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The inverse problem for the magnetic Schrödinger operator on the lasso graph with
different matching conditions at the vertex is investigated. It is proven that the
Titchmarsh-Weyl function known for different values of the magnetic flux through the
cycle determines the unique potential on the loop, provided the entries of the vertex
scattering matrix S parametrizing matching conditions satisfy s12s23s31 �= s13s21s32.
This is in contrast to numerous examples showing that the potential on the loop can-
not be reconstructed from the boundary measurements. C© 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4799034]

I. INTRODUCTION

Differential operators on metric graphs are a well-established area of modern mathematical
physics with direct applications in nano-physics, wave-propagation, chemistry, and other natural
sciences.13 The corresponding models combine rich geometric properties with exact solvability –
spectral and scattering characteristics of such operators can often be calculated analytically which
makes them an important tool in theoretical studies of spectral and chaotic phenomena.

We are interested in the inverse problem for the (magnetic) Schrödinger operator with the
input data formed by the Titchmarsh-Weyl (matrix) function (TW-function) associated with graph’s
boundary. If the metric graph is known, then the Schrödinger operator is determined by the real
magnetic and electric potentials (see (2.1)) and the matching conditions at the vertices. The TW-
function is a Nevanlinna matrix function of the energy parameter and is a natural generalization of
the Dirichlet-to-Neumann map. Moreover it is in one-to-one correspondence with the dynamical
response operator and the scattering matrix,1 i.e., it has a clear physical interpretation and can be
obtained in experiments, in contrast to the alternative approach based on spectral mappings.24, 25

The corresponding inverse problem for trees is solved completely now1–3, 10, 17 following pioneering
works.11,12,8,4, 5, 20 It is proven that the TW-function determines the metric graph, the matching
conditions at the vertices (up to a certain unitary equivalence) and the electric potential on the
edges, provided certain explicit conditions are satisfied. Appearance of the magnetic potential does
not lead to any new effects, since such potential can be eliminated in the case of trees. On the
contrary, for graphs with cycles the TW-function depends on the integrals of the magnetic potential
along the cycles (called fluxes) and precisely this dependence can be used to reveal the electric
potential. Assume that the metric graph is known and the matching conditions at the vertices are
standard (the function is continuous and the sum of normal derivatives is zero), then the TW-function
known for different values of the fluxes determines the unique (electric) potential, provided certain
non-resonance conditions are satisfied and the graph contains no loops.14, 18 The last requirement is
necessary, since even for the lasso graph formed by one loop and one external edge, the potential
on the loop in general is not determined by the TW-function in the case of standard matching
conditions23,14 unless it is identically zero (Ambarzumian theorem and generalizations).9 It was
conjectured that non-uniqueness in this inverse problem is related to the symmetric character of
matching conditions. Therefore a rather general family of matching conditions was considered in
Ref. 15, but to our surprise the non-uniqueness of the potential remained.

a)E-mail: pak@math.su.se

0022-2488/2013/54(4)/042103/14/$30.00 C©2013 American Institute of Physics54, 042103-1
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FIG. 1. Lasso graph �.

The present article is devoted to the solution of the inverse problem for the lasso graph with
most general matching conditions at the internal vertex. All such matching conditions are de-
scribed by 3 × 3 irreducible unitary matrices S. It appears that unless the matrix S possesses
symmetry (6.9)

s12s23s31 �= s13s21s32,

the electric potential is unique and explicit algorithm to solve the inverse problem is given. The
intuition behind this condition is discussed in Sec. VII.

II. TITCHMARSH-WEYL FUNCTION FOR A LASSO GRAPH

Consider the lasso graph depicted in Figure 1.
The magnetic Schrödinger operator

Lq,a =
(

i
d

dx
+ a(x)

)2

+ q(x) (2.1)

is defined on the functions from the Sobolev space W 2
2 (�\{x1, x2, x3, x4}) satisfying certain matching

conditions at the internal vertex V1 = {x1, x2, x3} and boundary conditions at the boundary vertex
V2 = {x4}.

The electric (q) and magnetic (a) potentials are real and satisfy the assumptions

q ∈ L2(�), a ∈ C(�). (2.2)

The most general matching conditions at the vertex V1 can be written as19

i(S − I )

⎛
⎜⎝

u(x1)

u(x2)

u(x3)

⎞
⎟⎠ = (S + I )

⎛
⎜⎝

u′(x1)

−u′(x2)

u(x3)′

⎞
⎟⎠ , (2.3)

where S = {si j }3
i, j=1 is an irreducible unitary matrix. A unitary matrix S is irreducible if it cannot be

put into the block-diagonal form by permutation of the coordinates. Irreducibility of S is necessary
to ensure that matching conditions are properly connecting, i.e., the vertex cannot be divided in two
so that conditions connect together boundary values from the new vertices separately), unitarity of
S is required to make L symmetric.

