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CAN ONE DISTINGUISH QUANTUM TREES

FROM THE BOUNDARY?

PAVEL KURASOV

(Communicated by Hart F. Smith)

Abstract. Schrödinger operators on metric trees are considered. It is proven
that for certain matching conditions the Titchmarsh-Weyl matrix function does
not determine the underlying metric tree; i.e. there exist quantum trees with
equal Titchmarsh-Weyl functions. The constructed trees form one-parameter
families of isospectral and isoscattering graphs.

1. Introduction

This article is devoted to quantum graphs, more precisely to Schrödinger oper-
ators on metric graphs. Every such operator is determined by the triple

• the metric graph Γ leading to the Hilbert space L2(Γ),
• the real potential q ∈ L2(Γ) leading to the Schrödinger differential opera-

tor − d2

dx2 + q on the edges,
• the matching and boundary conditions at internal and boundary ver-

tices respectively, establishing couplings between the edges and ensuring
that the differential operator is selfadjoint.

Our aim here is to discuss the most general inverse problem, i.e. the problem to
determine all members of the triple from a certain set of spectral data. This problem
can naturally be divided into three subproblems to reconstruct each particular
member of the triple. Many authors discussed these subproblems separately without
paying much attention to the most general inverse problem. One of the first tasks
is to choose an appropriate set of spectral data meeting both mathematical and
physical (practical) requirements. On the one hand, this set should guarantee
unique solvability of the inverse problem and should also be minimal in some sense.
On the other hand, all quantities in the set should have clear physical interpretations
and be easily measurable in an experiment without destroying the quantum graph.
In the current article we restrict ourselves to boundary measurements. By a graph’s
boundary we understand all vertices with valency one.

It is not a priori clear which set of spectral data is the most appropriate. Of
course this set depends on the particular inverse problem under investigation. Thus
for zero potential and standard matching/boundary conditions, to reconstruct the
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metric graph it is enough to know just the spectrum of the operator, provided
the edge lengths are rationally independent [14, 19]. Without the latter unnatural
requirement, the spectrum alone in general does not determine a unique metric
graph, unless the set of admissible operators is reduced further [10]. This leads to
the important notion of isospectral graphs. Several classes of isospectral graphs
both with standard and certain nonstandard matching/boundary conditions were
constructed [3, 4, 22, 23]. Moreover graphs with cycles may have eigenfunctions
with supports separated from the boundary. The corresponding eigenvalues may
not be seen in boundary observations. To recover the potential the knowledge of
just one spectrum is not sufficient even in the case of a single edge (single interval)
[21]. Extending the set of spectral data by including the Titchmarsh-Weyl matrix
function (TW-function; see definition below) associated with all boundary vertices,
one may reconstruct not only the metric tree (without any restriction on the edge
lengths) but the potential as well, provided the matching/boundary conditions are
standard [12, 13, 5, 6, 8, 9, 1, 24, 25]. If the metric tree is known, then the potential
and the matching conditions are also determined by the TW-function [2] under cer-
tain natural restrictions on the matching conditions; see also [16, 15] for the special
case of a star graph and [11], where the method of spectral mappings is applied to
a certain limited class of matching conditions. One may expect that these spectral
data, i.e. the TW-function, would allow one to solve even the most general inverse
problem for trees. The main goal of this article is to present a counterexample
showing that the TW-function in general does not determine uniquely the metric
tree (of course provided the set of admissible matching conditions or potentials is
not reduced further). We discovered that even in the case of a “cross” graph, i.e.,
the metric graph formed by two intersecting intervals (see Figure 1 below), the
metric graph may not be uniquely determined by its TW-function. This phenome-
non occurs due to a very special form of matching conditions at the central vertex
and appears to be “rare” in the sense that almost all quantum trees are probably
uniquely determined by their TW-functions.
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Figure 1. Graph Γ. Quantum cross.
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Constructing a one-parameter family of graphs with identical TW-functions we
prove that quantum trees cannot always be distinguished using boundary mea-
surements. The TW-function is in one-to-one correspondence with the dynamical
response operator (the dynamical Dirichlet-to-Neumann map) and the scattering
matrix and Lax-Phillips scattering operator for the noncompact graph obtained by
attaching semi-infinite wires to all boundary vertices. Hence this matrix function
encodes all information that can be obtained by boundary measurements. Extend-
ing the spectral data set further by including TW-functions associated with both
boundary and internal vertices makes the inverse problem to recover the metric
graph trivial, since the TW-function determines the distances between all vertices.
In the case of graphs with cycles, the class of graphs for which the inverse problem
is uniquely solvable may be extended by introducing an additional magnetic po-
tential and by considering spectral data depending on the magnetic fluxes [17, 18].
This method does not provide any new information in the case of trees, since the
magnetic potential on trees can always be eliminated.

