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An introduction into the area of inverse problems for the Schrödinger operators on metric graphs is given.
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we show that for almost all matching conditions the potential on the loop is not determined uniquely by the
Titchmarsh�Weyl function. The class of all admissible potentials is characterized.
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1. Introduction

In this paper we are going to describe recent status of
the inverse problem for compact quantum graphs � the
Schrödinger operators on metric graphs when the spec-
tral data consist of the Titchmarsh�Weyl (TW-matrix,
TW-function, see rigorous de�nition in Sect. 2) matrix
function. From our point of view it is natural to use
these spectral data, since it is the TW-function which
can be measured in boundary experiments. It can also
be calculated from the scattering matrix for the graph
obtained by attaching in�nite leads to the original com-
pact graph. Avdonin, Belishev, Brown, Vakulenko, and
Weikard [1, 2, 5�7, 10] have contributed into the devel-
opment of this approach.

Other sets of spectral data for quantum graphs have
been considered. For example Yurko generalized the
spectral mapping approach [37�43]. The corresponding
spectral data consist of the spectra of the Schrödinger
operators with di�erent matching conditions at certain
internal vertices including the Dirichlet conditions which
correspond to disjoint edges. Obtaining of these data in
practice requires cutting of one or several internal ver-
tices, while our approach based on TW-function can be
considered as an attempt to solve the inverse problem
using boundary observations.

These two approaches can be seen as natural contin-
uations of the classical methods developed to solve the
inverse problem on one interval. In these methods the
inverse problem is solved using the Dirichlet�Dirichlet
and Dirichlet�Neumann spectra (developed by Levitan�
Gasymov and McKean�Trubowitz [13, 14, 28, 30], cor-
responds to Yurko's approach) and the Titchmarsh�
Weyl function (developed by Faddeev�Gelfand�Levitan�
Marchenko [11, 15, 31], corresponds to our approach).
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Let us note that the inverse problem we are discussing
is not just the problem to recover the potential in the
Schrödinger equation but contains three entirely con-
nected sub-problems:

• reconstruction of the underlying metric graph;

• calculation of the potential in the Schrödinger op-
erator;

• determining the matching conditions at the internal
vertices.

Our main focus will be on the di�erence between in-
verse problems for trees (graphs without cycles) and
graphs with nontrivial topology (containing cycles and
loops). It appears that for trees the inverse problem can
be solved using just the TW-matrix. The main techni-
cal tool we use is so-called boundary control method [8].
In the case where cycles are present the knowledge of
the TW-matrix is not enough to reconstruct the poten-
tial on the cycle, while potential on the branches can be
calculated using the boundary control method as in the
case of trees. The same method allows one to reconstruct
the branches of the graph which can be seen as metric
trees. It was suggested in [23] to extend the set of spec-
tral data by considering the TW-matrices for magnetic
Schrödinger operators. The corresponding TW-matrices
do not depend on the concrete form of the magnetic po-
tential, but on the �uxes of the magnetic �eld through
the cycles. The corresponding inverse problem was �rst
solved for graphs having just one cycle and standard
matching conditions at the internal vertices [23]. This
approach can easily be generalized for the case of com-
pact graphs with several cycles [26].
Our attempts to investigate the third inverse problem

to determine the matching conditions leads to interesting
observations that the solvability of the potential inverse
problem depends on the matching conditions in an unex-
pected way, namely that for certain classes of matching
conditions the potential on the cycle is uniquely deter-
mined by just one TW-matrix (corresponding to zero
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magnetic potential) [27]. Reconstruction of the metric
graph has not been discussed in detail yet. One may
just mention that the branches may be reconstructed us-
ing the leaf-peeling method developed originally for trees.
The Euler characteristic of the graph can be seen from
the spectrum of the Schrödinger operator with zero mag-
netic potential [21, 22]. Graph's Albanese torus char-
acterizing how di�erent elementary cycles are connected
to each other may also be seen from the spectra of the
magnetic operators [35]. In the case the lengths of the
graph are rationally independent the inverse problem can
be solved using just one spectrum [18, 19]. Other special
classes of graphs have been studied in [9, 16, 17, 20, 34].
The goal of this paper is to give an introduction into

the area of inverse problems for quantum graphs describ-
ing �rst the leaf-peeling procedure. In the last section we
explain in detail why this method cannot be generalized
for graphs with cycles. We describe how does magnetic
�eld help to solve the inverse problem in that case and
what is the role of matching conditions. The second sec-
tion is devoted to de�nitions.

2. Titchmarsh�Weyl function for quantum

graphs and inverse problems

2.1. Magnetic Schrödinger operator

Let Γ be a metric graph � collection of edges ∆n =
[x2n−1, x2n], n = 1, 2, . . . , N connected at the vertices
Vm,m = 1, 2, . . . ,M , which can be considered as equiva-
lence classes in the set V = {xj}2Nj=1 of all end points.
The magnetic Schrödinger operator is de�ned by two
real potentials, electric (square integrable) and magnetic
(continuous) respectively,

q ∈ L1(Γ ) , a ∈ C(Γ ) , q(x), a(x) ∈ R , (2.1)

as follows:

Lq,a =

[
i
d

dx
+ a(x)

]2
+ q(x) . (2.2)

The domain of the di�erential operator contains all func-
tions from the Sobolev space W 2

2 (Γ ∪M
m=1 Vm), so that

the range belongs to the Hilbert space L2(Γ ).
In order to make the operator self-adjoint one has to re-

strict its domain further by introducing extra boundary/
matching conditions. Let us denote by ∂Γ the boundary
of Γ � the set of all vertices of degree 1. All other ver-
tices (of degree greater or equal to 2) will be called inter-
nal. Let us denote by um, ∂um the vectors of boundary
values of the function u and its extended normal deriva-
tive at the vertex Vm. These vectors have dimension
equal to the degree of the vertex. The extended normal
derivative is determined by the following equality:

∂u(xj) =


limx→xj

(
d
dxu(x)− ia(x)u(x)

)
,

xj is the left end point,

− limx→xj

(
d
dxu(x)− ia(x)u(x)

)
,

xj is the right end point.