The boundary condition at V2 will be Dirichlet and the corresponding TW-function is defined
by the relation

M�(λ) = −u′(x4)

u(x4)
, (2.4)

where u is a solution to the differential equation Lu = λu, λ = k2, satisfying the matching conditions
at the internal vertex, but not necessarily the boundary conditions at V2. The function M� is a
Nevanlinna function of λ and depends on the potential q on the graph. The magnetic potential can
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be removed by the unitary transformation

u(x) �→ û(x) = ei
∫ x

x1
a(y)dyu(x), (2.5)

which implies that the TW-functions depend only on the flux � = ∫ x2

x1
a(x)dx of the magnetic field

through the loop, but not on the particular form of the magnetic potential. In what follows we are
going to use notation M�(λ, z), z = ei� indicating the dependence of M on the magnetic flux.

In fact the TW-function for the kernel of � formed by the loop with the contact point x3 will be
more important in our studies

MKer �(λ, z) = −u′(x3)

u(x3)
, z = ei�. (2.6)

We study first whether the potential on the loop is determined by MKer�(λ, z) and return back to
M�(λ, z) in the main Theorem 6.2.

The transfer matrix T for the (magnetic potential free) Schrödinger equation − u′′ + q(x)u
= k2u on the interval [x1, x2] will also be used

T (k) :

(
u(x1)

u′(x1)

)
�→

(
u(x2)

u′(x2)

)
, T =

(
t11 t12

t21 t22

)
. (2.7)

All entries of the transfer matrix are analytic functions of exponential type having special
asymptotics,22 the transfer matrix has unit determinant

det T (k) = t11(k)t22(k) − t12(k)t21(k) = 1. (2.8)

In order to reconstruct the potential q on the loop one needs to know the functions t12 and t22

(or any other pair (t11, t12), (t11, t21), or (t21, t22)).7, 22 The zeroes of these functions determine
the Dirichlet-Dirichlet and Dirichlet-Neumann spectra for the Schrödinger operator on the interval
[x1, x2].21

III. CALCULATION OF THE M-FUNCTION

Our immediate goal is to calculate M(λ, z) := MKer�(λ, z). The values of the function on the
loop are related via (2.7) with T(k) substituted with zT(k) in order to take into account the magnetic
potential. The boundary values u(x3) and u′(x3) are connected via the TW-function M(λ, z) (2.6).
Substituting these equalities into the matching conditions (2.3) we get the following linear equation

⎡
⎢⎣i(S − I )

⎛
⎜⎝

1 0 0

zt11 zt12 0

0 0 1

⎞
⎟⎠ + (S + I )

⎛
⎜⎝

0 −1 0

zt21 zt22 0

0 0 M(λ, z)

⎞
⎟⎠

⎤
⎥⎦

⎛
⎜⎝

u(x1)

u′(x1)

u(x3)

⎞
⎟⎠ = 0, (3.1)

which has a nontrivial solution only if the determinant of the matrix is equal to zero. The zero
determinant equation allows one to calculate M(λ, z), but the corresponding formula is rather
involved. We are interested in dependence of M(λ, z) upon the phase � which suggests us to write
this formula in the form

M(λ, z) = −a0 + a1z + a2z2

b0 + b1z + b2z2
, z = ei�. (3.2)

Let A be a square matrix, then the following notations will be used:

d A = det A, and d Ai j = det Ai j , (3.3)

where Aij are matrices obtained from A by deleting ith row and jth column.
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Calculation of the coefficients aj and bj

a0 = det

⎛
⎜⎝

s11 − 1 s11 + 1 s13

s21 s21 s23

s31 s31 s33 − 1

⎞
⎟⎠

= 2 (−d S12 + s21) ;

a1 = −i det

⎛
⎜⎝

i t11s12 + t21s12 s11 + 1 s13

i t11(s22 − 1) + t21(s22 + 1) s21 s23

i t11s32 + t21s32 s31 s33 − 1

⎞
⎟⎠

− det

⎛
⎜⎝

s11 − 1 i t12s12 + t22s12 s13

s21 i t12(s22 − 1) + t22(s22 + 1) s23

s31 i t12s32 + t22t32 s33 − 1

⎞
⎟⎠

= t11 (−d S − 1 − d S11 − s11 + d S22 + s22 + d S33 + s33)

+ t22 (−d S − 1 + d S11 + s11 − d S22 − s22 + d S33 + s33)

+ i t12 (−d S + 1 + d S11 − s11 + d S22 − s22 + d S33 − s33)

+ i t21 (d S − 1 + d S11 − s11 + d S22 − s22 − d S33 + s33) ;

a2 = i det

⎛
⎜⎝

i t11s12 + t21s12 i t12s12 + t22s12 s13

i t11(s22 − 1) + t21(s22 + 1) i t12(s22 − 1) + t22(s22 + 1) s23

i t11s32 + t21s32 i t12s32 + t22s32 s33 − 1

⎞
⎟⎠

= 2 (−d S21 + s12) .

