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An explicitly solvable model of the gated Aharonov–Bohm ring touching a quantum wire
is constructed and investigated. The inverse spectral and scattering problems are discussed. It is
shown that the Titchmarsh–Weyl matrix function associated with the boundary vertices determines
a unique electric potential on the graph even though the graph contains a loop. This system
gives another family of isospectral quantum graphs.
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1. Introduction
Transport, scattering and spectral properties of small rings connected by wires

are a subject of current interest of both physicists and mathematicians. Theoretical
studies of such systems are connected with the investigation of different exactly
solvable models. It is commonly accepted to use the so-called (metric) quantum
graphs — Schrödinger operators on metric graphs — in modelling such devices.
The main subject of this article is the quantum system depicted in Fig. 1. It is
formed by a one-dimensional wire coupled to an Aharonov–Bohm ring.
This system has already been considered in [28], where the scattering matrix

for the system and the resistance were calculated using heuristic arguments. The
main interest of the authors [28] was concentrated on the dependence of explicit
physical quantities on the magnetic potential, or more precisely, on the flux of the
magnetic field through the loop.
The first aim of the current article is to present a rigorous exactly solvable

model for this system. We are going to show how heuristic arguments can be used
to pick appropriate matching conditions at the vertex connecting the loop to the
wire. This is precisely the area where physical and mathematical arguments have to
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Fig. 1. Graph !. A bounded wire with an Aharonov–Bohm ring attached.

be taken into account simultaneously resulting in a mathematically rigorous model
reflecting physical intuition.
This article also has a pure mathematical goal. We discuss the corresponding

inverse problem with the Titchmarsh–Weyl matrix function (TW-matrix) playing the
role of spectral data. This problem was studied in the case of trees (graphs without
cycles) and it was proven that the potential and matching conditions are uniquely
determined by the TW-matrix [1, 2, 5, 6, 10–14, 16, 29, 30]. It was realized that
if the graph has a loop, the inverse potential problem in general is not uniquely
solvable even in the case of the so-called standard matching conditions1 at the
vertices. If the graph has a cycle with several contact points, then the inverse
problem may be solved by considering magnetic Schrödinger operators and spectral
data dependent on the fluxes of the magnetic field through the cycle [18, 19]. This
approach does not work if the graph has a loop (like the graph ! on Fig. 1) and
the matching conditions are standard. It appears that the system under investigation
is described by matching conditions different from the standard ones and these
conditions have certain special properties that makes it possible to solve the inverse
problem. Both inverse problems to reconstruct the matching conditions and the
potential are studied. On the other hand, the presented exactly solvable model gives
another counterexample showing that the inverse problem to reconstruct the metric
graph in general does not have a unique solution.
To use the TW-matrix is natural from the physical point of view, since it is

directly related to graph’s scattering matrix. On the other hand, since the TW-matrix
is of Nevanlinna type (analytic function with positive imaginary part in the upper
halfplane), its entries are not independent. One might prefer to reduce the set of
spectral data considering just few entries of the TW-matrix, but we refrain from
doing this in order to treat different boundary points on an equal basis.
We would like to mention that V.Yurko investigated a slightly different inverse

problem for differential operators on graphs, namely, how to recover the potential
from the spectra of different self-adjoint operators associated with the same differential
expression [29–35]. One can see our two approaches as natural continuations of the
classical methods developed to solve the inverse problem on a compact interval. In
these methods the inverse problem is solved using Dirichlet–Dirichlet and Dirichlet–

1By standard matching conditions we mean the conditions that the function is continuous and the sum of
normal derivatives at the vertex is equal to zero.
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Neumann spectra (corresponds to Yurko’s approach) and Titchmarsh–Weyl function
(corresponds to our approach). These two problems are entirely connected and the
connection between the corresponding sets of spectral data is clear in the case
of one compact interval. On the other hand, this connection is far from being
straightforward in the case of graphs with cycles. We note that Yurko considered
the case of arbitrary compact graphs (with several cycles) but with just standard
matching conditions at internal vertices.