(2.3)

Then the most general matching conditions at internal
vertices can be written in the form

i(Sm − I)um = (Sm + I)∂um, (2.4)

where Sm is a unitary matrix. We assume that it is irre-
ducible, i.e. it cannot be transformed to a block-diagonal
form by permutations. We assume that the functions
from the domain of the operator satisfy the Dirichlet
boundary conditions on graph's boundary

u|∂Γ = 0 . (2.5)

So de�ned di�erential operator is self-adjoint and will be
denoted by LS

q,a(Γ ) in what follows.
Let us note that the role of matching conditions is not

only to make the operator self-adjoint, but to connect
the edges meeting at the corresponding vertex. With ev-
ery internal vertex Vm we associate the vertex scattering
matrix

Sm(λ) =
(k + 1)Sm + (k − 1)I

(k − 1)Sm + (k + 1)
, λ = k2,

so that Sm = Sm(1). The high energy limit S∞
m =

limλ→∞ Sm(λ) is going to play an important role in our
consideration. This is a unitary Hermitian matrix and
therefore its spectrum consists of ±1. In the case the ma-
trix Sm is unitary Hermitian the vertex scattering matrix
is independent of the energy Sm(λ) ≡ Sm and coincides
with the limit scattering matrix S∞

m = Sm.
So-called standard matching conditions (the function

is continuous at the vertex and the sum of extended nor-
mal derivatives is zero) can also be described using our
parameterization and correspond to

(Sm)ij =

{
−1 + 2/deg Vm , i = j ,

2/deg Vm , i ̸= j .

We exclude the case of standard boundary conditions for
vertices of degree 2 (two intervals joined together) since
in this case the two intervals can be substituted by one
longer interval without any additional conditions at the
point where the degree two vertex was situated.

2.2. Titchmarsh�Weyl matrix function

Our approach to inverse problem uses the TW-function
as input data. To de�ne the TW-function consider any
solution to the di�erential equation

Lq,au = λu, ℑλ > 0 , (2.6)

satisfying matching conditions (2.4) at all internal ver-
tices, but not necessarily on the boundary. The function
u = u(x, λ) is uniquely determined by its values on ∂Γ .
The map

MLS
q,a(Γ)(λ) : u|∂Γ 7→ ∂u|∂Γ (2.7)

is called the Titchmarsh�Weyl function for the quantum
graph LS

q,a(Γ ). It is a Nevanlinna type matrix function.
Its singularities determine the spectrum of the operator
LS
q,a (with the Dirichlet boundary conditions).
In the boundary control approach one uses the dynam-

ical response operatorR, which can be de�ned as follows.
Consider the following wave equation:

∂2

∂t2
w(x, t) + Lq,aw = 0 , x ∈ Γ , t > 0 ,
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w(x, 0) = ∂

∂tw(x, 0) ≡ 0,

w|∂Γ = F (t).
(2.8)

Here F (t) is a vector valued function called boundary
control. The dynamical response operator (the dynam-
ical Dirichlet-to-Neumann map) is then de�ned by the
equality:

(RF ) = ∂w|∂Γ . (2.9)

The TW-matrix and the dynamical response operator are
related via Laplace transform as follows:

(̂RF )(s) = M(−s2)F̂ (s) . (2.10)

The last equality implies that the sets of spectral data
consisting of the TW-matrix and of the dynamical re-
sponse operator are equivalent. Investigating the inverse
problem for trees we are going to use these sets of spectral
data simultaneously.

3. Inverse problems for trees

Inverse problems for the Schrödinger operators on com-
pact metric trees have been considered by di�erent au-
thors [1, 2, 5�7, 10, 12, 37, 38]. The main object of studies
was recovering of the potential on the edges. The ques-
tion how to reconstruct the matching conditions at inter-
nal edges was discussed in [2, 12], but complete solution
to all three inverse problems (including reconstruction
of the underlying metric tree) has never been presented.
Our plan in this section is to give a sketch how to solve
this inverse problem, details will be published in [3].
Discussing the inverse problem for trees one should

take into account the following observations:
Remark 1. Let LS

q be a Schrödinger operator on a
metric graph Γ . Let θ(x) be a real-valued function on Γ ,
constant on each interval ∆n and equal to zero on all
boundary edges:

θ(x) =

{
θn, x ∈ ∆n, ∆n is not a boundary edge,

0, x ∈ ∆n, ∆n is a boundary edge.

