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The inverse problem for the magnetic Schrodinger operator on the lasso graph with
different matching conditions at the vertex is investigated. It is proven that the
Titchmarsh-Weyl function known for different values of the magnetic flux through the
cycle determines the unique potential on the loop, provided the entries of the vertex
scattering matrix S parametrizing matching conditions satisfy §12523531 7# $13521532.
This is in contrast to numerous examples showing that the potential on the loop can-
not be reconstructed from the boundary measurements. © 2013 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4799034]

. INTRODUCTION

Differential operators on metric graphs are a well-established area of modern mathematical
physics with direct applications in nano-physics, wave-propagation, chemistry, and other natural
sciences.!? The corresponding models combine rich geometric properties with exact solvability —
spectral and scattering characteristics of such operators can often be calculated analytically which
makes them an important tool in theoretical studies of spectral and chaotic phenomena.

We are interested in the inverse problem for the (magnetic) Schrodinger operator with the
input data formed by the Titchmarsh-Weyl (matrix) function (TW-function) associated with graph’s
boundary. If the metric graph is known, then the Schrodinger operator is determined by the real
magnetic and electric potentials (see (2.1)) and the matching conditions at the vertices. The TW-
function is a Nevanlinna matrix function of the energy parameter and is a natural generalization of
the Dirichlet-to-Neumann map. Moreover it is in one-to-one correspondence with the dynamical
response operator and the scattering matrix,' i.e., it has a clear physical interpretation and can be
obtained in experiments, in contrast to the alternative approach based on spectral mappings.>*2>
The corresponding inverse problem for trees is solved completely now'=31%17 following pioneering
works.!!:12:8:45.20 Tt i5 proven that the TW-function determines the metric graph, the matching
conditions at the vertices (up to a certain unitary equivalence) and the electric potential on the
edges, provided certain explicit conditions are satisfied. Appearance of the magnetic potential does
not lead to any new effects, since such potential can be eliminated in the case of trees. On the
contrary, for graphs with cycles the TW-function depends on the integrals of the magnetic potential
along the cycles (called fluxes) and precisely this dependence can be used to reveal the electric
potential. Assume that the metric graph is known and the matching conditions at the vertices are
standard (the function is continuous and the sum of normal derivatives is zero), then the TW-function
known for different values of the fluxes determines the unique (electric) potential, provided certain
non-resonance conditions are satisfied and the graph contains no loops.'# '8 The last requirement is
necessary, since even for the lasso graph formed by one loop and one external edge, the potential
on the loop in general is not determined by the TW-function in the case of standard matching
conditions®®!* unless it is identically zero (Ambarzumian theorem and generalizations).” It was
conjectured that non-uniqueness in this inverse problem is related to the symmetric character of
matching conditions. Therefore a rather general family of matching conditions was considered in
Ref. 15, but to our surprise the non-uniqueness of the potential remained.
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FIG. 1. Lasso graph I.

The present article is devoted to the solution of the inverse problem for the lasso graph with
most general matching conditions at the internal vertex. All such matching conditions are de-
scribed by 3 x 3 irreducible unitary matrices S. It appears that unless the matrix S possesses
symmetry (6.9)

$12523531 7 S13521532,

the electric potential is unique and explicit algorithm to solve the inverse problem is given. The
intuition behind this condition is discussed in Sec. VII.

Il. TITCHMARSH-WEYL FUNCTION FOR A LASSO GRAPH

Consider the lasso graph depicted in Figure 1.
The magnetic Schrodinger operator

d 2
Lo = (iﬁ +a(X)> +q(x) 2.1

is defined on the functions from the Sobolev space WZZ(F\{xl , X2, X3, X4}) satisfying certain matching
conditions at the internal vertex V| = {x, x», x3} and boundary conditions at the boundary vertex
Vo = {x4}.