2. Description of the model
This section is devoted to the construction of the self-adjoint operator modelling

the gated Aharonov–Bohm ring touching a quantum wire. This system has already
been discussed in [28] and we are going to use already developed physical intuition
in our construction. This operator will be studied in the following sections using
rigorous mathematical methods, which require that the model is formulated precisely
as well as all conditions on the parameters.
As we already mentioned the model will be constructed using quantum graphs-

ordinary differential operators on metric graphs. Every such operator is determined
by the triple consisting of:
1) metric graph,
2) differential operator acting on the edges,
3) matching and boundary conditions at internal and external vertices.

All three components of the triple are described in the following subsections.

2.1. Metric graph

The metric graph ! is formed by three edges [x1, x2], [x3, x4] and [x5, x6]
connected together as shown in Fig. 1, i.e. the edge [x1, x2] forms a loop attached
to the other two edges. The end points form three vertices v1 = {x1, x2, x4, x6}, v2 =
{x3}, v3 = {x5}. The vertex v1 is internal whereas v2 and v3 are boundary vertices.
The metric graph ! is determined by three parameters—the lengths of the edges.
The edges are considered as subintervals of R. In what follows we are going to
consider functions on ! and the corresponding Hilbert space

L2(!) = L2([x1, x2])⊕ L2([x3, x4])⊕ L2([x5, x6]). (1)

Having in mind the physical experiment, we are going to model, it might be
useful to consider the graph ! as the wire [x3, x5] = [x3, x4]∪ [x6, x5] (the points x4
and x6 identified) with the loop [x1, x2] attached to it at the internal point x4 ∼ x6.

2.2. Differential operator

The magnetic Schrödinger operator is defined by two real potentials, electric
(square integrable) and magnetic (continuous) respectively,

q ∈ L2(!), a ∈ C(!), q(x), a(x) ∈ R, (2)
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as follows,
Lq,a =

(

i
d

dx
+ a(x)

)2
+ q(x). (3)

The domain of the differential operator contains all functions from the Sobolev
space W 2

2 (! \ {v1, v2, v3}), so that the range belongs to the Hilbert space.
The magnetic potential a on every edge can be eliminated by the elementary

unitary transformation described below, but it cannot always be lifted up to the
whole graph ! due to the loop. Spectral properties of the operator do not depend
on the particular form of the magnetic potential, but are determined by the integral
" =

∫ x2
x1

a(x)dx, which gives the flux of the magnetic field through the loop.

2.3. The matching and boundary conditions

The role of these conditions is to make the differential operator self-adjoint and
to connect together different edges respecting the geometry of !. Note that the
differential operator Lq,a given by (3) does not reflect in which way the edges are
connected to each other.
The boundary vertices v2 = {x3} and v3 = {x5} are used to approach the system.

To solve the inverse problem the dynamical response operator associated with the
boundary points will be used. Therefore the corresponding boundary conditions can
be chosen arbitrarily. We are going to assume the Dirichlet boundary conditions







ψ(x3) = 0,
ψ(x5) = 0.

(4)

Let us now discuss appropriate matching conditions for the unique internal vertex
v1 = {x1, x2, x4, x6}. We are going not only to take into account which end points
are joined at this vertex, but also the space arranging of the corresponding edges
as it is shown in Fig. 1.
Any Hermitian matching condition can be written in the form [22, 2]

i(S − I )
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, (5)

where ψ(xj ) and ∂ψ(xj ) are the boundary values of the function and its extended
derivative at the end points. The limits are taken from inside of the corresponding
intervals and the extended derivatives are defined by

∂ψ =











d

dx
ψ(xj )− ia(xj )ψ(xj ), xj is a left end point,

−
d

dx
ψ(xj ) + ia(xj )ψ(xj ), xj is a right end point.