Then the similarity transformation

Lq → Lq(θ) = e− iθ(x)Lq e
iθ(x) (3.1)

preserves the Titchmarsh�Weyl function. In other words,
the operators Lq and Lq(θ) have precisely the same
Titchmarsh�Weyl matrices. It follows that the inverse
problem can be solved only up to the similarity transfor-
mation (3.1). Let us note that this transformation does
not change the graph Γ and the potential q but a�ects the
matching conditions only.
Remark 2. If the vertex scattering matrix param-

eterizing matching conditions has zero entries, then it
might happen that the metric graph cannot be recon-
structed uniquely. Such a counterexample was �rst pre-
sented in [25], where the Laplace operator LS on the cross
graph depicted in Fig. 1 was considered. If the vertex
scattering matrix S1 associated with the central vertex
V1 = {x2, x4, x6, x8} is chosen such that there is no tran-
sition between the opposite branches of the cross and no
re�ection from the central vertex, then all crosses with

equal distances between the �neighboring� boundary ver-
tices d(x1, x3), d(x3, x5), d(x5, x7), d(x7, x1) have iden-
tical TW-matrices.

Fig. 1. Metric cross.

The matrix S1 possessing described properties has the
form

S1 =


0 α 0 β

α 0 σβ 0

0 σβ 0 −σα
β 0 −σα 0

, α2 + β2 = 1 ,

α, β ∈ R , σ = ±1 ,

and the matching conditions can be written as

(
−1 α 0 β

α −1 σβ 0

)
u(x2)

u(x4)

u(x6)

u(x8)

 = 0 ,

(
1 α 0 β

α 1 σβ 0

)
u′(x2)

u′(x4)

u′(x6)

u′(x8)

 = 0 . (3.2)

It follows that to ensure that the metric graph is uniquely
determined by the TW-matrix one has to require that the
vertex scattering matrices Sm(k) do not have identically
vanishing entries.
Remark 3. As we already mentioned, degree two ver-

tices should be ignored in the case of standard matching
conditions, since the corresponding two edges can be sub-
stituted by one bigger edge without changing the spectral
data for the whole graph. These matching conditions will
be excluded by requiring that Sm(λ) do not have identi-
cally equal to zero entries.
Remark 4. In order to simplify the reconstruction

of matching conditions we are going to assume that not
only the matrices Sm, but also the matrices S∞

m are ir-
reducible. Irreducibility of Sm is a necessary condition,
since reducible matrices correspond to graphs with some
connections between the edges broken.
The following theorem can be proven [3]:
Theorem 5. Let Γ be a compact metric tree formed

by a �nite number of edges. Let LS
q = − d2

dx2 + q(x) be a



Inverse Problems for Quantum Graphs . . . A-135

Schrödinger operator in L2(Γ ) de�ned on the functions
satisfying the matching conditions (3.2) at all internal
vertices and the Dirichlet boundary conditions on ∂Γ .
Assume that the potential q is real valued and belongs
to L1(Γ ). Assume that the vertex scattering matrices
Sm(λ), m = 1, 2, . . . ,M do not have identically equal
to zero entries and the matrices Sm as well S∞

m are
irreducible. Then the TW-matrix associated with the
graph boundary determines the quantum graph, i.e. the
unique metric graph Γ , the unique real potential q and the
matching conditions up to the transformation described
by (3.1).
In the proof we are going to use the fact that there

exists explicit formula (2.10) connecting the TW-matrix
M and the dynamical response operator R for the wave
equation evolution on the graph. This would allow us to
use the boundary control method [4, 8, 36]. The quantum
tree will be recovered by leaf-peeling method proposed
�rst in [1], where the tree is recovered locally by tak-
ing away boundary edges and thus reducing the inverse
problem to a smaller and smaller graph.

3.1. Recovering metric tree

Let us pick up any boundary vertex. Our �rst goal is
to reconstruct the neighboring edge and the whole sheaf
of boundary edges attached to the same internal vertex.
Every edge is uniquely determined by its length, so we
need to determine the boundary vertices corresponding
to the sheaf and the lengths of the edges in the sheaf.
The lengths of all boundary edges can be determined

from the diagonal part of the response operator. Let
{x2j−1} be a boundary vertex and let us denote the cor-
responding boundary edge by ∆j = [x2j , x2j−1]. The
root vertex for the sheaf will be denoted by Vm, m =
m(x2j−1). One can show that the diagonal part of the
response operator possesses the following representation:

(Rfe2j−1)2j−1(t)

= − d

dt
f(t) + 2P∆jS

∞
m P∆2j−1

d

dt
f(t− 2ℓj)

− 4P∆jHmP
⊥
Nm

−1
P∆jf(t− 2ℓj) + convolution

operator with L1,loc kernel , 0 ≤ t < 3ℓj . (3.3)

In the last formula we used the following notations:

• e2j−1 the standard basis vector in Cdim ∂Γ ,

• Sm � the vertex scattering matrix parameterizing
the matching conditions at the vertex Vm,

• S∞
m = limk→∞

(k+1)Sm+(k−1)I
(k−1)Sm+(k+1)I = −PNm

−1
+ P⊥

Nm
−1
,

• Hm = i Sn−I
Sm+IP

⊥
N−1

,

• P∆j is the orthogonal project in Cdeg Vm on the ba-
sis vector corresponding to the edge ∆j .

Writing the whole response operator as a convolution
with a generalized kernel, we see that the kernel has sin-
gularities with the support at t = 2ℓj :

2P∆jS
∞
m P∆jδ

′(t− 2ℓj)− 4P∆jHmP
⊥
N−1

P∆jδ(t− 2ℓj) .

Since the vertex scattering matrix Sm(k) does not have
identically equal to zero entries, at least one of the en-
tries (S∞

m )jj or (HmP
⊥
N−1

)jj is di�erent from zero. It

follows that the length ℓj of the boundary edge can be
calculated from the corresponding diagonal entry of the
response operator.

