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Abstract. The inverse problem for the Schrödinger operator on a star graph
is investigated. It is proven that such Schrödinger operator, i.e. the graph,
the real potential on it and the matching conditions at the central vertex, can
be reconstructed from the Titchmarsh-Weyl matrix function associated with
the graph boundary. The reconstruction is also unique if the spectral data
include not the whole Titchmarsh-Weyl function but its principal block (the

matrix reduced by one dimension). The same result holds true if instead of the
Titchmarsh-Weyl function the dynamical response operator or just its principal
block is known.

1. Introduction. Differential operators on geometric graphs have been studied
from the beginning of 80-ies [10, 13], but recent interest in nano-structures has led
to enormous interest in mathematical studies of the problem [17, 19, 20, 22]. In this
article we discuss the possibility to reconstruct the matching (boundary) conditions
at the unique internal vertex of a star graph from the corresponding Titchmarsh-
Weyl matrix function or the dynamical response operator. These operators are
also known as Dirichlet-to-Neumann map and the dynamical Dirichlet-to-Neumann
map respectively. These operators allow one to solve the inverse problem [18]. We
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are interested in the case where not the whole Titchmarsh-Weyl matrix function
but just its principal block is known.1 Solution to this inverse problem can be
used as the main building brick for solving inverse problems for arbitrary trees as
it has been already done in [1] for Schrödinger operators with standard matching
conditions at the vertices. Our main focus this time is on the recovering of matching
conditions, but we solve also the problem to recover the unknown potential. We
use the Boundary Control method [5, 3], more precisely, its version proposed in [1]
(see also [2] where an inverse problem for the two-velocity wave equation on a tree
was studied). Our approach allows one to solve the inverse problem “locally” —
the recovery of the parameters of a subgraph requires only the data related to that
subgraph.

The problem of reconstructing the Schrödinger operator on a star graph was
first discussed by N.I.Gerasimenko and B.S. Pavlov [13, 14] using the Gelfand-
Levitan-Marchenko method. The inverse spectral and scattering problems for trees
have intensively been studied in recent years by M.Belishev, M.Brown, R.Carlson,
G. Freiling, A. Vakulenko, R.Weikard, V.Yurko, and the authors [1, 4, 6, 7, 8, 9, 11,
12, 23, 24, 25]. It has been proven that the knowledge of the Titchmarsh-Weyl ma-
trix function allows one to calculate the potential for standard boundary conditions
at the vertices. The case of more general matching conditions has been discussed
in [12], but the whole family of matching conditions has not been investigated yet.

In the current article we consider the most general family of irreducible (see
the definition in Section 2), in other words, properly connecting matching condi-
tions leading to a self-adjoint operator. We propose to parameterize such condi-
tions by the vertex scattering matrix Sk say for the energy parameter k2 = 1,
i.e. by the matrix S1. It appears that irreducibility of the limiting scattering ma-
trix S∞ = limk→∞ Sk plays a very important role (see formula (3.9) below). Our
parametrization is similar to the one developed by M.Harmer [15, 16].

We find the matching conditions and potential on the edges. Our approach pro-
vides also an effective algorithm for solving the inverse problem, which is straight-
forward and more simple compared to the spectral mapping approach used in [12].

The article is organized as follows. We start with investigating the star graph
with all edges having the same length. This assumption allows us to use vector
notations which simplify many formulas and clarify the ideas behind the Boundary
Control method. All necessary notations are introduced in Section 2. We discuss
also the expected arbitrariness in the solution of the inverse problem using the prin-
cipal blocks of the Titchmarsh-Weyl matrix or of the dynamical response operator.
In Section 3 the inverse problem for the Laplace operator with general matching
conditions is solved. Consideration of the Laplace operator allows us to concentrate
our attention on recovering matching conditions, which is the main subject of the
present paper. The inverse problem for the Schrödinger operator is solved in Section
4. A star graph with arbitrary lenghts of edges is considered in Section 5. Note that
the vector notations are not appropriate in that case and we use standard notations
developed for Schrödinger operators on metric graphs in [1].2

1Under the principal block of any m × m matrix M we understand the (m − 1) × (m − 1)
matrix obtained from M by deleting the last row and last column.