(6)
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S is the vertex scattering matrix for the energy k2 = 1. The entries of the 4×4 matrix
S will be denoted by sij , where the indices i, j run over 1, 2, 4, 6 corresponding
to the end points glued together at the vertex v1. We assume that the system is in
the ballistic regime. Then the geometry of the system suggests that the transition
probabilities x1 → x2 and x1 → x6 are much greater than x1 → x1 and x1 → x4.
The other transition probabilities have similar properties. Therefore we shall assume
that the entries s11, s14, s22, s26, s41, s44, s62, and s66 in S are equal to zero whereas
all other entries do not vanish.
The standard Schrödinger equation with zero magnetic potential is time reversal

invariant. The corresponding eigenfunctions may be chosen real. It is natural to
require that the model operator possesses the same property, i.e. it is time reversal
invariant. This holds true only if any function ψ satisfies matching conditions (5)
if and only if ψ satisfies the same conditions. This is true only if the matrix S
parameterizing the matching conditions is symmetric St = S.
We are not going to discuss the impact of the spectral characteristics of the

vertex scattering matrix upon the spectral properties of the system. This motivates
the decision to restrict our studies to the case where the matrix S in (5) determines
the vertex scattering matrix which is independent of the energy

Sv(k) = S. (7)

The vertex scattering matrix corresponding to the matching conditions (5) is given
by

Sv(k) =
(k + 1)S + (k − 1)I
(k − 1)S + (k + 1)I

, k )= 0,

which implies that it is energy independent if and only if the spectrum of S consists
of ±1, hence S is Hermitian.
We shall also assume that the matching conditions are properly connecting, i.e.

the matrix S is irreducible. This means that the set of end points {x1, x2, x4, x6}
cannot be divided into two (or more) classes, so that the matching conditions do
not connect the boundary values at the points belonging to different classes, in
other words that the matrix S cannot be transformed into block-diagonal form by
permutations.
Let us list all introduced requirements on the matrix S appearing in the matching

conditions (5). From the physical point of view these requirements are:
1) The Schrödinger operator with zero magnetic potential is time reversal invariant.
2) The vertex scattering matrix is energy independent.
3) The matrix S is consistent with the space arrangement of the system.
4) The matching conditions are properly connecting.

These conditions can be reformulated using mathematical language as follows:
1) The matrix S is symmetric.
2) The matrix S is Hermitian.
3) The entries s12, s16, s21, s24, s42, s46, s61, and s64 are all different from zero and
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all other entries vanish,
s11 = s14 = s22 = s26 = s41 = s44 = s62 = s66 = 0. (8)

4) The matrix S is irreducible.
The set of matrices S satisfying these conditions is characterised by the following
lemma.
LEMMA 1. The set of unitary 4 × 4 matrices S satisfying conditions 1)–4) is

given by

S =















0 α 0 β

α 0 σβ 0
0 σβ 0 −σα

β 0 −σα 0















, (9)

where σ = ±1 and α,β ∈ R are subject to
α2 + β2 = 1 (10)

and
α )= 0 )= β. (11)

Proof : Every symmetric Hermitian matrix has real entries. Every such matrix
satisfying condition 3) has the form

S =















0 α 0 β

α 0 γ 0
0 γ 0 δ

β 0 δ 0















, α,β, γ , δ ∈ R.

The unitarity of S implies that

α2 + γ 2 = β2 + δ2 = α2 + β2 = γ 2 + δ2 = 1,
αβ + γ δ = αγ + βδ = 0.

The parameters α and β can be chosen arbitrarily subject to (10). Since γ 2 = β2,
the parameter γ is determined up to a sign

γ = σβ, σ = ±1.
The parameter δ is now uniquely determined, δ = −σα. To satisfy condition 4)
we have to assume (11). It is clear that every S given by (9) satisfies all required
conditions. !

The transition probabilities between the end points are given by the squares
of the corresponding entries in the matrix S. The transition probabilities x1 → x2
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and x1 → x6 are equal to α2 and β2 = 1 − α2, respectively. If α = ±1/
√
2 then

these probabilities are equal. Our calculations imply that in this case the transition
probabilities x2 → x1 and x2 → x4 are also equal. Similar relations hold even if
the probabilities are not pairwise equal.