Assume now that the lengths of all boundary edges
are determined. Since all entries of the vertex scatter-
ing matrices are not identically equal to zero, the travel-
ing times between di�erent boundary vertices are equal
precisely to the distances between these vertices on the
graph Γ . The wave equation along the edges have unit
propagation speed and nonzero entries of Sm(k) guaran-
tee that waves penetrate through all vertices without any
time delay. It follows that we can now identify all edges
forming sheafs: two edges ∆j and ∆i belong to the same
sheaf if and only if ℓj+ℓi is equal to the distance between
the boundary points x2j−1 and x2i−1. If the distance is
equal to ℓj (and also to ℓi) then the graph consists of just
one edge connecting directly the two boundary points. If
ℓj + ℓi for all i is less than the corresponding distance,
then the edge ∆j is connected to an internal vertex of
degree 2, i.e. the sheaf consists of just one edge.

We may assume now that a certain sheaf in Γ is re-
constructed, which means that we know which boundary
points belong to the sheaf and the lengths of the corre-
sponding edges.∗

3.2. Recovering potential

Recovering of the potential can be done using standard
boundary control method [8, 36] as described in [1]. For
small values of t, t < ℓ, the diagonal part of the response
operator† depends on the potential on the corresponding
boundary edge only [1, 36]

(Rfe2j−1)2j−1(t) = −f ′(t) +
∫ t

0

r(t− τ)f(τ)dτ,

0 ≤ t < 2ℓj , (3.4)

with r(·) = ∂xw(0, ·), where w(x, t) is a solution to the
Goursat problem

[
− ∂2

∂x2 + q(x)
]
w = − ∂2

∂t2w,

w(x2j−1, t) = 0 ,

w(x, x− x2j−1) = − 1
2

∫ x

x2j−1
q(y)dy .

(3.5)

∗ In the case where the graph Γ has no vertices of degree 2 the
whole tree may be reconstructed at once using distances between
the boundary edges, see Lemma 2.12 from [35].

† Of course we consider here the diagonal part corresponding to
end points associated with the sheaf.
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It follows that the diagonal entry of the response oper-
ator determines the kernel r(t), t ∈ [0, 2ℓj ] and therefore
allows one to calculate w(x, t) and therefore to recon-
struct the potential q on each boundary edge from the
sheaf.
From now on we may assume that not only the sheaf,

but also the potential on it is known. To perform the leaf-
-peeling it remains to determine the matching conditions
at the vertex Vm.

3.3. Recovering matching conditions

As proposed in [2] matching conditions at the root ver-
tex for the sheaf can be determined using the following
trick: let us substitute the original graph Γ with the
graph Γ̃ obtained from Γ by substituting the sheaf in
question with the sheaf formed by precisely the same
number of edges having equal length ℓ. The potential
q is extended by zero to the new sheaf but is preserved
on the remaining part of the graph. Then the operator
LS
q (Γ̃ ) is determined by the same matching conditions at

all internal vertices. It appears that the TW-matrices for
the operators LS

q (Γ ) and LS
q (Γ̃ ) are in one-to-one corre-

spondence.
Assume without loss of generality that the bound-

ary edges ∆1,∆2, . . . ,∆n form the sheaf. Then the
root vertex V1 is a union of the end points V1 =
{x2, x4, . . . , x2n+2}, where we denoted by x2n+2 the end
point which does not belong to the sheaf, but is contained
in V1. The lengths of the edges in the sheaf and poten-
tial there are already known. Consider any vector u|∂Γ
of boundary values, then the normal derivatives for the
solution of (2.6) are determined by the TW-function

∂nu|∂Γ =MLS
q (Γ)(λ)u|∂Γ .

Then the function u on all boundary edges from the sheaf
is a solution to the equation

−u′′ + q(x)u = λu

and therefore is uniquely determined by the Cauchy
data u(x2j−1), u

′(x2j−1). This allows us to determine
the boundary values at sheaf's internal vertex u(x2j),
u′(x2j), j = 1, 2, . . . , n. Consider now the operator

LS
q (Γ̃ ) and the corresponding solution ũ = ũ(x, λ). We

choose ũ(x) = u(x), whenever x does not belong to the
sheaf in question. The function ũ is extended to the
whole Γ̃ by solving the Helmholtz equation −ũ′′(x) = λũ
on the sheaf with the same boundary values at x2j , j =
1, 2, . . . , n as the function u:

ũ(x2j) = u(x2j) ,

ũ′(x2j) = u′(x2j) , j = 1, 2, . . . , n .

The function ũ is de�ned now on the whole Γ̃ and satis-
�es matching conditions at all internal vertices.
Consider the vector of boundary values ũ|∂Γ̃ , ∂nũ|∂Γ̃

connected via the TW-matrix for Γ̃ :

∂nũ|∂Γ̃ =MLS
q (Γ̃)(λ)ũ|∂Γ̃ . (3.6)

The map u|∂Γ → ũ|∂Γ̃ is a map between the vector spaces

of the same dimension and obviously onto. It follows that
Eq. (3.6) determines MLS

q (Γ̃)(λ).

In Ref. [2] it was shown that the principal n× n block
of the response operator for the star graph determines
the matching conditions at the central vertex up to the
transformation described in Remark 1. This result can
be generalized to our case by taking

θ(x) =

{
1, on all boundary edges,

θint, on all internal edges.

