(x, λ) − ψ+(x, λ)ϕ′(x, λ)

ϕ′(x, λ)ψ−(x, λ) − ϕ(x, λ)ψ′
−(x, λ)

)
, (5.5)

so vϕ(x, ·) is analytic in C+ and continuous up to

σ(Lper) \ {λj , µj , j � 0}.

From the estimate (5.2) and properties of Q(x, λ, µ) and R(2)(x, λ, µ) given by
lemmas 3.1 and 3.4 it follows that A(λ) is continuous in U(β, µ) and analytic in its
interior. Thus, A is analytic in the interior of U(β) having non-tangential boundary
limits on

σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}

that coincide with its values on this set.
The solution ϕ(x, λ) and its derivative are real if λ is real. Thus, (5.5) shows that

the upper and the lower components of the vector vϕ(x, λ) are complex conjugate
for λ ∈ σ(Lper)\{λj , µj , j � 0}. This property is preserved if we multiply the vector
by a matrix X such that

X21 = X̄12, X22 = X̄11,

as in (3.21). It follows from lemma 3.4 that the upper and lower components of the
vectors in the equality (5.3) are complex conjugate to each other. Hence for λ = µ
we have

vϕ(x, µ) =

(
A(µ)e−ik(µ)x/a

A(µ)eik(µ)x/a

)
+ o(1) as x → +∞. (5.6)

The asymptotics of the solution ϕ and its derivative follows from (5.1), (5.4)
and (5.6).

Using the obtained asymptotics both on the spectrum and in C+ we now prove
the Weyl–Titchmarsh-type formula.

Theorem 5.2. Let 2aω/π /∈ Z and q1 ∈ L1(R+), then for almost all λ ∈ σ(Lper)
the spectral density of the operator Lα, defined by (1.1), is given by

ρ′
α(λ) =

1
2π|W{ψ+(λ), ψ−(λ)}||Aα(λ)|2 ,

where Aα is the same as in theorem 5.1.

Proof. In addition to ϕα consider another solution of (3.1), to be denoted by
θα := ϕα+π/2, satisfying the initial conditions

θα(0, λ) = cos α, θ′
α(0, λ) = − sin α.

The Wronskian of ϕα and θα is equal to 1. Theorem 5.1 yields, for λ ∈ U(β) ∩ C+,

θα(x, λ) = Aα+π/2(λ)ψ−(x, λ) + o(eIm k(λ)x/a) as x → +∞.
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Since the operator Lα is in the limit point case, the combination

θα + mαϕα

belongs to L2(0,∞) (where mα is the Weyl function for Lα). It has the asymptotics

θα(x, λ) + mα(λ)ϕα(x, λ) = (Aα+π/2(λ) + mαAα(λ))ψ−(x, λ) + o(eIm k(λ)x/a).

Therefore,

mα(λ) = −
Aα+π/2(λ)

Aα(λ)

for λ ∈ U(β) ∩ C+ and

mα(λ + i0) = −
Aα+π/2(λ)

Aα(λ)

for λ ∈ σ(Lper) \ {λj , µj , νj,+, νj,−, j � 0}. It follows from subordinacy theory [10]
that the spectrum of Lα on this set is purely and absolutely continuous and

ρ′
α(λ) =

1
π

Im mα(λ + i0) =
Aα(λ)Aα+π/2(λ) − Aα(λ)Aα+π/2(λ)

2πi|Aα(λ)|2 . (5.7)

Theorem 5.1 yields, for these values of λ,

θα(x, λ) = Aα+π/2(λ)ψ−(x, λ) + Aα+π/2(λ)ψ+(x, λ) + o(1),

θ′
α(x, λ) = Aα+π/2(λ)ψ′

−(x, λ) + Aα+π/2(λ)ψ′
+(x, λ) + o(1),

as x → +∞. Substituting these asymptotics and the asymptotics of ϕα and ϕ′
α into

the expression for the Wronskian, we get

1 = (Aα(λ)Aα+π/2(λ) − Aα(λ)Aα+π/2(λ))W{ψ+(λ), ψ−(λ)}

(the term o(1) cancels, since both sides are independent of x). Combining with (5.7)
we have

ρ′
α(λ) =

1
−2πiW{ψ+(λ), ψ−(λ)}|Aα(λ)|2 =

1
2π|W{ψ+(λ), ψ−(λ)}||Aα(λ)|2 ,

which completes the proof.
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