Weak and strong couplings. It might be interesting to discuss the extreme cases
where either α or β is equal to zero2. The corresponding matrices are of the form

S =















0 ±1 0 0
±1 0 0 0
0 0 0 ±1
0 0 ±1 0















and S =















0 0 0 ±1
0 0 ±1 0
0 ±1 0 0

±1 0 0 0















,

where the signs can be chosen arbitrarily with the only requirement that S is
symmetric. The matching conditions corresponding to the first matrix are suitable
to describe the system presented below rather than the system given on Fig. 1.
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Fig. 2. Graph !1. Quantum wire and ring disconnected.

The second matrix describes the system where the point x1 is connected to x6 and
x2 to x4, i.e. the system without any loop (or more precisely, the loop can be
unwinded by pulling away the end points).
Summing up we see that the cases α = 0 or β = 0 correspond to systems with

different geometry—the corresponding geometric graphs differ from the graph !.

2.4. Definition of the operator

Let us put together all components of the triple determining the quantum graph
modelling the system under investigation.

DEFINITION 1. The self-adjoint operator Lq,a is defined by the differential
expression (3) on the domain of functions from the Sobolev space W 2

2 (! \ {xj }6j=1)

2Note that the corresponding matrices S are reducible and therefore these cases are excluded from our
studies.
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satisfying the Dirichlet boundary conditions (4) and the matching conditions (5)
with the matrix S given by (9).

The self-adjointness of the operator Lq,a can be proven by first showing that it
is symmetric (by integration by parts) and that the range of Lq,a − i coincides with
the Hilbert space L2(!). The introduced quantum graph depends on the following
parameters:

• the lengths lj = x2j −x2j−1, j = 1, 2, 3, of the three edges forming the metric
graph !,

• two real potentials: electric q ∈ L2(!) and magnetic a ∈ C(!),
• three parameters determining the matrix S: two real numbers α,β ∈ R subject
to α2 + β2 = 1 and the sign parameter σ = ±1.

In what follows we are going to indicate the dependence of the operator just on
the functional parameters q and a, having in mind all other parameters.

3. Titchmarsh–Weyl matrix function
3.1. Definition of the Titchmarsh–Weyl matrix function

Following the general theory [18] let us introduce the Titchmarsh–Weyl matrix
function (TW-matrix) associated with the graph !. It is a straightforward analog of
the classical Titchmarsh–Weyl function for the one-dimensional Schrödinger equation.
Consider any solution ψ to the eigenfunction differential equation
(

i
d

dx
+ a(x)

)2
ψ(x) + q(x)ψ(x) = λψ(x), x ∈ (x2j−1, x2j ), j = 1, 2, 3, (12)

with Im λ )= 0 satisfying the matching conditions (5) (but not necessarily the
boundary conditions (4)). Every such solution is uniquely determined by the values
ψ(x3),ψ(x5), since otherwise the self-adjoint operator Lq,a would have an unreal
eigenvalue. Then the 2× 2 matrix function

M!(λ,") :
(

ψ(x3)

ψ(x5)

)

+→
(

∂ψ(x3)

∂ψ(x5)

)

(13)

is the Titchmarsh–Weyl matrix function (TW-matrix) for the magnetic Schrödinger
operator Lq,a on the metric graph !. It is a Nevanlinna 2 × 2 matrix function
having singularities at the spectrum of Lq,a .
The definition of the TW-matrix is connected with the choice of the boundary

conditions at the vertices v2 and v3: different boundary conditions will lead to
a slight modification of M!. The TW-matrix given by (13) corresponding to the
Dirichlet boundary conditions (4) can also be viewed as a Dirichlet-to-Neumann
map.
In what follows we are going to use the TW-matrix associated with the kernel

ker! of the graph !. The kernel of a graph is obtained by pruning it, i.e. by
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cutting away the boundary edges (see [18]). The kernel of the graph ! consists of
the loop [x1, x2] with the two contact points x4 and x6 attached to it.
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Fig. 3. The kernel of the graph !.