Since the procedure is local, possibly complicated form
of the graph does not a�ect it. In Ref. [2] it is assumed
in addition that S∞

1 is irreducible � this assumption can
be removed. The unitary matrix S1 is then reconstructed
up to the following transformation:

S1 → diag(1, 1, . . . , 1, θint)
−1S1diag(1, 1, . . . , 1, θint) .

(3.7)

We have now determined the sheaf, the real potential
q on it and the matching conditions at the neighboring
internal vertex � the root vertex for the sheaf.

3.4. Leaf-peeling procedure

We are ready now to calculate the TW-matrix for the
graph Γ ′ obtained from Γ by peeling away the sheaf we
reconstructed. Assume that the free parameter θint pa-
rameterizing the matching conditions is �xed

i(S1 − I)


u(x2)

u(x4)
...

u(x2n)

u(x2n+2)

 = −(S1 + I)


u′(x2)

u′(x4)
...

u′(x2n)

u′(x2n+2)

.

These matching conditions determine a certain n+ 1 di-
mensional (Lagrangian) plane in the 2(n+1)-dimensional
space of boundary values. This plane is not orthogonal to
the plane spanned up by u(x2n+2), u

′(x2n+2), since oth-
erwise the matching conditions would be reducible. It
follows that the values u(x2n+2), u

′(x2n+2) are uniquely
determined by u(x2j), u

′(x2j), j = 1, 2, . . . , n and one
may choose u(x2j), j = 1, 2, . . . , n so that u(x2n+2) ̸= 0.
We conclude that the TW-function for the graph Γ de-

termines the TW-function for the graph Γ ′. The inverse
problem is reduced to the inverse problem for a smaller
graph. Since the graph Γ is �nite, this procedure may
be continued, but it ends after a �nite number of steps.
It is clear that our assumptions on the parameters are

far from being optimal. Most probably the requirement
that the matrices S∞

m are irreducible may be waived. It
is not necessary to require that all entries of all vertex
scattering matrices Sm(k) are not identically equal to
zero. For example in the case of cross one may allow that
the transition amplitudes to the opposite edges are equal
to zero. Then the lengths of the edges are determined
looking at the waves re�ected from the central vertex.
For more complicated trees even more freedom may be
observed.



Inverse Problems for Quantum Graphs . . . A-137

4. Inverse problems for graphs with cycles

Our aim in this section is to describe di�culties which
appear in solving the inverse problem for graphs with cy-
cles. The case of just one cycle was considered in [23, 24].
The branches of the graph can be reconstructed using the
boundary control method and the leaf-peeling procedure.
Here it is very important that this procedure is local and
allows one to recover just a certain part of the metric
graph and potential on it from the corresponding part of
the TW-matrix.
It remains to recover the potential on the cycle and this

problem appears much more di�cult than the inverse
problem for trees. One TW-function is not enough to
recover the potential there. One needs to increase the
set of spectral data. In Ref. [23] it was suggested to
consider magnetic Schrödinger operators and as the set
of spectral data to take the TW-function depending on
the �ux of the magnetic �eld through the cycle. This
problem was analyzed in the case of standard matching
conditions. For a loop (cycle formed by just one edge) the
potential on it in general is not reconstructed uniquely.
If the cycle is formed by several edges, then the potential
on it is reconstructable, except for a few very special
counterexamples [23, 24]. On the other hand, the loop
with two attached wires was studied in [27]. It was shown
that for very special (not standard) matching conditions
the potential on the loop is reconstructable.
The aim of this section is to study whether for general

matching conditions the potential on the loop is recon-
structable from the corresponding TW-function consid-
ered for di�erent values of the magnetic �ux. We give a
partial answer to this question considering a loop with
one wire attached and real Hermitian matching condi-
tions at the vertex.
Consider the lasso graph depicted in Fig. 2.

Fig. 2. Lasso graph Γ2.

The transfer matrix T for the Schödinger equation
−u′′ + q(x)u = k2u on the interval [x1, x2] will be used

T (k) :

(
u(x1)

u′(x1)

)
7→

(
u(x2)

u′(x2)

)
. (4.1)

All entries of the transfer matrix are analytic functions
of exponential type having special asymptotics [32], the

transfer matrix has unit determinant. In order to recon-
struct potential on the loop one needs to know the func-
tions t12 and t22. The zeroes of these functions determine
the Dirichlet�Dirichlet and Dirichlet�Neumann spectra
for the Schrödinger operator on the interval [x1, x2] [28].
On the other hand, these functions as functions of ex-
ponential type with prescribed asymptotics are uniquely
determined by their zeros.

If the matching conditions at the central vertex are
standard, then the TW-function associated with the ring
is given by

MΦ(λ,Γ1) :=
ψ′(x1)− ψ′(x2)

ψ(x1)

=
ψ̂′(x1)− e iϕ1 ψ̂′(x2)

ψ̂(x1)
=

2 cosΦ − TrT (k)

t12(k)
. (4.2)

It follows that just the trace of the transfer matrix TrT =
t11 + t22 and the coe�cient t12 are determined by M .
The potential on the loop is not uniquely determined.
The corresponding formula contains in general in�nitely
many parameters [23].

Let us study the case of arbitrary properly connecting
real matching conditions leading to energy independent
vertex scattering matrices. In other words, we assume
that the functions from the domain of the operator satisfy
the following matching conditions:

i(S − I)

 u(x1)

u(x2)

u(x4)

 = (S + I)

 u′(x1)

−u′(x2)
−u(x4)′

, (4.3)

where S is a real Hermitian unitary irreducible matrix.
Every such matrix can be written in the form

S =

 α β γ

β δ ϵ

γ ϵ ζ

, α, β, γ, δ, ϵ, ζ ∈ R .