The electric (¢) and magnetic (a) potentials are real and satisfy the assumptions

qg € LyI'), aecC). (2.2)
The most general matching conditions at the vertex V; can be written as'”
u(xp) u'(xp)
iS—=Dux) | =S+ —-u'(x)]. (2.3)
u(x3) u(x3)

where S = {s; j}i j=1 1s an irreducible unitary matrix. A unitary matrix S is irreducible if it cannot be
put into the block-diagonal form by permutation of the coordinates. Irreducibility of S is necessary
to ensure that matching conditions are properly connecting, i.e., the vertex cannot be divided in two
so that conditions connect together boundary values from the new vertices separately), unitarity of
S is required to make L symmetric.

The boundary condition at V, will be Dirichlet and the corresponding TW-function is defined
by the relation

u'(x4)

M (W) = — ,
@) u(xy)

(2.4)

where u is a solution to the differential equation Lu = Au, A = k?, satisfying the matching conditions
at the internal vertex, but not necessarily the boundary conditions at V,. The function M" is a
Nevanlinna function of A and depends on the potential g on the graph. The magnetic potential can
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be removed by the unitary transformation
u(x) > 4(x) = & 1OV, 2.5)

which implies that the TW-functions depend only on the flux & = f;z a(x)dx of the magnetic field
through the loop, but not on the particular form of the magnetic potential. In what follows we are
going to use notation M' (X, 7), z = ¢'® indicating the dependence of M on the magnetic flux.

In fact the TW-function for the kernel of I formed by the loop with the contact point x3 will be
more important in our studies

W) i (2.6)
u(x3)

We study first whether the potential on the loop is determined by MX°' (A, z) and return back to
MT (X, z) in the main Theorem 6.2.

The transfer matrix 7 for the (magnetic potential free) Schrodinger equation —u” + g(x)u
= k?u on the interval [x, x,] will also be used

u(x u(x tt
Tk - ( /( 1)) . ( /( 2)>’ T — < 1 12>' 2.7
u'(xy) u'(x2) i In
All entries of the transfer matrix are analytic functions of exponential type having special
asymptotics,’” the transfer matrix has unit determinant

MKerF(A’ Z) —

det T (k) = t11(k)txn(k) — tin(k)t21 (k) = 1. (2.8)

In order to reconstruct the potential g on the loop one needs to know the functions 7, and 5,
(or any other pair (1, t12), (t11, t21), Or (f21, t22)).”?> The zeroes of these functions determine
the Dirichlet-Dirichlet and Dirichlet-Neumann spectra for the Schrodinger operator on the interval
[x1, x2].2!

lll. CALCULATION OF THE M-FUNCTION

Our immediate goal is to calculate M(X, z) := M¥*T (%, 7). The values of the function on the
loop are related via (2.7) with T(k) substituted with z7(k) in order to take into account the magnetic
potential. The boundary values u(x3) and u/(x3) are connected via the TW-function M(A, z) (2.6).
Substituting these equalities into the matching conditions (2.3) we get the following linear equation

1 00 0 -1 0 u(xp)
iS=D|znztno | +S+D | 21200 0 W) | =0, 3.1)
0 01 0 0 M®,2) u(x3)

which has a nontrivial solution only if the determinant of the matrix is equal to zero. The zero
determinant equation allows one to calculate M(A, z), but the corresponding formula is rather
involved. We are interested in dependence of M(, z) upon the phase ® which suggests us to write
this formula in the form

2
M\, z) = _w, 7 =¢"7. (3.2)
by + b1z + byz?

Let A be a square matrix, then the following notations will be used:
dA =detA, and dAij = det A,‘j, 3.3)

where A;; are matrices obtained from A by deleting ith row and jth column.
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Calculation of the coefficients a; and b;

sip— Ly +1 0 513
ap = det $21 $21 523

531 s31 s33— 1

=2(—=dS12 + 521);

it + B2 s+ 1 813
ap = —idet| ity1(s2 — D+ 01l +1) s 523
it11532 + bS53 531 s33— 1
sip—1 it12812 + 12812 513
—det| s ifp(sn—D+malsn+1) s3
§31 it12532 + totx 533 — 1 (3.4

=11 (—=dS —1—dS —s11+dSn + s +dS33 + 533)
+i2(—dS —1+dSi +s11 —dSxn — s+ dS33 + 533)
+itp (—dS +14+dSi1 —s11 +dS»n — 522 +dS33 — 533)
+ity (dS — 1 +dSi —s11 +dSn — 522 —dS33 +533) 3

it11s12 + hys12 it12812 + 02S12 513
ay = idet| it;1(s22 — 1) +121(s20 + 1) it1a(s20 — 1) + 120(s20 + 1) 523
it11832 + 121832 it1283 + 122832 s33 — 1