2We would like to use this opportunity to clarify a few statements in [1]. The reduced
(m−1)×(m−1) scattering matrix Sm−1(k) appearing in Theorem 4.1 is not determined by equa-
tion (4.2) but rather is the scattering matrix for the graph Γ with one extra Dirichlet boundary
condition introduced at the vertex γm. Similarly, by the back scattering coefficient corresponding
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2. Notations and preliminary discussions. We begin with investigating the
inverse problem for the simplest star graph Γ formed by m identical intervals
∆j = [x2j−1, x2j ], j = 1, 2, . . . ,m all having the same length ℓ = x2j − x2j−1.
The methods developed here can be applied to star graphs with edges having dif-
ferent lengths, but the corresponding formulas get a more complicated form which
makes them less transparent. On the other hand all necessary generalizations are
rather straightforward and can be carried out without any principal difficulties. The
case of general star graph is considered in Section 5.

We assume that these intervals are joined together at the central vertex v0 =
{x1, x3, . . . , x2m−1}. The graph boundary ∂Γ is formed by the vertices vj = {x2j}
all having valence 1. Without loss of generality we may assume that x2j−1 = 0. This
assumption will allow us to introduce vector notations (2.1) leading to simplification
of many formulas.
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Fig. 1 The star graph Γ.
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It is convenient to identify the corresponding Hilbert space H = L2(Γ) =
⊕
∑m

j=1 L2(∆j) with the space of vector valued functions

H = L2([0, ℓ];C
m)

with the elements

(2.1) ~w(x) = (wj(x))
m
j=1 , x ∈ [0, ℓ].

Our main focus will be on recovering matching conditions at the central vertex,
therefore we introduce the Laplace operator with general matching conditions. Such

Laplace operator L = − d2

dx2 in H is defined on the functions from the Sobolev space

to a boundary vertex γn we mean the scattering coefficient corresponding to the graph Γ with
extra Dirichlet boundary conditions introduced at all other boundary vertices γl, l 6= n.

Inverse Problems and Imaging Volume 4, No. 4 (2010), 579–598



582 Sergei Avdonin, Pavel Kurasov and Marlena Nowaczyk

W 2
2 (Γ \ {v0}) satisfying the following matching conditions at the central vertex

(2.2) i(S1 − I)~w(0) = (S1 + I)~w′(0),

and Dirichlet boundary conditions on the graph boundary

(2.3) ~w(ℓ) = 0.

The m×m unitary matrix S1 appearing in (2.2) uniquely parameterizes all possible
matching conditions [21]. Throughout the paper we assume that S1 is irreducible,
i.e. the corresponding matching conditions are properly connecting.3 If the matrix
S1 is reducible, then the vertex can be chopped into two vertices so that the match-
ing conditions connect together just boundary values from each of the vertices. Such
matching conditions are not properly connecting.

The linear operators corresponding to both reducible and irreducible matrices S1

are self-adjoint in H, but if S1 is reducible, then the operator L may be represented

as an orthogonal sum L = ⊕
∑N

n=1 Ln, where Ln are Laplace operators on star

graphs Γn, n = 1, 2, . . . , N, having mn edges, m =
∑N

n=1 mn. One may assume
that the corresponding matrices S1

n are irreducible and the inverse problem can be
studied for each operator Ln separately.

The unitary matrix S1 appearing in (2.2) is precisely the vertex scattering ma-
trix Sk for the energy E = k2 with k = 1, and this parametrization of boundary
conditions is one-to-one [21].

Matching conditions (2.2) can easily be generalized for arbitrary metric graphs.
For any vertex V, we consider the vector ~w(V ) of the limit values of the function w
along the edges connected at V and the corresponding vector of normal derivatives
∂n ~w(V ) — derivatives in the direction away from the vertex (outgoing direction).
The two vectors so defined have dimension equal to the valency of the vertex V and
are independent of the direction the edges are parametrized. Then the coordinate
free form of (2.2) is given by

(2.4) i(S1 − I)~w(V ) = (S1 + I)∂n ~w(V ).

Let ~q ∈ L2(Γ) be real valued, then the corresponding Schrödinger operator A in
H is determined by

(2.5) A = L+Q,

where Q is the m×m matrix,

Q = diag {q1, q2, . . . , qm}.

This operator is defined on the same domain Dom (L).
Thus the Schrödinger operator in L2(Γ) is uniquely determined by the potential

q and unitary matrix S1 appearing in the matching conditions (2.2), whereas the
Laplace operator is determined by the matrix S1 alone.