The counterexample presented here appears rather unexpected and is certainly
important for the final solution of the inverse problem for quantum trees. In ad-
dition this construction leads to a new “continuum” family of isospectral graphs,
which are also indistinguishable using boundary observations.

Families of quantum graphs with cycles having equal scattering matrices have
already been constructed in [20, 7]. These graphs have different discrete spectra
with eigenfunctions supported by the cycles. The corresponding eigenvalues are
not determined by boundary measurements. The discussed quantum crosses have
no cycles, and all their eigenfunctions are not zero near the boundary.

2. The selfadjoint operator

Consider the “cross” graph Γ formed by four intervals [x2j−1, x2j ], j = 1, ..., 4
joined together at the common internal vertex

v5 = {x2, x4, x6, x8}.

The boundary of this graph is formed by four vertices of valence 1:

vj = {x2j−1}, j = 1, 2, 3, 4.

This metric graph is determined by four positive real parameters, i.e., the lengths
lj of the edges:

(2.1) lj = x2j − x2j−1.

Consider the Laplace operator in L2(Γ) defined on the domain of functions sat-
isfying Dirichlet boundary conditions at the boundary vertices and certain special
matching conditions at the central vertex, not the standard matching conditions
as is often done.1 Let us denote by Lσ,α the second derivative operator L = − d2

dx2

1By standard matching conditions we mean the conditions that the function is continuous and
the sum of normal derivatives at the vertex is equal to zero.
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defined on the domain of functions u from the Sobolev space W 2
2

(
Γ \ {xj}8

j=1

)
sat-

isfying the following matching conditions at the central vertex v5 = {x2, x4, x6, x8}:
(2.2)

(
−1 α 0 β
α −1 σβ 0

)




u(x2)
u(x4)
u(x6)
u(x8)



 = $0,

(
1 α 0 β
α 1 σβ 0

)




u′(x2)
u′(x4)
u′(x6)
u′(x8)



 = $0,

with α,β ∈ R,σ = ±1 subject to the constraint

(2.3) α2 + β2 = 1

and Dirichlet conditions at the boundary vertices vj = x2j−1, j = 1, 2, 3, 4,

(2.4) u(x1) = u(x3) = u(x5) = u(x7) = 0.

The matching conditions (2.2) correspond to the energy independent vertex scat-
tering matrix

S =





0 α 0 β
α 0 σβ 0
0 σβ 0 −σα
β 0 −σα 0





and can also be written in the standard form ([2]) as

i(S − I)





u(x2)
u(x4)
u(x6)
u(x8)



 = (S + I)





−u′(x2)
−u′(x4)
−u′(x6)
−u′(x8)



 .

These matching conditions have three important properties:

(1) the vertex scattering matrix is energy independent,
(2) the reflection coefficients are identically equal to zero,
(3) the transition coefficients to the opposite edges are identically equal to zero.

These properties of the matrix S are crucial for the constructed counterexample.
The operator Lσ,α is selfadjoint, and its spectrum is pure discrete satisfying the
standard Weyl asymptotics.

3. Calculation of the Titchmarsh-Weyl function

The Titchmarsh-Weyl matrix function (TW-function) corresponding to the op-
erator Lσ,α is defined as follows. Consider any function u which is a solution to the
eigenfunction equation

(3.1) − d2

dx2
u = k2u, k2 = λ,

on every edge for #λ > 0 and satisfies the matching conditions (2.2). Every such
function is uniquely determined by its values u(xj), j = 1, 3, 5, 7 at the boundary
vertices. (Otherwise the selfadjoint operator Lσ,α would have nonreal eigenvalues.)
The 4×4 matrix M(λ) connecting the vectors of boundary values and corresponding
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normal derivatives is called the Titchmarsh-Weyl function (TW-function):

(3.2)





u′(x1)
u′(x3)
u′(x5)
u′(x7)



 = M(λ)





u(x1)
u(x3)
u(x5)
u(x7)



 .