(3.4)

b0 = −i det

⎛
⎜⎝

s11 − 1 s11 + 1 s13

s21 s21 s23

s31 s31 s33 + 1

⎞
⎟⎠

= −2i (−d S12 − s21) ;

b1 = − det

⎛
⎜⎝

i t11s12 + t21s12 s11 + 1 s13

i t11(s22 − 1) + t21(s22 + 1) s21 s23

i t11s32 + t21s32 s31 s33 + 1

⎞
⎟⎠

+ i det

⎛
⎜⎝

s11 − 1 i t12s12 + t22s12 s13

s21 i t12(s22 − 1) + t22(s22 + 1) s23

s31 i t12s32 + t22t32 s33 + 1

⎞
⎟⎠

= i t11 (d S − 1 + d S11 − s11 − d S22 + s22 + d S33 − s33)

+ i t22 (d S − 1 − d S11 + s11 + d S22 − s22 + d S33 − s33)

+ t12 (−d S − 1 + d S11 + s11 + d S22 + s22 − d S33 − s33)

+ t21 (d S + 1 + d S11 + s11 + d S22 + s22 + d S33 + s33) ;

b2 = det

⎛
⎜⎝

i t11s12 + t21s12 i t12s12 + t22s12 s13

i t11(s22 − 1) + t21(s22 + 1) i t12(s22 − 1) + t22(s22 + 1) s23

i t11s32 + t21s32 i t12s32 + t22s32 s33 + 1

⎞
⎟⎠

= −2i (−d S21 − s12) .

(3.5)
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Let us just note that the coefficients a0, a2, b0, and b2 do not depend on λ, while a1 and b1 are
analytic functions of λ.

IV. FLUX DEPENDENCE AND IRREDUCIBILITY

In order to solve the inverse problem one needs to determine the elements of the transfer matrix
from the kernel TW-function M(λ, z). In general we need to reconstruct two functions of one variable
(a1(λ) and b1(λ)) from one function of two variables (M(λ, z)).

Theorem 4.1. The kernel TW-function M(λ, z) = Mker�(λ, z), z = ei� is independent of the
magnetic flux � if and only if the unitary matrix S is reducible.

Proof. If S is reducible, then M(λ, z) is independent of z for one of the two reasons:

(1) the interval [x4, x3] is not connected to the loop,
(2) the magnetic potential can be removed by the standard transformation (2.5).

To prove that M(λ, z) does not depend on z only if S is reducible, let us assume that

• M(λ, z) is independent of z,
• S is irreducible.

We shall arrive to a contradiction, proving our assertion.
The zero determinant equation corresponding to (3.1) can be written using vector notations as

follows

det

⎡
⎢⎣i

⎛
⎜⎝

s11 − 1

s21

s31

⎞
⎟⎠ + i z

⎛
⎜⎝

s12

s22 − 1

s32

⎞
⎟⎠ t11(λ) + z

⎛
⎜⎝

s12

s22 + 1

s32

⎞
⎟⎠ t21(λ);

−

⎛
⎜⎝

s11 + 1

s21

s31

⎞
⎟⎠ + i z

⎛
⎜⎝

s12

s22 − 1

s32

⎞
⎟⎠ t12(λ) + z

⎛
⎜⎝

s12

s22 + 1

s32

⎞
⎟⎠ t22(λ);

i

⎛
⎜⎝

s13

s23

s33 − 1

⎞
⎟⎠ + M(λ, z)

⎛
⎜⎝

s13

s23

s33 + 1

⎞
⎟⎠

⎤
⎥⎦ = 0.

(4.1)

Case I Assume that b0 �= 0.
Since M(λ, z) does not depend on z = 0, it can be calculated by putting z = 0 in (4.1)

M(λ, z) = − a0
b0

. It follows also that the vectors
⎛
⎜⎝

s11 − 1

s21

s31

⎞
⎟⎠ ,

⎛
⎜⎝

s11 + 1

s21

s31

⎞
⎟⎠ , and i

⎛
⎜⎝

s13

s23

s33 − 1

⎞
⎟⎠ + M

⎛
⎜⎝

s13

s23

s33 + 1

⎞
⎟⎠

are linear dependent. Since the first two vectors are not collinear, unless s21 = s31 = 0 which
is impossible for irreducible matrices S, the three vectors are linear dependent only if there exist
complex numbers x, y such that

i

⎛
⎜⎝

s13

s23

s33 − 1

⎞
⎟⎠ + M

⎛
⎜⎝

s13

s23

s33 + 1

⎞
⎟⎠ = x

⎛
⎜⎝

s11 − 1

s21

s31

⎞
⎟⎠ + y

⎛
⎜⎝

s11 + 1

s21

s31

⎞
⎟⎠ . (4.2)

Substituting the last vector in (4.1) using the last equality and calculating the determinant in (4.1)
we get formally a second order polynomial in z. This polynomial is identically equal to zero, hence
all its coefficients are zero as well. Consider the first order term in z which is a linear combination
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of the functions tij(λ)

0 = τ11t11(λ) + τ12t12(λ) + τ21t21(λ) + τ22t22(λ), τi j �= τi j (λ).