=2(—=dSy + s12).

sip—1sp+1 513
b() = —i det 521 521 8523
531 531 s+ 1

= —2i(=dSi2 — $21);

itsi2 + sz sp+1 0 813
by = —det | it11(s0 — D)+ t1(s2+ 1) 521 523
it11832 + 01532 s31 s33+1
s —1 it1aS12 + 12S12 513
+i det s21 (s — D+l +1)  sx
531 12832 + otz s33 + 1 (3.5)

=it (dS —1+dSi —s11—dSxn + s +dSz; — s33)
+ityn (dS — 1 —dSi + 511 +dSxn — 532 +dS33 — 533)
+t2(—=dS — 1 +dSy + 511 +dSxn + 532 — dS33 — 533)
+11dS+14+dS11 +s11+dSx» + 500 +dS33 + 533) 5

it11812 + hisi2 it12812 + 12s12 513
by =det | it;1(s22 — 1)+ t21(s22 + 1) it12(s20 — 1) +120(5220 + 1) 523
it1183 + h1sn it12830 + oS3 s33+ 1

= —2i (—=dSy —s12).
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Let us just note that the coefficients ay, a,, by, and b, do not depend on A, while a; and b; are
analytic functions of A.

IV. FLUX DEPENDENCE AND IRREDUCIBILITY

In order to solve the inverse problem one needs to determine the elements of the transfer matrix
from the kernel TW-function M(2, 7). In general we need to reconstruct two functions of one variable
(a1 (A) and b (1)) from one function of two variables (M(A, 2)).

Theorem 4.1. The kernel TW-function M(X, 7) = M (X, z), z = €'® is independent of the
magnetic flux ® if and only if the unitary matrix S is reducible.

Proof. If S is reducible, then M(}, z) is independent of z for one of the two reasons:

(1) the interval [x4, x3] is not connected to the loop,
(2) the magnetic potential can be removed by the standard transformation (2.5).

To prove that M(A, z) does not depend on z only if S is reducible, let us assume that

e M(, z) is independent of z,
e Sis irreducible.

We shall arrive to a contradiction, proving our assertion.
The zero determinant equation corresponding to (3.1) can be written using vector notations as
follows

s — 1 S12 S12
det | i $21 +iz|sn -1t +z|s2+1]00);

$31 §32 $32

si+1 S12 S12
= B +iz|sn—1 ]|t +z ] sn+1]|mR); 4.1)
§31 §32 §32
S13 S13
I $723 + M(A, 2) $723 =0.

s33 — 1 533 + 1

Case I Assume that by # 0.
Since M(X, z) does not depend on z = 0, it can be calculated by putting z = 0 in (4.1)
M\, z) = —‘b'—g. It follows also that the vectors

s —1 s1p+ 1 513 513
$21 , $21 ,andi | 83 +M| s
531 531 533 — 1 533+ 1
are linear dependent. Since the first two vectors are not collinear, unless s;; = s33 = 0 which

is impossible for irreducible matrices S, the three vectors are linear dependent only if there exist
complex numbers x, y such that

513 513 sip—1 s+ 1
i 523 + M 523 =X 521 + y 521 . (42)
s33 — 1 533+ 1 531 831

Substituting the last vector in (4.1) using the last equality and calculating the determinant in (4.1)
we get formally a second order polynomial in z. This polynomial is identically equal to zero, hence
all its coefficients are zero as well. Consider the first order term in z which is a linear combination
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of the functions #;(A)
0 =1nt1i(A) + ti2t12(A) + 121021(A) + To2t2(A), T # Tij(A).