The TW-matrix Mker!(λ,") associated with ker! is uniquely defined by

Mker!(λ,") :
(

ψ(x4)

ψ(x6)

)

+→ −
(

∂ψ(x4)

∂ψ(x6)

)

, Im λ )= 0, (14)

where as before ψ is any solution to the eigenfunction differential equation (12). Note
that formula (14) compared with (13) contains an extra sign, which is introduced
in order to ensure that Mker!(λ) is a Nevanlinna matrix function.

3.2. Calculation of the TW-matrix

In this subsection we are going to calculate the TW-matrix for the kernel of the
quantum graph !.

LEMMA 2. The TW-matrix for the kernel of graph ! is given by

Mker!(λ,")

=
1

(1− α2)t12(λ)

(2α cos"− (α2t11(λ) + t22(λ)) σ (ei" + α2e−i")− σαTr T (λ)

σ (α2ei" + e−i")− σαTr T (λ) 2α cos"− (t11 + α2t22)

)

,

(15)
where T = {tij }2i,j=1 is the transfer matrix for the magnetic potential-free Schrödinger
equation on the interval [x1, x2] and " =

∫ x2
x1

a(x)dx is the flux of the magnetic
field through the ring.

Proof : The boundary values of the function ψ satisfy the matching conditions
(5) with the matrix S given by (9). The matrix S is both unitary and Hermitian,
which implies that

S = P1 − P−1,

where P±1 are orthogonal spectral projectors on the eigensubspaces of S corresponding
to the eigenvalues ±1. Hence the matching conditions (5) can be written in the
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form [17]:

P−1















ψ(x1)

ψ(x2)

ψ(x4)

ψ(x6)















= 0, P1















∂ψ(x1)

∂ψ(x2)

∂ψ(x4)

∂ψ(x6)















= 0. (16)

The corresponding eigensubspaces are two-dimensional and the matching conditions
take the form



























−ψ(x1) + αψ(x2) + βψ(x6) = 0,
αψ(x1) − ψ(x2) + σβψ(x4) = 0,
∂ψ(x1) + α∂ψ(x2) + β∂ψ(x6) = 0,
α∂ψ(x1) + ∂ψ(x2) + σβ∂ψ(x4) = 0.

(17)

Consider now the eigenfunction equation (12) on the interval [x1, x2]. The magnetic
potential a(x) can be eliminated by the following unitary transformation,

ψ̂(x) = exp
(

−i

∫ x

x1
a(y)dy

)

ψ(x), x ∈ [x1, x2].

The function ψ̂ satisfies the equation

−
d2

dx2
ψ̂(x) + q(x)ψ̂(x) = λψ̂(x) (18)

instead of (12). If T (λ) = {tij (λ)}2i,j=1 is the transfer matrix for the Schrödinger
equation with zero magnetic potential (18),

T (λ)

(

ψ̂(x1)

ψ̂ ′(x1)

)

=
(

ψ̂(x2)

ψ̂ ′(x2)

)

,

then the boundary values of ψ are connected by






ψ(x2) = ei"t11(λ)ψ(x1) + ei"t12(λ)∂ψ(x1),

∂ψ(x2) = −ei"t21(λ)ψ(x1) − ei"t22(λ)∂ψ(x1).
(19)

Eqs. (17) and (19) form a linear system of 6 equations on 8 variables
ψ(x1),ψ(x2),ψ(x4),ψ(x6), ∂ψ(x1), ∂ψ(x2), ∂ψ(x4), ∂ψ(x6) and can be written as
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follows:
( −1 α

α −1

) (

ψ(x1)

ψ(x2)

)

=
( 0 −β

−σβ 0

) (

ψ(x4)

ψ(x6)

)

,

( 1 α

α 1

) (

∂ψ(x1)

∂ψ(x2)

)

=
( 0 −β

−σβ 0

) (

∂ψ(x4)

∂ψ(x6)

)

,

(

ei"t12 0
ei"t22 1

)(

∂ψ(x1),

∂ψ(x2)

)

=
( −ei"t11 1
−ei"t21 0

) (

ψ(x1)

ψ(x2)

)

.