Our aim is to calculate the matrix M(λ) and to show that there exists a one-
parameter family of graphs Γ having identical TW-functions. Every solution to
(3.1) can be written in the form

u(x) = pj sin k(x − x2j−1) + qj cos k(x − x2j−1), x ∈ (x2j−1, x2j), pj , qj ∈ C.

Substitution into the matching conditions (2.2) yields

P$p + Q$q = 0

with

P =





− sin kl1 α sin kl2 0 β sin kl4
α sin kl1 − sin kl2 σβ sin kl3 0
− cos kl1 −α cos kl2 0 −β cos kl4
−α cos kl1 − cos kl2 −σβ cos kl3 0





and

Q =





− cos kl1 α cos kl2 0 β cos kl4
α cos kl1 − cos kl2 σβ cos kl3 0
sin kl1 α sin kl2 0 β sin kl4
α sin kl1 sin kl2 σβ sin kl3 0



 .

Taking into account that u(x2j−1) = qj , u′(x2j−1) = kpj , j = 1, 2, 3, 4 we conclude
that the TW-function is given by

M(λ) = −kP−1Q.

The determinant of P is

(3.3) detP = σβ2
(
α2 sin k(l1 − l3) sin k(l2 − l4) − sin k(l1 + l4) sin k(l2 + l3)

)
,

which explains the following short notation:

(3.4)

{
cj := cos klj , sj := sin klj ,
ci±j := cos k(li ± lj), si±j := sin k(li ± lj),

i, j = 1, 2, 3, 4.

Then the inverse matrix is

(3.5)
P−1 = 1

σβ2(α2s1−3s2−4−s1+4s2+3)
×





σβ2s2+3c4 σαβ2s2−4c3 σβ2s2+3s4 σαβ2s2−4s3
σαβ2s1−3c4 σβ2s1+4c3 σαβ2s1−3s4 σβ2s1+4s3
−αβs1+2c4 −β(α2s2−4c1 + s1+4c2) −αβs1+2s4 −β(α2s2−4s1 − s1+4s2)

−σβ(α2s1−3c2 + s2+3c1) −σαβs1+2c3 −σβ(α2s1−3s2 − s2+3s1) −σαβs1+2s3



.
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We obtain the following TW-function:

(3.6)
M(λ) =

−k





α2c1−3s2−4−c1+4s2+3
α2s1−3s2−4−s2+3s1+4

αs3+4
α2s1−3s2−4−s2+3s1+4

σαβs2−4
α2s1−3s2−4−s2+3s1+4

βs2+3
α2s1−3s2−4−s2+3s1+4

αs3+4
α2s1−3s2−4−s2+3s1+4

α2c2−4s1−3−c2+3s1+4
α2s1−3s2−4−s2+3s1+4

σβs1+4
α2s1−3s2−4−s2+3s1+4

αβs1−3
α2s1−3s2−4−s2+3s1+4

σαβs2−4
α2s1−3s2−4−s2+3s1+4

σβs1+4
α2s1−3s2−4−s2+3s1+4

− α2c1−3s2−4+c2+3s1+4
α2s1−3s2−4−s2+3s1+4

−σαs1+2
α2s1−3s2−4−s2+3s1+4

βs2+3
α2s1−3s2−4−s2+3s1+4

αβs1−3
α2s1−3s2−4−s2+3s1+4

−σαs1+2
α2s1−3s2−4−s2+3s1+4

− α2c2−4s1−3+c1+4s2+3
α2s1−3s2−4−s2+3s1+4





.

The matrix M(λ) does not depend on all four length parameters lj , j = 1, 2, 3, 4
determining the cross Γ. To see this, one may introduce the following three new
length parameters:

(3.7)
L = l1 + l2 + l3 + l4 - the total length of the graph,
L1+2 = l1 + l2 - the distance between the vertices v1 and v2,
L1+4 = l1 + l4 - the distance between the vertices v1 and v4.

It is easy to see that all other combinations of lj appearing in (3.6) can be expressed
in terms of L, L1+2, L1+4 as follows:

(3.8)






l2 + l3 = L − L1+4,
l1 − l3 = L1+2 + L1+4 − L,
l2 − l4 = L1+2 − L1+4.