Let us calculate the corresponding coefficients τ ij. For example, using (4.2) the coefficient τ 11 can
be expressed as

τ11 = −i det

⎡
⎢⎣

⎛
⎜⎝

s12

s22 − 1

s32

⎞
⎟⎠ ,

⎛
⎜⎝

s11 + 1

s21

s31

⎞
⎟⎠ , x

⎛
⎜⎝

s11 − 1

s21

s31

⎞
⎟⎠ + y

⎛
⎜⎝

s11 + 1

s21

s31

⎞
⎟⎠

⎤
⎥⎦

= −2i x det

[
s21 s22 − 1

s31 s32

]
.

Similar calculations give

τ12 = −2y det

[
s21 s22 − 1

s31 s32

]
,

τ21 = −2x det

[
s21 s22 + 1

s31 s32

]
,

τ22 = 2iy det

[
s21 s22 + 1

s31 s32

]
.

Assume first that x �= 0 �= y. The asymptotics as λ → ∞ is dominated by t21 ∼ − k sin k(x2

− x1) and the corresponding coefficient is zero if and only if

det

[
s21 s22 + 1

s31 s32

]
= 0 (4.3)

holds. Under this condition the coefficient τ 22 is zero and the next term in asymptotics is given by
τ 11t11. The corresponding coefficient is zero if and only if

det

[
s21 s22 − 1

s31 s32

]
= 0, (4.4)

which also implies that τ 12 = 0.
If x = 0 and y �= 0, then τ 21 = τ 11 = 0 and the asymptotics is dominated by τ 22t22. But τ 22 = 0

if and only if (4.3) holds. Considering coefficient in front of t12 we arrive at (4.4).
Similarly if x �= 0 and y = 0 we prove that (4.3) and (4.4) hold. The special case x = y = 0 will

be considered at the end of the proof.
Equations (4.3) and (4.4) satisfied simultaneously imply that s31 = 0. Then from (4.3) we get

that either s21 or s32 is zero. In the first case we get that |s11| = 1 and therefore the matrix S is
reducible. In the second case |s33| = 1 and again S is reducible.

It remains to study the case x = y = 0, i.e., when the last column vector in (4.1) is zero⎧⎪⎨
⎪⎩

(i + M)s13 = 0,

(i + M)s23 = 0,

(i + M)s33 + (−i + M) = 0.

If at least one of s13, s23 is different from zero, then M = − i and the third equation cannot be
satisfied. It follows that s13 = s23 = 0, i.e., the matrix S is reducible.

Case II Assume that b0 = 0.
The TW-function does not depend on z only if a0 = 0 as well. Therefore the entries of S satisfy

simultaneously

−d S12 − s21 = 0 and d S12 + s21 = 0 ⇒ s21 = d S12 = 0.

Taking into account that dS12 = s21s33 − s31s23 we conclude that either s31 = 0 or s23 = 0. In both
cases S is reducible. �
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Assume that the TW-function M(λ, z) is known and that S is irreducible. Fix any complex λ.
Then M is a meromorphic non-constant function of z. Taking any two z �= 0 �= z′ such that M(λ, z)
�= M(λ, z′) we arrive at the following linear system

⎧⎪⎪⎨
⎪⎪⎩

a1(λ) + M(λ, z)b1(λ) = −1

z
a0 − za2 − 1

z
M(λ, z)b0 − zM(λ, z)b2,

a1(λ) + M(λ, z′)b1(λ) = − 1

z′ a0 − z′a2 − 1

z′ M(λ, z′)(λ)b0 − z′M(λ, z′)(λ)b2.

(4.5)

The determinant of the linear system is M(λ, z′) − M(λ, z) �= 0 and we conclude that the functions
a1(λ) and b1(λ) are determined by M(λ, z). It is enough to know the TW-function M(λ, z) for just
two values of the magnetic flux z = ei�, for which it attains different values.