Let us calculate the corresponding coefficients ;. For example, using (4.2) the coefficient 71; can
be expressed as

S12 s+ 1 s1p—1 si+1
Ty =—idet| | sn—1],| sn P S +y| sz
532 531 531 531
. s21 §22 — 1
= —2ixdet [ .
$31 S32
Similar calculations give
s21 S0 — 1
T2 = —2y det S
LS31  S32 ]
[s21 520+ 17
71 = —2x det s
LS31  S32 |
) [$21 520 + 17
T = 2iydet .
| 531 s32 |

Assume first that x # 0 # y. The asymptotics as A — 0o is dominated by ;| ~ — ksink(x;
— x1) and the corresponding coefficient is zero if and only if

I
det [s21 S22+ } =0 (4.3)
$31 8§32

holds. Under this condition the coefficient t,; is zero and the next term in asymptotics is given by
T11t11- The corresponding coefficient is zero if and only if

1
det[s” 2 }:0, (4.4)
§31 §32

which also implies that 7, = 0.

Ifx=0andy # 0, then 75; = 71} = 0 and the asymptotics is dominated by t,2t,. But 75, =0
if and only if (4.3) holds. Considering coefficient in front of 7, we arrive at (4.4).

Similarly if x # 0 and y = 0 we prove that (4.3) and (4.4) hold. The special case x =y = 0 will
be considered at the end of the proof.

Equations (4.3) and (4.4) satisfied simultaneously imply that s3; = 0. Then from (4.3) we get
that either s,; or s3; is zero. In the first case we get that |s;;| = 1 and therefore the matrix S is
reducible. In the second case |s33] = 1 and again S is reducible.

It remains to study the case x =y = 0, i.e., when the last column vector in (4.1) is zero

(i + M)si3 =0,
(i + M)sy =0,
i+ M)sy3 + (=i +M)=0.
If at least one of s;3, s»3 is different from zero, then M = — i and the third equation cannot be
satisfied. It follows that s;3 = 503 = 0, i.e., the matrix S is reducible.
Case II Assume that by = 0.

The TW-function does not depend on z only if ay = 0 as well. Therefore the entries of § satisfy
simultaneously

—dS;; — s =0and dSj2 + 521 = 0= 551 =dS;, =0.

Taking into account that dSj, = 521533 — 31523 we conclude that either s3; = 0 or 553 = 0. In both
cases S is reducible. O



042103-7 Pavel Kurasov J. Math. Phys. 54, 042103 (2013)

Assume that the TW-function M(2, z) is known and that S is irreducible. Fix any complex A.
Then M is a meromorphic non-constant function of z. Taking any two z # 0 # 7' such that M(A, z)
# M(X, 7') we arrive at the following linear system

1 1
ay(M)+ MO, 2)b1(\) = ——ag — zar — —M (A, 2)bg — zM (X, 2)b>,
Z Z
1 ! 4.5)
ar(A) + M, 2)bi(x) = e Za, — ;M()», ZYMbo — 2’ M(X, 2)(M)bs.

The determinant of the linear system is M(A, 7) — M(A, z) # 0 and we conclude that the functions
ai(X) and by (1) are determined by M(A, z). It is enough to know the TW-function M(A, z) for just
two values of the magnetic flux z = ¢'®, for which it attains different values.

V. HERMITIAN PARAMETRIZATION

Almost all matching conditions can be parametrized by Hermitian matrices. More precisely all
matching conditions corresponding to S with det(S + I) # 0 can be parametrized by Hermitian 3
X 3 matrices H = ig—;;, as follows

u(xy) u'(xy)
Hlux) | =]-u(x)]. (5.1)
u(x3) u'(x3)

Also this subclass of matching conditions appears to be rather general, it does not contain standard
matching conditions — the most widely used family. The case of arbitrary (irreducible) unitary
matrices will be considered in Sec. VI, but formulas in the Hermitian case are much more transparent
and will help us to understand the main ideas. The corresponding methods are essentially the same.