The parameters satisfy obvious conditions to ensure that
the matrix is unitary.

Observe that the nondiagonal entries of S cannot be
equal to zero, since otherwise the matrix will be re-
ducible. Assume without loss of generality that γ = 0.
It follows then that either β or ϵ should also be zero to
ensure that the �rst and last rows are orthogonal. The
corresponding matrices are reducible, but reducible ma-
trices are excluded from our consideration.

Our immediate goal is to calculate the TW-function
for the loop graph and described matching conditions.
The values of the function on the loop are related via the
corresponding transfer matrix (4.1). The boundary val-
ues u(x4) and u

′(x4) are connected via the TW-function,
which is to be calculated

u′(x4) =M(λ)u(x4) . (4.4)

Substituting equalities (4.4) and (4.1) into the matching
conditions (4.3) we get the following linear equation:
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 i(S − I)

 1 0 0

t11 t12 0

0 0 1

+ (S + I)

 0 −1 0

t21 t22 0

0 0 M



 u(x1)

u′(x1)

u(x4)

 = 0 , (4.5)

which has a nontrivial solution if and only if the determinant of the matrix is equal to zero

det

 i(S − I)

 1 0 0

t11 t12 0

0 0 1

+ (S + I)

 0 −1 0

t21 t22 0

0 0 M


 = 0 . (4.6)

Similar formula holds in the case of nonzero magnetic potential, which can be removed on the interval [x1, x2], but
results in multiplication of the transfer matrix coe�cients by e iΦ , where Φ is the integral of the magnetic potential
over the interval Φ =

∫ x2

x1
a(x)dx. The corresponding formula reads as follows:

det

 i(S − I)

 1 0 0

e iΦt11 e iΦt12 0

0 0 1

+ (S + I)

 0 −1 0

e iΦt21 e iΦt22 0

0 0 M(Φ)


 = 0 , (4.7)

or in a more detailed form

det

 i
 α− 1 + βt11 βt12 γ

β + (δ − 1)t11 (δ − 1)t12 ϵ

γ + ϵt11 ϵt12 ζ − 1

+

 βt21 −(α+ 1) + βt22 γM

(δ + 1)t21 −β + (δ + 1)t22 ϵM

ϵt21 −γ + ϵt22 (ζ + 1)M


= 0 . (4.8)

This equation determines the TW-function M = M(λ,Φ), but the corresponding formula is rather involved. We
are interested in its dependence upon the phase Φ which suggests us to write this formula in the form

M(λ) = −a0 + a1 e
iΦ + a2 e

2 iΦ

b0 + b1 e iΦ + b2 e2 iΦ
, (4.9)

where

a0 = det

 α− 1 α+ 1 γ

β β ϵ

γ γ ζ − 1

 = 2[ϵγ − β(ζ − 1)] ;

a1 = t11 det

 β α+ 1 γ

δ − 1 β ϵ

ϵ γ ζ − 1

− it21 det

 β α+ 1 γ

δ + 1 β ϵ

ϵ γ ζ − 1

− it12 det

 α− 1 β + 1 γ

β δ − 1 ϵ

γ ϵ ζ − 1



− t22 det

 α− 1 β + 1 γ

β δ + 1 ϵ

γ ϵ ζ − 1

 = t11
[
β2(ζ − 1) + γ2(δ − 1) + ϵ2(α+ 1)− 2βγϵ− (α+ 1)(δ − 1)(ζ − 1)

]
+ t22

[
β2(ζ − 1) + γ2(δ + 1) + ϵ2(α− 1)− 2βγϵ− (α− 1)(δ + 1)(ζ − 1)

]
− it21

[
β2(ζ − 1) + γ2(δ + 1) + ϵ2(α+ 1)

− 2βγϵ− (α+ 1)(δ + 1)(ζ − 1)
]
+ it12

[
β2(ζ − 1) + γ2(δ − 1) + ϵ2(α− 1)− 2βγϵ− (α− 1)(δ − 1)(ζ − 1)

]
;

a2 = det

 iβt11 + βt21 iβt12 + βt22 iγ

i(δ − 1)t11 + (δ + 1)t21 i(δ − 1)t12 + (δ + 1)t22 iϵ

iϵt11 + ϵt21 iϵt12 + ϵt22 i(ζ − 1)



= −(t11t22 − t12t21) det

 β β γ

δ − 1 δ + 1 ϵ

ϵ ϵ ζ − 1

 = 2[ϵγ − β(ζ − 1)] ;

b0 = − i det

 α− 1 α+ 1 γ

β β ϵ

γ γ ζ + 1

 = −2i[ϵγ − β(ζ + 1)] ;
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b1 = − it11 det

 β α+ 1 γ

δ − 1 β ϵ

ϵ γ ζ + 1

+ t21 det

 β α+ 1 γ

δ + 1 β ϵ

ϵ γ ζ + 1

− t12 det

 α− 1 β γ

β δ − 1 ϵ

γ ϵ ζ + 1



+ it22 det

 α− 1 β γ

β δ + 1 ϵ

γ ϵ ζ + 1

 = it11
[
2βγϵ+ (α+ 1)(δ − 1)(ζ + 1)− β2(ζ + 1)− γ2(δ − 1)− ϵ2(α+ 1)