V. HERMITIAN PARAMETRIZATION

Almost all matching conditions can be parametrized by Hermitian matrices. More precisely all
matching conditions corresponding to S with det(S + I ) �= 0 can be parametrized by Hermitian 3
× 3 matrices H = i S−I

S+I , as follows

H

⎛
⎜⎝

u(x1)

u(x2)

u(x3)

⎞
⎟⎠ =

⎛
⎜⎝

u′(x1)

−u′(x2)

u′(x3)

⎞
⎟⎠ . (5.1)

Also this subclass of matching conditions appears to be rather general, it does not contain standard
matching conditions – the most widely used family. The case of arbitrary (irreducible) unitary
matrices will be considered in Sec. VI, but formulas in the Hermitian case are much more transparent
and will help us to understand the main ideas. The corresponding methods are essentially the same.

Let us calculate the TW-function using the Hermitian parametrization. As before (2.6) and (2.7)
lead to the following equation

det

⎡
⎢⎣H

⎛
⎜⎝

1 0 0

zt11 zt12 0

0 0 1

⎞
⎟⎠ +

⎛
⎜⎝

0 −1 0

zt21 zt22 0

0 0 M(λ, z)

⎞
⎟⎠

⎤
⎥⎦ = 0. (5.2)

This equation allows one to calculate the TW-function M

M(λ, z) = −

det

⎡
⎢⎣

h11 + h12zt11 h12zt12 − 1 h13

h21 + h22zt11 + zt21 h22zt12 + zt22 h23

h31 + h32zt11 h32zt12 h33

⎤
⎥⎦

det

[
h11 + h12zt11 h12zt12 − 1

h21 + h22zt11 + zt21 h22zt12 + zt22

] . (5.3)

This function can be written in the form (3.2)

M(λ, z) = −d H12 + z (d H t12 + d H11 t11 + d H22 t22 + h33 t21) + z2d H21

h21 + z (d H33 t12 + h22 t11 + h11 t22 + t21) + z2h12
, (5.4)

where we used that det T = 1 as well as notations (3.3).
Writing M(λ, z) in the form analogous to (3.2)

M(λ, z) = −α0 + zα1 + z2α2

β0 + zβ1 + z2β2
(5.5)
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we get

α0 = d H12,

α1(λ) = d H t12(λ) + d H11 t11(λ) + d H22 t22(λ) + h33 t21(λ),

α2 = d H21,

β0 = h21,

β1(λ) = d H33 t12(λ) + h22 t11(λ) + h11 t22(λ) + t21(λ),

β2 = h12.

(5.6)

The coefficients αj, β j are closely related to aj and bj introduced in connection with the unitary
parametrization {

a j = det(S + I ) α j ,

b j = det(S + I ) β j .
j = 0, 1, 2, (5.7)

Let us note that the functions α1(λ) and β1(λ) attain real values for real λ since the transfer matrix
coefficients tij(λ) are real for those λ and the matrix H is Hermitian and therefore the coefficients

d H, d H11, d H22, d H33, h11, h22, h33

are all real as well.
The second and fifth equations in (5.6) can be written in the matrix form(

α1

β1

)
=

(
d H11 h33

h22 1

)(
t11

t21

)
+

(
d H d H22

d H33 h11

) (
t12

t22

)
. (5.8)

At least one of the two matrices appearing on the right-hand side of the equation is invertible
if H is irreducible. Really, the corresponding determinants are equal to − |h23|2 and − |dH23|2,
respectively. Assume that

h23 = d H23 = 0,

and hence due to Hermiticity h32 = dH32 = 0 as well. It follows that h13h21 = 0 implying that either
h13 or h12 is also equal to zero. In both cases the corresponding matrix H is reducible (i.e., block
diagonal after a permutation of the coordinates), leading to a reducible S. The two cases will be
treated using similar methods.

Case A Assume that h23 �= 0.
Inverting the first matrix we get(

t11

t21

)
= − 1

|h23|2
(

1 −h33

−h22 d H11

) (
α1

β1

)

+ 1

|h23|2
(

d H − h33d H33 −|h13|2
|d H13|2 −h11|h23|2 + h22|h13|2

) (
t12

t22

)
.

(5.9)

The unit determinant condition (2.8) for the transfer matrix gives the following equation

|d H13|2t2
12 + |h13|2t2

22 − (h13d H13 + h31d H31) t12t22

+ (h22α1 − d H11β1) t12 + (α1 − h33β1)t22 = −|h23|2.
(5.10)

The equation may be rearranged as

|d H13t12 − h31t22|2 + (h22α1 − d H11β1) t12 + (α1 − h33β1)t22 = −|h23|2.
Let us complete to whole squares to get∣∣∣∣d H13t12 − h31t22 + h32 (−h21α1 + d H12β1)

h13d H13 − h31d H31

∣∣∣∣
2

= |h23|2
( |−h21α1 + d H12β1|2

|h13d H13 − h31d H31|2
− 1

)
. (5.11)

The last formula holds only if the (pure imaginary) denominator is different from zero

h13d H13 − h31d H31 �= 0. (5.12)
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The last equation can also be written as (5.17).
Case B Assume that dH23 �= 0.
Inverting the second matrix in (5.9) we get(

t12

t22

)
= − 1

|d H23|2
(

h11 −d H22

−d H33 d H

) (
α1

β1

)

+ 1

|d H23|2
(−h11|h23|2 + h22|h13|2 |h13|2

−|d H13|2 d H − h33d H33

) (
t11

t21

)
.