Let us calculate the TW-function using the Hermitian parametrization. As before (2.6) and (2.7)
lead to the following equation

1 00 0 —1 0
det | H | zt11 2t12 O | + | zt21 2t 0 =0. 5.2)
0 01 0 0 M,z

This equation allows one to calculate the TW-function M

hir + hiaztn hiaztiy — 1 hys

det | hoy + haztiy + z2ta1 hooztiz + 2t22 hos

h31 + hazty haztin h33

d |:h11 + hi2ztn hiaztiy — 1 }
ha1 + hopzty + ztay hoaztin + 2t

This function can be written in the form (3.2)

dHy» + z(dH tys + dHy  t + dHo try + h3s 1)) + z2°d Ho,

M, z)=— 5 ; (5.4)
hoyy +z(dHsztip +hptiy +hintn + 1) + 2702
where we used that det 7 = 1 as well as notations (3.3).
Writing M(2, z) in the form analogous to (3.2)
ap + zay + 2’
Mg = -2 (5.5)

Bo+ 2B + 2B
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we get
ap =dHjp,
a1(A) = dH t1p(A) + dHyy t11(A) + dHy 1 (X) + haz 01(X),
ay  =dHy,
5.6
Bo = ha, (5-6)
B1(V) = dHaz3 t1o(0) + hoo t11 () + Ay tn(X) + 11 (L),
B =hp.

The coefficients o, B; are closely related to a; and b; introduced in connection with the unitary
parametrization

i=det(S+ 1) o,
{aj D012, (5.7)

bj = det(S+I) ,Bj.

Let us note that the functions «; (A) and 81(}) attain real values for real A since the transfer matrix
coefficients #;(A) are real for those A and the matrix H is Hermitian and therefore the coefficients

dH, dHy, dHy, dHs, hy, hyp, hss

are all real as well.
The second and fifth equations in (5.6) can be written in the matrix form

<Ol1> _ (dHn h33> <l11) +< dH dez) <l12>_ (5.8)
Bi hyn 1 1 dHy hi 2
At least one of the two matrices appearing on the right-hand side of the equation is invertible

if H is irreducible. Really, the corresponding determinants are equal to — |/3]> and — |dHx3/?,
respectively. Assume that

hyy =dHy;; =0,

and hence due to Hermiticity /3, = dH3, = 0 as well. It follows that h13/h;; = 0 implying that either
hi3 or hy; is also equal to zero. In both cases the corresponding matrix H is reducible (i.e., block
diagonal after a permutation of the coordinates), leading to a reducible S. The two cases will be
treated using similar methods.

Case A Assume that hy3 #£ 0.

Inverting the first matrix we get

() == ) ()
1) |ha|? \—hxn dHy ) \Bi

s 5.9)
. 1 (dH — h33d H3; —|h3] ) (l12>
|h23]? ldH31>  —hilhosl® + hoolhis? ) \12)
The unit determinant condition (2.8) for the transfer matrix gives the following equation
|d Hy3)*t]y + |hi3*t5, — (hizd His + haid Hap) tiatn S
(5.10)
+ (hpay — dHi1 1)t + (a1 — has i)t = —|has ).
The equation may be rearranged as
|dHystio — haitn) 4 (hpay — dHy Bi) tin + (1 — h3s )t = —|has)*.
Let us complete to whole squares to get
h3 (—h dH : —h dHp |
dHpstrs — hatins 4+ n (zhuay +dHRB) [ |h23|2< |=haioy +dHypp B - 1>. 5.11)
hi3d Hyz — h31d H3 |h13d Hi3 — h31d H31|

The last formula holds only if the (pure imaginary) denominator is different from zero

hisdHys — hyd Hyy # 0. (5.12)
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The last equation can also be written as (5.17).
Case B Assume that dH»3 # 0.
Inverting the second matrix in (5.9) we get

(l12>__ 1 <h11 —dH22> (051)
%) |dHy|> \ —dHz3 dH B

. i (5.13)
+ 1 <—h11|h23| + halhi3]2 [h13] ) (m)
|d Hy3 |? —|dH3/? dH — hy3dHss ) \121)
The unit determinant condition (2.8) gives
|d Hys |t + |hi31t3, — (hisd His + hyid Hyy) tatn
(5.14)

+(—dHszay +dHB)h + (—hyoy + dHyp Bty = —|d Hysl*.
As before we perform quadratic completion in two stages, provided (5.17) holds
ld Histiy — haito|* + (—d Hyson + dHB)ty + (—hnay + dHnfty = —|dHas* (5.15)
and
d Hy;s :

‘dHnln — h3it + had s — hod (horay —dHpB1)

2 _ 2
— |dH23|2< Thoey = dHiof| 5 = 1).
|hi3dHi3 — h3d Hz |

The last formula holds only if (5.12), or equivalently (5.17), is satisfied.