(20)

Eliminating ψ(x1),ψ(x2), ∂ψ(x1), ∂ψ(x2) we calculate the TW-matrix Mker!(λ)
given by (15). To simplify the expression one has to take into account that:

det T (λ) = 11, σ 2 = 1, β2 = 1− α2. !

The calculated TW-matrix is determined by the electric potential (via the transfer
matrix T ), the flux of the magnetic field " and α and σ parameterizing the
matrix S. It does not depend on the parameter β, which is determined by α up to
a sign.

4. Solution of the inverse problem
This section is devoted to the solution of the inverse problem for the quantum

graph operator Lq,a . The TW-matrix is going to play the role of spectral data. To
solve the inverse problem one has to recover all components of the triple: the metric
graph, the differential operator and the matching conditions. In the following section
it will be shown that the scattering matrix for our model has the zero reflection
coefficient if all potentials are zero. It follows that the metric graph is not always
uniquely determined by the TW-matrix. For this reason we are going to discuss
just how to recover the potential in the Schrödinger operator and the parameters
determining the matching conditions.
The TW-matrix for the kernel is determined by the transfer matrix T for the

magnetic potential-free Schrödinger equation on the loop, the flux " of the magnetic
field and the parameters α and σ from the matrix S. It follows that the precise
form of the magnetic potential a cannot be recovered as well as the parameter
β = ±

√
1− a2 is determined up to a sign.

THEOREM 1. Let Lq,a be a magnetic Schrödinger operator on the metric graph
! with the real square integrable potential q ∈ L2(!) and the real continuous
magnetic potential a ∈ C(!) with the domain determined by the matching conditions
(5) and the Dirichlet boundary conditions (4). Assume that the TW-matrix function
is known for the zero magnetic potential as well as for a certain nonzero magnetic

1The determinant of T (λ) is one, since it is a transfer matrix for the Schrödinger operator with zero
magnetic potential.
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potential with " = π, where " =
∫ x2
x1

a(x)dx is the total flux of the magnetic field
through the ring.
Then these spectral data determine a unique electric potential q on the graph

! as well as unique parameters α and σ in the matching conditions (5). In other
words, the scattering matrix S (9) from (5) is determined up to one sign parameter.

Proof : Consider first the magnetic potential-free Schrödinger equation and the
corresponding TW-matrix. In [1] it was shown that this matrix function is in one-to-
one correspondence with the dynamical response operator and therefore determines
a unique potential q on all boundary edges. In the case of graph ! this means
that the TW-matrix for zero magnetic potential determines the electric potential q
on the edges [x3, x4] and [x5, x6].
Our next step is to reduce the inverse problem for the graph ! to the inverse

problem for its kernel. Let us establish the relation between the corresponding
TW-matrices. If the magnetic potential is equal to zero on the boundary edges, then
these TW-matrices are in one-to-one correspondence. Let the function ψ be the
unique solution of (12) satisfying matching conditions (5) and prescribed boundary
values ψ(x3),ψ(x5). The TW-matrix for ! determines ∂ψ(x3), ∂ψ(x5). Solving the
Cauchy problems for the equation

−ψ ′′(x) + q(x)ψ(x) = λψ(x),

on the intervals [x3, x4] and [x5, x6] one determines the boundary values ψ0(x4),
∂ψ0(x4); ψ0(x6), ∂ψ0(x6) in the case of zero magnetic potential (remember that
the potential q on [x3, x4] and [x5, x6] is already known). If the magnetic potential
is different from zero, then the corresponding boundary values are

{

ψ(x4) = ei"2ψ0(x4),

∂ψ(x4) = ei"2∂ψ0(x4),

{

ψ(x6) = ei"3ψ0(x6),

∂ψ(x6) = ei"3∂ψ0(x6),

where "j =
∫ x2j
x2j−1

a(x)dx, j = 2, 3. Let us denote by M0
ker! the 2 × 2 matrix

connecting ψ0(x4),ψ0(x6) with ∂ψ0(x4), ∂ψ0(x6),

M0
ker! :

(

ψ0(x4)

ψ0(x6)

)

+→ −
(

∂ψ0(x4)

∂ψ0(x6)

)

.