We have proven that the TW-functions for graphs with the edge lengths l1, l2, l3,
l4 and l1 + l, l2 − l, l3 + l, l4 − l are identical for any 0 ≤ l < min lj .

Lemma 3.1. The Laplace operators on cross graphs with the same distances be-
tween the neighbouring 2 boundary vertices have identical Titchmarsh-Weyl func-
tions, provided the domain is defined by the matching conditions (2.2) at the central
vertex and Dirichlet conditions on the boundary.

Among the four distances between neighbouring boundary vertices, just three
distances are independent; the fourth distance and the total length of the graph
can be calculated.

4. Discussions and generalizations

We shall now give an elementary explanation for the observed phenomenon.
Consider the wave equation on Γ determined by the operator Lσ,α:

(4.1) Lσ,αu(x, t) = − ∂2

∂t2
u(x, t),

subject to the boundary control

(4.2) u(x2j−1, t) = fj(t), j = 1, 2, 3, 4.

For simplicity we assume that the function u satisfies zero initial data and that the
functions fj are smooth, fj ∈ C∞

0 (R+).

2The following pairs of boundary vertices are considered neighbours: v1 ∼ v2, v2 ∼ v3, v3 ∼ v4,
and v4 ∼ v1.
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Consider the solution to this problem in the case where just one control function,
say f1, is different from zero. Then for sufficiently small values of t the boundary
control will generate a d’Alembert wave on the edge [x1, x2] moving toward the
central vertex. This wave will arrive at the central vertex at the moment t ≥
l1 = x2 − x1 and will be scattered by it. Since the corresponding vertex scattering
matrix is independent of the energy and the reflection coefficient and transition
coefficient to the opposite edge are zero (see properties 1-3 formulated at the end
of Section 2), the initial d’Alembert wave on the edge [x1, x2] will generate two
scattered d’Alembert waves on the edges [x3, x4] and [x7, x8] moving away from
the central vertex. These waves have the same profiles as the initial d’Alembert
wave multiplied by the scattering coefficients α and β. Observers placed at the
boundary vertices will be able to measure just these scattering coefficients as well
as the time-delays l1 + l2 and l1 + l4 respectively. Sending waves along all other
boundary edges will in addition determine the sign σ and the distances l2 + l3 and
l3 + l4. Hence the boundary observations enable one to reconstruct the matrix S
and the distances between any two neighbouring boundary vertices, but not the
actual lengths of the edges. It is clear that the described phenomenon is possible
only due to very special properties of the vertex scattering matrix S.

Let us consider now the scattering problem associated with the quantum cross Γ.
We extend the graph Γ by attaching semi-infinite wires (−∞, x2j−1], j = 1, 2, 3, 4
to all four boundary vertices. Then the scattered waves ψ are solutions to the
eigenfunction differential equation (3.1) on the intervals ∆j = (−∞, x2j ], j =
1, 2, 3, 4 and satisfying the matching conditions (2.2) at the central vertex. Every
solution to the differential equation may be written as

ψ(x) = aje
−ik(x−x2j−1) + bje

ik(x−x2j−1), x ∈ ∆j = (−∞, x2j ] , j = 1, 2, 3, 4.

The incoming and outgoing amplitudes bj , aj should be chosen so that the function
satisfies the matching conditions. Then the scattering matrix SΓ(k) is the 4 × 4
unitary matrix connecting the vectors of amplitudes

$a = SΓ(k)$b.

Straightforward calculations yield
(4.3)

SΓ(k) = diag (eikl1 , eikl2 , eikl3 , eikl4) S diag (eikl1 , eikl2 , eikl3 , eikl4)

=





0 αeik(l1+l2) 0 βeik(l1+l4)

αeik(l1+l2) 0 σβeik(l2+l3) 0
0 σβeik(l2+l3) 0 −σαeik(l3+l4)

βeik(l1+l4) 0 −σαeik(l3+l4) 0



 .