(5.16)

Theorem 5.1. Let L be the magnetic Schrodinger operator (2.1) on the lasso graph with the
domain defined by Hermitian irreducible matching conditions (5.1) at the vertex. Assume that the
Hermitian matrix H is known and its entries satisfy the following condition

hizhaihsy ¢ R. (5.17)

Then the kernel Titchmarsh-Weyl function M(A, 7) (=MX*"T (A, z)) determines the unique potential q
on the loop of the lasso graph T'.

Proof. The kernel Titchmarsh-Weyl function known as a function of the magnetic flux allows
one to determine the functions «;(A) and B1(1). Assume first that i3 % 0 (Case A). Under the
formulated assumptions formula (5.11) allows one to reconstruct the analytic function

hz (—haoy +d Hi2p1)

dH3t1p — h3it 5.18
13t12 — h3itn + hnd His — Trnd Hol (5.18)

up to a phase, which in turn can be determined from the asymptotics. The asymptotics of the function
in (5.18) is just #%k sinkf;, £; = x, — x1. The coefficient hy3h3; is different from zero
due to (5.17). It follows that the function dH 3t;» — h31t>, is determined. Then condition (5.17)
assures that the the coefficients dH3 and h;3 do not have equal phases. Really assume the opposite,
ie.,that R > dfT” = % — hy,. Then % € R = hy1hshis € R and we get a contradiction to
(5.17). Then the (real valued) functions #,,(A) and #,,()) are determined by considering the real and
imaginary parts of dH 3t — h31t for A € R. The two functions f;, and t,, determine the unique
potential ¢ on the loop.”-?!-%2

The Case B (dHy3 # 0) is treated in a similar way. O

We have shown that for all matching conditions parameterized by 3 x 3 Hermitian matrices
H subject to (5.17) the kernel Titchmash-Weyl matrix M"™™ (A, z) determines the unique potential
on the loop. Already this result is surprising compared to what was proven in Refs. 14 and 15
for standard and real unitary S. In order to accomplish our studies we need to consider the whole
set of (irreducible) matching conditions and therefore return back to parametrization via unitary
matrices S.
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VI. COMPLETE SOLUTION OF THE INVERSE PROBLEM

This section is devoted to the solution of the inverse problem for most general matching
conditions at the vertex. All such conditions are described by irreducible unitary matrices S via (2.3).
Equations (3.4) and (3.5) for a; and b can be written in the matrix form similar to (5.8)

ai(A) t11(A) t12(X)
= A B 6.1
(m)) (mm)+ (mw) ©b

a1 = —dS — 1 —dSi1 — s11 +dSx» + 522 +dS33 + 533
ap =i(dS —1+dSy —s11 +dS» — s — dS33 + 533)
ay = i(dS —1+dSy —s11 —dSxn + 52 +dS33 — 533)
ayp =dS+14+dSi +si1+dSxn + 522 +dS33 + 533

by = i(—=dS+1+dS11 —s11 +dS»n — 50 +dS3 — 533)
b =—dS —1+4+dSi +s11 —dSxn — s +dS33 + 533
byy = —dS —1+dSi +s11+dSx»n + 530 —dS33 — 533
by =i(dS—1—dSy 4511 +dSy» — s +dS33 — s33).

with
(6.2)

Our first step is to prove that the matrices A and B do not have zero determinant simultaneously, i.e.,
at least one of these two matrices is always invertible.

Lemma 6.1. Assume that the unitary matrix S is irreducible, then at least one of the matrices A
and B given by (6.2) is invertible.

Proof. If det(S + I) # 0, then the matching conditions can be written using Hermitian matrix
H and the corresponding system (5.8) possesses this property. Hence it remains to study the case
where

det(S+1)=0xdS+1+4+dSi1+s11+dSxn + 520 +dS33 + 533 =0.