(5.13)

The unit determinant condition (2.8) gives

|d H13|2t2
11 + |h13|2t2

21 − (h13d H13 + h31d H31) t11t12

+(−d H33α1 + d Hβ1)t11 + (−h11α1 + d H22β1)t21 = −|d H23|2.
(5.14)

As before we perform quadratic completion in two stages, provided (5.17) holds

|d H13t11 − h31t21|2 + (−d H33α1 + d Hβ1)t11 + (−h11α1 + d H22β1)t21 = −|d H23|2 (5.15)

and ∣∣∣∣d H13t11 − h31t21 + d H23

h13d H13 − h31d H31
(h21α1 − d H12β1)

∣∣∣∣
2

= |d H23|2
( |2h21α1 − d H12β1|2

|h13d H13 − h31d H31|2 − 1

)
.

(5.16)

The last formula holds only if (5.12), or equivalently (5.17), is satisfied.

Theorem 5.1. Let L be the magnetic Schrödinger operator (2.1) on the lasso graph with the
domain defined by Hermitian irreducible matching conditions (5.1) at the vertex. Assume that the
Hermitian matrix H is known and its entries satisfy the following condition

h13h21h32 /∈ R. (5.17)

Then the kernel Titchmarsh-Weyl function M(λ, z) (≡MKer�(λ, z)) determines the unique potential q
on the loop of the lasso graph �.

Proof. The kernel Titchmarsh-Weyl function known as a function of the magnetic flux allows
one to determine the functions α1(λ) and β1(λ). Assume first that h23 �= 0 (Case A). Under the
formulated assumptions formula (5.11) allows one to reconstruct the analytic function

d H13t12 − h31t22 + h32 (−h21α1 + d H12β1)

h13d H13 − h31d H31
(5.18)

up to a phase, which in turn can be determined from the asymptotics. The asymptotics of the function
in (5.18) is just |h23|2h31

h13d H13−h31d H31
k sin k�1, �1 = x2 − x1. The coefficient h23h31 is different from zero

due to (5.17). It follows that the function dH13t12 − h31t22 is determined. Then condition (5.17)
assures that the the coefficients dH13 and h13 do not have equal phases. Really assume the opposite,
i.e., that R � d H13

h31
= h21h32

h31
− h22. Then h21h32

h31
∈ R ⇒ h21h32h13 ∈ R and we get a contradiction to

(5.17). Then the (real valued) functions t12(λ) and t22(λ) are determined by considering the real and
imaginary parts of dH13t12 − h31t22 for λ ∈ R. The two functions t12 and t22 determine the unique
potential q on the loop.7, 21, 22

The Case B (dH23 �= 0) is treated in a similar way. �

We have shown that for all matching conditions parameterized by 3 × 3 Hermitian matrices
H subject to (5.17) the kernel Titchmash-Weyl matrix Mher�(λ, z) determines the unique potential
on the loop. Already this result is surprising compared to what was proven in Refs. 14 and 15
for standard and real unitary S. In order to accomplish our studies we need to consider the whole
set of (irreducible) matching conditions and therefore return back to parametrization via unitary
matrices S.
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VI. COMPLETE SOLUTION OF THE INVERSE PROBLEM

This section is devoted to the solution of the inverse problem for most general matching
conditions at the vertex. All such conditions are described by irreducible unitary matrices S via (2.3).

Equations (3.4) and (3.5) for a1 and b1 can be written in the matrix form similar to (5.8)(
a1(λ)

b1(λ)

)
= A

(
t11(λ)

t21(λ)

)
+ B

(
t12(λ)

t22(λ)

)
(6.1)

with

a11 = −d S − 1 − d S11 − s11 + d S22 + s22 + d S33 + s33

a12 = i(d S − 1 + d S11 − s11 + d S22 − s22 − d S33 + s33)

a21 = i(d S − 1 + d S11 − s11 − d S22 + s22 + d S33 − s33)

a22 = d S + 1 + d S11 + s11 + d S22 + s22 + d S33 + s33

b11 = i(−d S + 1 + d S11 − s11 + d S22 − s22 + d S33 − s33)

b12 = −d S − 1 + d S11 + s11 − d S22 − s22 + d S33 + s33

b21 = −d S − 1 + d S11 + s11 + d S22 + s22 − d S33 − s33

b22 = i(d S − 1 − d S11 + s11 + d S22 − s22 + d S33 − s33).