The matrix S from the matching conditions (2.2) can be recovered: S = SΓ(0).
The scattering matrix SΓ(k) depends on the distances between the neighbouring
boundary points in Γ. The TW-function is a rational transformation of SΓ,

M(λ) = ik
I − SΓ(k)

I + SΓ(k)
,

and therefore possesses the same property. We proved directly that the crosses with
equal distances between neighbouring boundary vertices have identical scattering
matrices.
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The infinite crosses just considered are in fact identical, but parameterized in
different ways, and therefore the scattering matrices are similar to each other. One
may think that this is the reason for the observed phenomenon. Let us consider
a slightly more sophisticated example of a double quantum cross formed by two
identical crosses (see Figure 2).
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Figure 2. Graph Γ2. Double quantum cross.

We assume that the lengths are pairwise equal: l∗j = x∗
2j −x∗

2j−1 = x2j −x2j−1 =

lj , j = 1, 2, 3, 4. Consider the Laplace operator − d2

dx2 defined on the functions
satisfying matching conditions (2.2) at the internal vertices {x2, x4, x6, x8} and
{x∗2, x∗

4, x
∗
6, x

∗
8}, standard matching conditions at the removable vertex {x5, x∗

1}
and Dirichlet boundary conditions at the boundary vertices v1 = {x1}, v2 = {x3},
v3 = {x∗

3}, v4 = {x∗
5}, v5 = {x∗

7}, v6 = {x7}. The scattering matrix for the non-
compact graph obtained from Γ2 by attaching semi-infinite wires to the boundary
vertices vj , j = 1, 2, ..., 6 can easily be calculated:
(4.4)

SΓ2(k)=





0 αe12 0 0 0 βe14

αe12 0 σαβe12e23 0 0 0
0 σαβe12e23 0 σβe23 0 0
0 0 σβe23 0 −σαe34 0
0 0 0 −σαe34 0 −σαβe14e34

βe14 0 0 0 −σαβe14e34 0




,

where eij = eik(li+lj). The scattering matrix depends just on the distances between
neighbouring boundary vertices in the original cross Γ, i.e. on the lengths: l1 +
l2, l2 + l3, l3 + l4, and l4 + l1. The same transformation as before preserves the
scattering matrix, but not the distance l3+l1 between the nontrivial internal vertices
in Γ2.

One may generalize the considered counterexamples even for Schrödinger opera-
tors with nonzero potentials. Consider any real square integrable potential q on the
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graph Γ, identically equal to zero on the intervals [x4 − l, x4] and [x8 − l, x8]. Con-
sider also the cross graph Γ′ formed by the edges [x1, x2 + l], [x3, x4 − l], [x5, x6 + l]
and [x7, x8 − l]. The potential q′ ∈ L2(Γ′) is obtained by extending q by zero to
the intervals [x2, x2 + l] and [x3, x3 + l]. Let Lσ,α(Γ) and Lσ,α(Γ′) be the corre-
sponding Laplace operators in L2(Γ) and L2(Γ′) respectively. We assume that the
matching conditions (2.2) at the central vertex are satisfied, subject to obvious
amendments in the case of Γ′. The same arguments as before can be used to prove
that the TW-functions for the Schrödinger operators Lσ,α(Γ) + q and Lσ,α(Γ′) + q′

are identical.
The results of our studies can be summarized as follows:

Theorem 4.1. The Titchmarsh-Weyl matrix function for a quantum tree (Schrö-
dinger operator on a metric tree) does not necessarily determine the metric tree
uniquely.

5. Conclusions

The described phenomenon appears to be “rare”, and we believe that almost all
quantum trees are uniquely determined by their TW-functions. Certain sufficient
conditions for trees to be reconstructable are known, but one needs a complete
characterization of all such graphs as well as effective numerical algorithms.

Constructed quantum crosses form infinite families, which can be parameterized
by one real parameter, and any two members can be continuously deformed into
each other preserving the spectrum and the scattering matrix. Note that the scat-
tering matrices not only share the same poles but are just equal. These properties
distinguish our example from all known earlier examples.

The spectrum of quantum graphs and the corresponding scattering matrices may
be calculated using trace formulas [14, 19] connecting the spectrum to the set of
periodic orbits on metric graphs. In the considered example the vertex scattering
matrix has zero entries, and therefore some of the periodic orbits do not contribute
to the trace formula. Hence the spectrum determines just a subset of periodic orbits
leading to ambiguities in reconstructing the metric graph.

Summing up, we conclude that even the simplest quantum trees not always can
be reconstructed using boundary measurements.
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