It allows us to calculate the TW-matrix for the kernel

Mker!(λ,") =
(

ei"2 0
0 ei"3

)

M0
ker!

(

ei"2 0
0 ei"3

)−1
.

Observe that only the diagonal of the TW-matrix is uniquely determined, since the
phases "2,"3 remain undetermined. In what follows we are going to show that
the diagonal of the TW-matrix for the kernel determines the potential on the loop.
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Consider the difference

(Mker!(λ, 0))11 − (Mker!(λ,π))11 =
4α

1− α2
1

t12(λ)
.

Taking into account the asymptotics of the analytic function (see e.g. [25, 26])

t12(λ) ∼
sin kl1

k
, k →∞,

both the function t12 and the ratio r ≡
1− α2

α
=
1
α
− α are determined by the

difference. Every r determines a unique α from the interval (−1, 1). The functions
t11 and t22 can be calculated now as

t11(λ) =
1

1+ α2

(

2α + t12(λ)(α
2 (Mker!(λ, 0))11 − (Mker!(λ, 0))22

)

,

t22(λ) =
1

1+ α2

(

2α + t12(λ)(α
2 (Mker!(λ, 0))22 − (Mker!(λ, 0))11

)

.

(21)

The functions t12 and t22 determine the unique potential q on the interval [x1, x2]
[8, 9, 24–26].
The sign parameter σ can be determined from the TW-matrix in the case of

zero magnetic potential1 ,

σ =
(1− α2)t12(λ) (Mker!(λ, 0))12

1+ α2 − αTr T (λ)
. (22)

Thus we have determined the potential q on the whole ! as well as parameters α
and σ appearing in the matching conditions. !

We would like to underline that our approach gives an explicit procedure to
reconstruct the potential. The main difference to the inverse problem for trees is
that potential on the loop is not reconstructed locally but on the whole loop at
once.
Since the TW-matrix for the kernel does not depend on the sign of the parameter

β, it is more or less clear that this sign cannot be determined from the general
TW-matrix. One may consider the following unitary transformation in L2(!),

(Uf )(x) =
{−f (x), x ∈ (x1, x2),

f (x), x ∈ (x3, x4) ∪ (x5, x6).
(23)

The Schrödinger operator U−1Lq,aU is determined by the same differential expression
as the operator Lq,a , the Dirichlet conditions at the boundary vertices and by matching
conditions (5) with the parameters α,−β, σ instead of α,β, σ . The TW-matrices
for these two Schrödinger operators are identical.

1Note that the right-hand side has to be independent of λ.
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Extending the set of spectral data by adding the TW-matrix for a few other
values of the magnetic flux " will not allow us to calculate the unique matrix S
from the matching conditions.
It is clear that a similar result can be proven if the TW-matrices are known for

two other values of the magnetic flux, not necessarily " = 0,π . We needed the
TW-matrix for zero magnetic field (" = 0) in order to be able to calculate σ . It
also appears natural to use " = π since this value of the magnetic flux can easily
be identified by examining experimental data.
If the matching conditions at the vertex v1 are known, then the potential can

be reconstructed without considering TW-matrices depending on the magnetic flux.

THEOREM 2. Let Lq be a magnetic potential-free Schrödinger operator on the
metric graph ! with the real square integrable potential q ∈ L2(!) with the domain
determined by the matching conditions (5) and the Dirichlet boundary conditions (4).
Assume that the parameters σ,α and β appearing in the matrix S parameterizing
the matching conditions are known.
Then the TW-matrix function determines a unique potential q on the graph !.