Equation (6.1) transforms as

(lll ()»))
bi(})

— ( 2(dSx + 522+ dS33 +533) 2i(dS +dSi +dS» + S33)> (m(M) 6.3)
o 2i(dS + dSy1 + 520 +dSs3) 0 (L) ’
(Zi(l +dS1 +dS» +dSs3) 2(dS)) + s11 + dS33 + 533) ) (tlz()»)>
2(dS11 + 511+ dSxn + 53) 2i(dS + 511 +d Sy +dS33) ) \1(V))
Putting the determinants of the matrices A and B equal to zero we get the linear system
1
1 det A = (dSxn + s33)(s22 + dS33) — (1 + 511 )(dS +dS11) =0,
1
7 det B = (dSxn — s33)(s220 — dS33) — (1 = s11)(dS —dS11) =0,
implying that
ds dS3 =0,
{ §230.523 + §32d.932 (6.4)
dS3d Sy + sp383 = 0.

Taking into account that S is a unitary matrix, the first equation in the last system can be written as
—det S (Js3)* + Isnl*) =0
implying that

§23 = S3p = 0.



042103-11 Pavel Kurasov J. Math. Phys. 54, 042103 (2013)

It follows from the second equation in (6.4) that either dS3, or dS»3 is zero, which in turn implies
that S is reducible. Really, assuming that dS>3 = 0 one gets 511530 — s31512 = 0, but s3p = 0 and
it follows that either s3; or sy, is zero and S is reducible. The case dS3, = 0 is treated in a similar
way. (|

Case A Assume that det A # 0.
Inverting the matrix A in (6.1) we get equation analogous to (5.9). Substituting #; into the unit
determinant condition (2.8) and completing to whole squares one gets the equation

1511832 — 512831 + 532 ?
fav) + - g()»)‘
4 512823531 — 513532821
5 (6.5)
1 lg(M)]
= 511523 — s13521 + 523/ (— > —1].
16 [512523531 — 13532521
with
Sa(h) := (522831 — $21832 — 831) 112(A) — i (522831 — S21832 + 831) 122(A) (6.6)
and

8(A) :=1 (523531 — 521533 — S21) @1 (X) + (523531 — 521533 + $21) b1 (X).

We have to assume that the denominator is different from zero (assumption (6.9)). The function g(A)
is known and (6.5) allows to determine the function f; (1) taking into account standard asymptotics
of the functions 1, and t,.

Case B Assume that det B # 0.

This case is completely similar to Case A. We need to invert the matrix B instead of A.
Substituting as before #; into the unit determinant condition (2.8) leads to

[ §11832 — S12831 — §32

2
fs(A) — 7 g(k)‘
$12823831 — $13532521
5 (6.7)
1 lg(1)]
= |s12831 — $11532 + 532/ <— i s — 1],
16 [512523531 — $13532821]
with
SB(X) 1= (522531 — $21832 — $31) 111(A) — @ (522831 — 821532 + §31) 21 (X). (6.8)

We need to introduce condition (6.9) to guarantee that the determinant is different from zero.
The function g(A) is known and (6.7) allows to determine the function fz(X) taking into account
standard asymptotics of the functions #; and #,;.

Theorem 6.2. Let L, , be the magnetic Schridinger operator on the lasso graph T" given by
(2.1) and (2.3) under the assumption (2.2). Let the metric graph T" and the unitary irreducible
3 x 3 matrix S be known.

Assume in addition that the Titchmarsh-Weyl function M (A, z) is known for two different values
7 # 7 of the magnetic flux 7 = exp(i fxxf a(x)dx), such that MY (-, z) # MY (-, 2'), then the potential
q is determined uniquely, provided

$12523831 7 S13521532 (6.9)

holds.

Proof. The TW-function M defined by (2.4) is in one-to-one correspondence with the dynamical
response operator which allows to use the boundary control method® to recover the electric potential
on the boundary edge [x3, x4] and therefore to reduce the inverse problem to recovering of the potential
on the loop from the kernel TW-function M**"" defined by (2.6). This procedure is described in detail
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in Refs. 1,2, and 14. It is clear that M**™" (A, z) # M**T(, 7). Hence the first step is to determine
MR T (A, 2) from MT (X, 7).