Consider the unique function ~u ∈ L2(Γ) which solves the differential equation

(2.6) − ~u′′ +Q~u = λ~u, ℑλ > 0,

satisfies matching conditions (2.2) and has prescribed boundary values ~u(ℓ). Such
a solution is unique, since otherwise the self-adjoint Schrödinger operator A would
have non-real eigenvalues. Let us denote by ∂n~u the vector of normal derivatives
at all boundary vertices. The direction of the derivatives is pointing inside the star

3A square matrix is called reducible if there exists a permutation of the coordinates leading
to a block-diagonal matrix.
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graph. Then the Titchmarsh-Weyl matrix function (or simply TW-function)
M(λ) is uniquely determined by the equality

(2.7) ∂n~u(ℓ) = M(λ)~u(ℓ) ⇔ ~u′(ℓ) = −M(λ)~u(ℓ).

The TW-function is analogous to the Dirichlet-to-Neumann map widely used in
inverse problems.

We consider also the corresponding wave equation in L2(Γ). Let ~w(x, t) be the
solution to the differential equation

(2.8)
∂2

∂t2
~w(x, t) −

∂2

∂x2
~w(x, t) +Q~w(x, t) = 0, x ∈ (0, ℓ), t ∈ (0, T ),

subject to the matching conditions (2.2) for all t ∈ (0, T ), the boundary condition

(2.9) ~w(ℓ, t) = ~f(t),

and satisfying zero initial data

(2.10)

{

~w(x, 0) = 0,
∂
∂t

~w(x, 0) = 0.

The function f is referred to as the (Dirichlet) boundary control. We denote the so-

lution of (2.8), (2.2), (2.9), and (2.10) by ~w
~f . The dynamical response operator

RT is defined in FT = L2([0, T ];C
m) by the equality

(2.11)

(

RT ~f
)

(t) = ∂n ~w
~f (ℓ, t) = −

d

dx
~w

~f (ℓ, t), t ∈ [0, T ],

Dom(RT ) =
{

~f ∈ W 1
2 ([0, T ];C

m), ~f(0) = 0
}

.

The initial boundary value problem (2.8), (2.2), (2.9), (2.10) has a classical so-

lution for smooth potentials and boundary controls ~f from the space
{

~f ∈ C2([0, T ];Cm), ~f(0) = ~f ′(0) = 0
}

.

The response operator RT originally defined on this space can be extended to the
domain described in (2.11) (see, e.g. representations (3.11) and (4.6) below).

The response operatorRT is an integral operator with a generalizedm×mmatrix
kernel [1].

The response operator RT and TW-function M(λ) are connected with each other
by the Fourier–Laplace transform (see, e.g. [3]; [1, Section 3.2]). Knowledge ofM(λ)
allows finding RT for all T > 0, and knowledge of RT for all T > 0 allows finding
M(λ). The response operator known for some finite T carries less information than
does M(λ). We will demonstrate that this data (RT for a finite T ) is sufficient for
solving our inverse problems and specify those T.

It has been shown in [1] that the dynamical response operator determines the
potential on all boundary edges, i.e. on all edges with one of the endpoints belonging
to the graph boundary. For the star graph all edges are boundary edges, and
therefore RT (for T ≥ 2ℓ) determines the potential. Then it is natural to expect that
RT determines also the matching conditions at the central vertex. Hence our aim
here is investigating the possibility to recover the potential and matching conditions
from the principal (m− 1)× (m− 1) block of the response operator. In [1] similar
result for the Schrödinger operator with standard matching conditions was used to
solve the inverse problem for arbitrary trees. The solution of the inverse problem
for star graphs serves as a main building brick in that solution. The problem we
address here is more difficult, since one needs to recover not only the potential but
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matching conditions as well. Therefore let us discuss first whether the solution to
such inverse problem is unique and what kind of freedom one can expect.

We introduce the m×m matrix Rθ:

(2.12) Rθ = diag {1, 1, ..., 1, eiθ} =















1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0
0 0 . . . 0 eiθ















, θ ∈ [0, 2π).

This matrix determines the unitary transformation of the Hilbert space H,

(2.13) ~w 7→ Rθ ~w.