]
+ it22

[
2βγϵ+ (α− 1)(δ + 1)(ζ + 1)− β2(ζ + 1)− γ2(δ + 1)− ϵ2(α− 1)

]
+ t21

[
2βγϵ+ (α+ 1)(δ + 1)(ζ + 1)

−β2(ζ + 1)− γ2(δ + 1)− ϵ2(α+ 1)
]
− t12

[
2βγϵ+ (α− 1)(δ − 1)(ζ + 1)− β2(ζ + 1)− γ2(δ − 1)− ϵ2(α− 1)

]
;

b2 = det

 iβt11 + βt21 iβt12 + βt22 γ

i(δ − 1)t11 + (δ + 1)t21 i(δ − 1)t12 + (δ + 1)t22 ϵ

iϵt11 + ϵt21 iϵt12 + ϵt22 ζ + 1



= i(t11t22 − t12t21) det

 β β γ

δ − 1 δ + 1 ϵ

ϵ ϵ ζ + 1

 = −2i[ϵγ − β(ζ + 1)]. (4.10)

We see that a0 = a2 and b0 = b2 and formula (4.9) can
be written in the form

M(λ,Φ) = −2a0 cosΦ + a1(λ)

2b0 cosΦ + b1(λ)
. (4.11)

The TW-functions depend just on cosΦ, since the match-
ing conditions are given by real Hermitian unitary ma-
trix. The coe�cients a0 and b0 are determined by S, then
the functions a1(λ) and b1(λ) are uniquely determined by
M(λ,Φ).

Considering M(λ, 0) and M(λ, π) we arrive at the fol-
lowing system of equations:{

a1 +M(λ, 0)b1 = −2[a0 +M(λ, 0)b0] ,

a1 +M(λ, π)b1 = 2[a0 +M(λ, π)b0] ,

with the determinant M(λ, π) − M(λ, 0). The TW-
-function M(λ,Φ) is independent of Φ if and only if

a0b1(λ) = b0a1(λ) , for all λ . (4.12)

Remember that a1(λ) and b1(λ) are linear combina-
tions of tij(λ). The terms containing t11 and t22 can-
cel in (4.12). The asymptotics as λ → ∞ is dominating
by the function t21(λ) ∼ −k sin k(x2 − x1). Comparing
the corresponding coe�cients we arrive at the following
equality:

[ϵγ − β(ζ − 1)]
[
2βγϵ+ (α+ 1)(δ + 1)(ζ + 1)

−β2(ζ + 1)− γ2(δ + 1)− ϵ2(α+ 1)
]

= [ϵγ − β(ζ + 1)]
[
2βγϵ+ (α+ 1)(δ + 1)(ζ − 1)

−β2(ζ − 1)− γ2(δ + 1)− ϵ2(α+ 1)
]
,

which implies

ϵγ(α+ 1)(δ + 1)

+β2γϵ− βγ2(δ + 1)− βϵ2(α+ 1) = 0 .

Eliminating ϵγ, γ2 and ϵ2 using orthogonality and nor-
malization of the row vectors in S we obtain that

β
[
(α+ 1)(δ + 1)− β2

]
= 0 .

Since β cannot be equal to zero unless S is reducible, we
conclude that

(α+ 1)(δ + 1)− β2 = 0 (4.13)

must hold.

Under this condition even the terms containing t21 can-
cel in (4.12), so only terms containing t12 remain. Since
t12(λ) is not identically equal to zero, (4.12) holds if and
only if

[ϵγ − β(ζ − 1)]
[
2βγϵ+ (α− 1)(δ − 1)(ζ + 1)

−β2(ζ + 1)− γ2(δ − 1)− ϵ2(α− 1)
]

= [ϵγ − β(ζ + 1)]
[
2βγϵ+ (α− 1)(δ − 1)(ζ − 1)

−β2(ζ − 1)− γ2(δ − 1)− ϵ2(α− 1)
]
.

Analysis similar to one already carried out for coe�cients
in front of t21 leads to the second condition

(α− 1)(β − 1)− β2 = 0 . (4.14)

Conditions (4.13) and (4.14) imply that the matrix(
α β

β δ

)
has eigenvalues −1 and 1, respectively. It fol-

lows that the unitary matrix S containing this 2× 2 ma-
trix as the principle block is reducible, since the third
eigenvector is just (0, 0, 1). But reducible matrices are
excluded from our consideration.

We conclude that the functions M(λ,Φ) and M(λ, 0)
determine a1(λ) and b1(λ).

It remains to study the question under which condi-
tions the functions t12 and t22 can be recovered. Con-
sider real values of the parameter λ, then the functions
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tij(λ) are also real valued. Evaluating the real and imag-
inary parts of a1 ± ib1 we may calculate the following
four functions:

f1 :=
[
(α+ 1)(δ − 1)− β2

]
t11

+
[
(α− 1)(δ + 1)− β2

]
t22 ;

f2 :=
[
(α+ 1)(δ + 1)− β2

]
t21

−
[
(α− 1)(δ − 1)− β2

]
t12 ;

f3 :=
[
2βγϵ+ ζ(α+ 1)(δ − 1)

− ϵ2(α+ 1)− γ2(δ − 1)− β2ζ
]
t11

+
[
2βγϵ+ ζ(α− 1)(δ + 1)

− ϵ2(α− 1)− γ2(δ + 1)− β2ζ
]
t22 ;

f4 :=
[
2βγϵ+ ζ(α+ 1)(δ + 1)