The second step is to calculate the analytic functions a;(A) and b (1) from M**™" (i, z) given by
(3.2). Since M(A, z) # M(X, 7') the functions a; and b can be calculated by solving the linear system
4.5).

The third step is to calculate the entries #15(X), t22(X) or #11(X), t21(X) of the transfer matrix. This
is done by considering the linear system (6.1) and inverting either the matrix A or the matrix B and
substituting the result into the unit determinant condition (2.8). Depending on which matrix A or B is
invertible we recover the function f4(1) or fz(A) given by (6.6) and (6.8), respectively. The functions
1;j(A) can be calculated from fj p taking into account that these functions are real valued for A € R,
provided the coefficients in front of these functions do not have the same phase.

Let us prove by contradiction that the coefficients sy3537 — s21532 — s31 and — i(so83; —
s21832 + s31) have different phases. Assume the opposite or equivalently that

(522531 — 521532 — $31) (22831 — 21532 + 531)
is pure imaginary. It is equivalent to
2 2
522831 — $21832|7 = [s31]7 & |dS13| = Is31].

Taking into account that S is unitary and its determinant has unit absolute value, we conclude
that (7.2) holds. (Unitarity of S implies that 513 = ﬁd&g and hence |sj3| = [dSi3]. ) We get a
contradiction implying that the coefficients have different phases.

It follows that either the functions ¢, and #,; can be calculated from f4, or #;; and t;; from f5.
Then the potential g on the interval [x;, x;] is recovered using classical methods.”-2!-22 O

The proposed method not only proves the uniqueness, but provides an explicit algorithm to
recover the potential first on the interval [x3, x4] (Boundary control) and then on the loop (Levitan-
Gasymov procedure).

Vil. ON THE SUFFICIENT CONDITION

The following lemma gives several equivalent reformulations of the sufficient condition (6.9).

Lemma 7.1. Let S be irreducible unitary 3 x 3 matrix, then the following conditions are
equivalent

$128523831 = 513521532 (7.1)
Isiz] = |s21] (& Is13| = [s31] < [s23] = |s320) . (7.2)
[s32513] = 531523 (7.3)

Proof. We note first that the three conditions in (7.2) are equivalent. For example |[sq|
= |s21|<|s13] = |s31| follows from the normalization of the first row and the first column
in S.

Let us prove now that (7.1) < (7.2). Assume that (7.1) holds with all s, i # j different from
zero. If in addition |si,| < |s21], then the normalization of the first row and the first column implies
that |s3;]| < |s13]. Normalization of the second row and second column leads to |s»3]| < |s32]|. Hence
[s12] 1523] 8311 < |821] |$32] |s13], which contradicts (7.1).

Assume now that (7.1) holds and one of s;; is zero, say s> = 0. Then (7.1) implies that at least
one of 513, $21, Or §3; is equal to zero. s;3 and s3, cannot be equal to zero, since S is irreducible. It
follows that s, = 0 = 51, and (7.2) holds.
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To prove the opposite implication assume that (7.2) holds. The orthogonality of the first two
rows and the first two columns in S gives

11+ 5125221E S13S23221 —0 and s;, + S215122E S3IS32§12 -0,
5211 |s21] s12] s12]
implying s13512523 = $31532521 and finally (7.1).
The proof of (7.1) < (7.3) is similar. O
It follows that the sufficient condition (6.9) can be formulated as
Is32813] # |s31523]. (7.4)

Consider the wave evolution on the lasso graph. Assume that an observer is sending waves along
the outgrowth and tries to determine the potential on the graph. To determine the potential on
the loop one needs to study waves coming back after passing along the loop in one or the other
direction. There are precisely two such (shortest) trajectories. Crossing the internal vertex V; these
waves are multiplied by the scattering coefficients s35513 and s31523. Condition (7.4) implies that the
corresponding amplitudes are different and one may distinguish between the waves coming after
having passed the loop in different directions. A similar effect was observed in Ref. 16, where
the loop with two intervals attached was considered. If the unitary matrix determining matching
conditions is chosen so that one may distinguish between the waves passing the loop in different
directions, then the potential on the loop is uniquely reconstructible.
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