(6.2)

Our first step is to prove that the matrices A and B do not have zero determinant simultaneously, i.e.,
at least one of these two matrices is always invertible.

Lemma 6.1. Assume that the unitary matrix S is irreducible, then at least one of the matrices A
and B given by (6.2) is invertible.

Proof. If det(S + I ) �= 0, then the matching conditions can be written using Hermitian matrix
H and the corresponding system (5.8) possesses this property. Hence it remains to study the case
where

det(S + I ) = 0 ⇔ d S + 1 + d S11 + s11 + d S22 + s22 + d S33 + s33 = 0.

Equation (6.1) transforms as(
a1(λ)

b1(λ)

)

=
(

2(d S22 + s22 + d S33 + s33) 2i(d S + d S11 + d S22 + s33)

2i(d S + d S11 + s22 + d S33) 0

) (
t11(λ)

t21(λ)

)

+
(

2i(1 + d S11 + d S22 + d S33) 2(d S11 + s11 + d S33 + s33)

2(d S11 + s11 + d S22 + s22) 2i(d S + s11 + d S22 + d S33)

) (
t12(λ)

t22(λ)

)
.

(6.3)

Putting the determinants of the matrices A and B equal to zero we get the linear system⎧⎪⎪⎨
⎪⎪⎩

1

4
det A = (d S22 + s33)(s22 + d S33) − (1 + s11)(d S + d S11) = 0,

1

4
det B = (d S22 − s33)(s22 − d S33) − (1 − s11)(d S − d S11) = 0,

implying that {
s23d S23 + s32d S32 = 0,

d S32d S23 + s23s32 = 0.
(6.4)

Taking into account that S is a unitary matrix, the first equation in the last system can be written as

− det S
(|s23|2 + |s32|2

) = 0

implying that

s23 = s32 = 0.
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It follows from the second equation in (6.4) that either dS32 or dS23 is zero, which in turn implies
that S is reducible. Really, assuming that dS23 = 0 one gets s11s32 − s31s12 = 0, but s32 = 0 and
it follows that either s31 or s12 is zero and S is reducible. The case dS32 = 0 is treated in a similar
way. �

Case A Assume that det A �= 0.

Inverting the matrix A in (6.1) we get equation analogous to (5.9). Substituting tij into the unit
determinant condition (2.8) and completing to whole squares one gets the equation

∣∣∣∣ f A(λ) + 1

4

s11s32 − s12s31 + s32

s12s23s31 − s13s32s21
g(λ)

∣∣∣∣
2

= |s11s23 − s13s21 + s23|2
(

1

16

|g(λ)|2
|s12s23s31 − s13s32s21|2 − 1

)
.

(6.5)

with

f A(λ) := (s22s31 − s21s32 − s31) t12(λ) − i (s22s31 − s21s32 + s31) t22(λ) (6.6)

and

g(λ) := i (s23s31 − s21s33 − s21) a1(λ) + (s23s31 − s21s33 + s21) b1(λ).

We have to assume that the denominator is different from zero (assumption (6.9)). The function g(λ)
is known and (6.5) allows to determine the function fA(λ) taking into account standard asymptotics
of the functions t12 and t22.

Case B Assume that det B �= 0.

This case is completely similar to Case A. We need to invert the matrix B instead of A.
Substituting as before tij into the unit determinant condition (2.8) leads to

∣∣∣∣ fB(λ) − i

4

s11s32 − s12s31 − s32

s12s23s31 − s13s32s21
g(λ)

∣∣∣∣
2

= |s12s31 − s11s32 + s32|2
(

1

16

|g(λ)|2
|s12s23s31 − s13s32s21|2 − 1

)
,

(6.7)

with

fB(λ) := (s22s31 − s21s32 − s31) t11(λ) − i (s22s31 − s21s32 + s31) t21(λ). (6.8)

We need to introduce condition (6.9) to guarantee that the determinant is different from zero.
The function g(λ) is known and (6.7) allows to determine the function fB(λ) taking into account
standard asymptotics of the functions t11 and t21.

Theorem 6.2. Let Lq, a be the magnetic Schrödinger operator on the lasso graph � given by
(2.1) and (2.3) under the assumption (2.2). Let the metric graph � and the unitary irreducible
3 × 3 matrix S be known.

Assume in addition that the Titchmarsh-Weyl function M�(λ, z) is known for two different values
z �= z′ of the magnetic flux z = exp(i

∫ x2

x1
a(x)dx), such that M�(·, z) �= M�(·, z′), then the potential

q is determined uniquely, provided

s12s23s31 �= s13s21s32 (6.9)

holds.