− ϵ2(α+ 1)− γ2(δ + 1)− β2ζ
]
t21

−
[
2βγϵ+ ζ(α− 1)(δ − 1)

− ϵ2(α− 1)− γ2(δ − 1)− β2ζ
]
t12 . (4.15)

This system of linear equations can be divided into two
2× 2 systems involving functions (t11, t22) and (t12, t21),
but the corresponding determinants D1,2 are identically
equal to zero

D1 = 2
[
2βγϵ(δ − α) + ϵ2(α2 − 1)

−β2ϵ2 − γ2(δ2 − 1) + β2γ2
]

= 2
[
2βγϵ(δ − α) + γ2(ϵ2 + 2β2)− ϵ2(2β2 + γ2)

]
= 4
[
γ2β2 − ϵ2β2 + βγϵδ − βγϵα

]
= 4[γβ(γβ + ϵδ)− ϵβ(ϵβ + αγ)] = 0 ;

D2 = 2
[
− 2βγϵ(α+ δ) + ϵ2(α2 − 1)

+ ϵ2β2 + γ2(δ2 − 1) + γ2β2
]

= 2[−2βγϵ(α+ δ) + ϵ2(α2 + β2 − 1)

+ γ2(β2δ2 − 1)]

= −4ϵγ[β(α+ δ)ϵγ] = 0 .

In the calculations above we used �rst that the row vec-
tors in the matrix S are orthogonal and then that they
are normalized.

In fact it follows that the functions tij in general cannot
be reconstructed from the TW-function M(λ,Φ) known
for all values of the magnetic �ux Φ. Assume �rst that
all four coe�cients appearing in the formulas for f1,2 are
di�erent from zero

(α± 1)(δ ± 1)− β2 ̸= 0. (4.16)

We have in this case{
t11 = 1

(α+1)(δ−1)−β2 f1 − (α−1)(δ+1)−β2

(α+1)(δ−1)−β2 t22,

t21 = 1
(α+1)(δ+1)−β2 f1 +

(α−1)(δ−1)−β2

(α+1)(δ+1)−β2 t22.

Taking into account that the transfer matrix has unit
determinant we get

− (α− 1)(δ + 1)− β2

(α+ 1)(δ − 1)− β2

(
t22 −

1

2[(α− 1)(δ + 1)− β2]
f1

)2

− (α− 1)(δ − 1)− β2

(α+ 1)(δ + 1)− β2

(
t12 +

1

2[(α− 1)(δ − 1)− β2]
f2

)2

= 1− 1

4 [(α− 1)(δ + 1)− β2] [(α+ 1)(δ − 1)− β2]
f21 − 1

4 [(α− 1)(δ − 1)− β2] [(α+ 1)(δ + 1)− β2]
f22 . (4.17)

The quotients on the left hand side are di�erent from
zero due to (4.16), therefore the analytic exponential type
functions in the brackets are not uniquely determined by
the function on the right hand side, even if one takes into
account their standard asymptotic behavior. Consider
any two such functions satisfying (4.17) and calculate
the corresponding coe�cients t22 and t12 in the transfer
matrix. The two remaining coe�cients t11 and t21 can
be calculated from (4.15).

If just one of the coe�cients in (4.16) is equal to zero,
then one of the equations (4.15) allows to calculate one
of the coe�cients tij directly, while the second equation
determines the rest of the transfer matrix up to a certain
sequence of signs. Assume without loss of generality that
(α+1)(δ−1)−β2 ̸= 0, then t22 = f1/[(α−1)(δ+1)−β2].
Consider the zeroes kj of t22 : t22(kj) = 0, then taking
into account that the transfer matrix has unit determi-
nant we get

t12(kj) = −1/t21(kj),

which leads to the following quadratic equation on t12(kj)

[(α− 1)(δ − 1)− β2]t212(kj) + f2(k
2
j )t12(kj)

+[(α+ 1)(δ + 1)− β2] = 0. (4.18)

The corresponding discriminant

f22 (k
2
j )− 4[(α− 1)(δ − 1)− β2][(α+ 1)(δ + 1)− β2]

is not equal to zero for all j, since otherwise all values
t12(kj) are equal and the function t12 is a constant func-
tion. Therefore for each j there exist two possible values
of t12(kj), which allows to �nd di�erent exponential type
functions t12 with the necessary asymptotics. All such
functions are parameterized by a sequence of signs simi-
lar to one appearing in the solution of the inverse prob-
lem for periodic Schrödingier operators [32, 33] (see also
[23]).‡ It follows that the transfer matrix and hence the
potential on the loop is not uniquely determined.

‡ Note that the sequence is �nite if the corresponding periodic
Schrödinger operator has �nite-band spectrum.
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The case where several coe�cients in (4.15) are zero
can be studied in a similar way.
We have shown that the potential on the loop in gen-

eral is not determined by the magnetic �ux dependent
TW-function in the case of real Hermitian matrices S
parametrizing the matching conditions. It might be in-
teresting to extend this analysis to the case of arbitrary
unitary matrices and to analyze the cases where the po-
tential is reconstructable.
We have shown that the potential on the loop in gen-

eral is not determined by the magnetic �ux dependent
TW-function in the case of real Hermitian matrices S
parameterizing the matching conditions. It might be in-
teresting to extend this analysis to the case of arbitrary
unitary matrices and to analyze the cases where the po-
tential is reconstructable.
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