Proof : During the proof of Theorem 1 we already showed that the TW-matrix
for zero magnetic potential determines a unique electric potential q on the boundary
edges as well as the TW-matrix associated with the kernel of the graph.
In the case of zero magnetic potential " = 0 the formulae (20) give the following

expression for the TW-matrix

Mker!(λ, 0)

= −
1
σβ2

(

αβ β

σβ σαβ

)

1
t12(λ)

(−t11(λ) 1
1 −t22(λ)

)

1
1− α2

(

σαβ β

σβ αβ

)

,

which implies directly that

1
t12(λ)

(

−t11(λ) 1
1 −t22(λ)

)

=
1

1− α2

(

σα −1
−σ α

)

Mker!(λ, 0)
(

σα −σ

−1 α

)

. (24)

Formula (24) allows one to calculate the functions t11, t12 and t22 and therefore to
reconstruct the whole transfer matrix T (λ). It determines a unique potential q even
on the loop. !

The last theorem shows that the potential on the loop may be reconstructed even
without considering the dependence of the spectral data on the magnetic flux. This
is due to a very special form of the matching conditions at the vertex connecting
the loop to the one-dimensional wire. Both spectral subspaces for the matrix S
corresponding to the eigenvalues ±1 have dimension 2. We used this property to
calculate the transformed transfer matrix T using (24). The reconstruction procedure
is again explicit.
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5. The scattering problem
This section is devoted to a brief discussion of the scattering problem associated

with the Aharonov–Bohm ring attached to the infinite wire (see Fig. 4).

!"
#$

%
0− 0+
x1 x2

−∞ +∞
Fig. 4. Graph !2. An infinite wire with an Aharonov–Bohm ring attached.

We assume for simplicity that both electric and magnetic potentials q and a,
respectively, are equal to zero on the infinite wire. The operator is determined by the
same differential expression (3) and the same matching conditions (5) with points
0± substituting the points x4 and x6, respectively. Every generalized eigenfunction
restricted to the infinite wire is a linear combination of incoming and outgoing
waves

ψ(k2, x) =
{

b1e
ikx + a1e

−ikx, x < 0,
a2e

ikx + b2e
−ikx, x > 0.

(25)

The 2× 2 matrix S(k) connecting the amplitudes of incoming and outgoing waves,

S(k) :
(

b1

b2

)

+→
(

a1

a2

)

, (26)

is the scattering matrix for the quantum graph !2. It is in one-to-one correspondence
with the TW-matrix for the kernel

S(k) =
ikI −Mker!(k

2,")

ikI + Mker!(k2,")
. (27)

It follows that the scattering matrix known for two different values of the magnetic
flux can play the role of spectral data (instead of the TW-matrix).
The calculated scattering matrix has another important property: if the potential

q on the loop is equal to zero, then the reflection coefficients in the matrix S (i.e.
the coefficients S11 and S22) are identically equal to zero. Really, let us calculate
the entry S11

S11 =
−1

det(ik + Mker!)

(

k2 + ik((Mker!)11 − (Mker!)22) + detMker!
)

.

Standard straightforward calculations in the case of zero potential q give the transfer
matrix

T (λ) =
( cos kl1 sin kl1/k

−k sin kl1 cos kl1

)

.
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It follows that
k2 + ik((Mker!)11 − (Mker!)22) + detMker! = 0,

i.e. S11 = 0. Similar calculations prove that S22 = 0.
It follows that if the contact vertex between the wire and the ring is not placed

at the origin (as for the graph !2), then its position cannot be determined from the
scattering matrix. Similarly, for the graph ! the lengths of the edges [x3, x4] and
[x5, x6] are not determined by the TW-matrix in the case of zero electric potential q.

6. Conclusions
A mathematically rigorous model of the quantum system consisting of a wire

connected to an Aharonov–Bohm ring is developed. The corresponding TW-matrix
and scattering matrix are calculated. Both matrices depend on the flux " of the
magnetic field through the ring. A special form of the matching conditions at the
contact vertex allows us to determine a unique electric potential q on the whole graph,
whereas geometric parameters of the graph are not always uniquely determined.
This example shows that the inverse problem for quantum graphs even with loops
may have a unique solution, provided that the matching conditions are different
from standard. It might be interesting to characterize all matching conditions leading
to a unique solution to the inverse problem. Our example of graphs with equal
TW-matrices is important for studies of isospectral graphs [3, 4, 7, 15, 20, 21, 23, 27].
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