Proof. The TW-function M� defined by (2.4) is in one-to-one correspondence with the dynamical
response operator which allows to use the boundary control method6 to recover the electric potential
on the boundary edge [x3, x4] and therefore to reduce the inverse problem to recovering of the potential
on the loop from the kernel TW-function Mker� defined by (2.6). This procedure is described in detail
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in Refs. 1, 2, and 14. It is clear that Mker�(λ, z) �= Mker�(λ, z′). Hence the first step is to determine
Mker�(λ, z) from M�(λ, z).

The second step is to calculate the analytic functions a1(λ) and b1(λ) from Mker�(λ, z) given by
(3.2). Since M(λ, z) �= M(λ, z′) the functions a1 and b1 can be calculated by solving the linear system
(4.5).

The third step is to calculate the entries t12(λ), t22(λ) or t11(λ), t21(λ) of the transfer matrix. This
is done by considering the linear system (6.1) and inverting either the matrix A or the matrix B and
substituting the result into the unit determinant condition (2.8). Depending on which matrix A or B is
invertible we recover the function fA(λ) or fB(λ) given by (6.6) and (6.8), respectively. The functions
tij(λ) can be calculated from fA, B taking into account that these functions are real valued for λ ∈ R,
provided the coefficients in front of these functions do not have the same phase.

Let us prove by contradiction that the coefficients s22s31 − s21s32 − s31 and − i(s22s31 −
s21s32 + s31) have different phases. Assume the opposite or equivalently that

(s22s31 − s21s32 − s31) (s22s31 − s21s32 + s31)

is pure imaginary. It is equivalent to

|s22s31 − s21s32|2 = |s31|2 ⇔ |d S13| = |s31|.

Taking into account that S is unitary and its determinant has unit absolute value, we conclude
that (7.2) holds. (Unitarity of S implies that s13 = 1

det S d S13 and hence |s13| = |dS13|. ) We get a
contradiction implying that the coefficients have different phases.

It follows that either the functions t12 and t22 can be calculated from fA, or t11 and t21 from fB.
Then the potential q on the interval [x1, x2] is recovered using classical methods.7, 21, 22 �

The proposed method not only proves the uniqueness, but provides an explicit algorithm to
recover the potential first on the interval [x3, x4] (Boundary control) and then on the loop (Levitan-
Gasymov procedure).

VII. ON THE SUFFICIENT CONDITION

The following lemma gives several equivalent reformulations of the sufficient condition (6.9).

Lemma 7.1. Let S be irreducible unitary 3 × 3 matrix, then the following conditions are
equivalent

s12s23s31 = s13s21s32 (7.1)

|s12| = |s21| (⇔ |s13| = |s31| ⇔ |s23| = |s32|) . (7.2)

|s32s13| = |s31s23|. (7.3)

Proof. We note first that the three conditions in (7.2) are equivalent. For example |s12|
= |s21|⇔|s13| = |s31| follows from the normalization of the first row and the first column
in S.

Let us prove now that (7.1) ⇔ (7.2). Assume that (7.1) holds with all sij, i �= j different from
zero. If in addition |s12| < |s21|, then the normalization of the first row and the first column implies
that |s31| < |s13|. Normalization of the second row and second column leads to |s23| < |s32|. Hence
|s12| |s23| |s31| < |s21| |s32| |s13|, which contradicts (7.1).

Assume now that (7.1) holds and one of sij is zero, say s12 = 0. Then (7.1) implies that at least
one of s13, s21, or s32 is equal to zero. s13 and s32 cannot be equal to zero, since S is irreducible. It
follows that s21 = 0 = s12 and (7.2) holds.
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To prove the opposite implication assume that (7.2) holds. The orthogonality of the first two
rows and the first two columns in S gives

s11 + s12s21

|s21|2 s22 + s13s23s21

|s21|2 = 0 and s11 + s21s12

|s12|2 s22 + s31s32s12

|s12|2 = 0,

implying s13s12s23 = s31s32s21 and finally (7.1).
The proof of (7.1) ⇔ (7.3) is similar. �

It follows that the sufficient condition (6.9) can be formulated as

|s32s13| �= |s31s23|. (7.4)

Consider the wave evolution on the lasso graph. Assume that an observer is sending waves along
the outgrowth and tries to determine the potential on the graph. To determine the potential on
the loop one needs to study waves coming back after passing along the loop in one or the other
direction. There are precisely two such (shortest) trajectories. Crossing the internal vertex V1 these
waves are multiplied by the scattering coefficients s32s13 and s31s23. Condition (7.4) implies that the
corresponding amplitudes are different and one may distinguish between the waves coming after
having passed the loop in different directions. A similar effect was observed in Ref. 16, where
the loop with two intervals attached was considered. If the unitary matrix determining matching
conditions is chosen so that one may distinguish between the waves passing the loop in different
directions, then the potential on the loop is uniquely reconstructible.
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