In what follows we identify the matrix Rθ and the corresponding unitary Hilbert
space transformation.

Consider the self-adjoint Schrödinger operator

Aθ = RθAR−θ.

It is defined by the same differential expression as the operator A, but by different
matching conditions. The matching conditions for the operator Aθ are defined as
in the formula (2.2) but with the unitary matrix

(2.14) S1
θ = RθS

1R−θ

instead of S1. It is clear that the principal (m − 1) × (m − 1) blocks of the corre-
sponding TW-functions for the operators A and Aθ coincide. The same is true for
the dynamical response operators. Hence one can expect to reconstruct the match-
ing conditions up to the transformation described by (2.14) (if the inverse data
consist of the principal block of the TW-function or dynamical response operator).
Our goal is to prove that this reconstruction is possible and no other arbitrariness
occurs. Moreover, we give an explicit algorithm for this reconstruction.

We use the upper index m − 1 to denote m-dimensional vectors with zero last
components: ~a = ~am−1 ⇒

(

~am−1
)

m
= 0.

3. Reconstruction of matching conditions for Laplacians. We start with
solving the inverse problem for Laplace operators, i.e. we suppose in this section
that ~q ≡ 0. Consider the following differential equation

(3.1)
∂2

∂t2
~w(x, t) −

∂2

∂x2
~w(x, t) = 0, x ∈ (0, ℓ), t ∈ (0, T ),

with the matching conditions (2.2), the boundary control acting at the first (m− 1)
boundary points

(3.2) ~w(ℓ, t) = ~fm−1(t), (i.e. (~fm−1(t))m = 0),

and with zero initial data (2.10).
It is clear that solutions to the differential equation can be written as a combi-

nation of d’Alembert waves

(3.3) ~w(x, t) = ~b(t+ x) + ~a(t− x),

where ~b and ~a denote, respectively, the waves going toward the central vertex and
coming from it. The boundary control initiates waves on the intervals ∆j , j =
1, 2, . . . ,m−1, which reach the central vertex at the time t = ℓ as earliest. Therefore
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for sufficiently small t (t < ℓ) the solution is equal to zero on ∆m and is given by
just one travelling wave

~w(x, t) = ~fm−1(t+ x− ℓ), t < ℓ.

For t slightly larger than ℓ ( ℓ < t < 2ℓ) the solution on ∆m contains only a wave
going away from the central vertex

(3.4) ~w(x, t) = ~fm−1(t+ x− ℓ) + ~a(t− x).

Our immediate aim is to calculate the function ~a using matching conditions (2.2).
These vector conditions can be written using the spectral subspacesN−1 = ker (S1+
I) and N⊥

−1 for the unitary matrix S1. The corresponding orthogonal projectors in

Cm are denoted by PN−1
and P⊥

N−1
respectively.

Let us substitute (3.4) into the matching conditions (2.2)

i(S1 − I)
(

~fm−1(t− ℓ) + ~a(t)
)

= (S1 + I)

(

d

dt
~fm−1(t− ℓ)−

d

dt
~a(t)

)

.

Projecting to the subspace N−1 we get an easily solvable equation

(3.5) PN−1

~fm−1(t− ℓ) + PN−1
~a(t) = 0 ⇒ PN−1

~a(t) = −PN−1

~fm−1(t− ℓ).

Projection onto the orthogonal complement to N−1 gives the following differential
equation

H
(

P⊥

N−1

~fm−1(t− ℓ) + P⊥

N−1
~a(t)

)

=
d

dt
P⊥

N−1

~fm−1(t− ℓ)−
d

dt
P⊥

N−1
~a(t),

where

(3.6) H = i
S1 − I

S1 + I
P⊥

N−1

is a Hermitian matrix in N⊥
−1. The solution to this differential equation is given by

the formula

(3.7) P⊥

N−1
~a(t) = P⊥

N−1

~fm−1(t− ℓ)− 2He−Ht

∫ t

0

eHτP⊥

N−1

~fm−1(τ − ℓ)dτ,

where we put ~f(t) = 0 for t ≤ 0.
Combining (3.5) and (3.7) we obtain solution to the wave equation satisfying

matching conditions for t < 2ℓ
(3.8)

~w(x, t) = ~fm−1(t+ x− ℓ)− PN−1

~fm−1(t− x− ℓ) + P⊥

N−1

~fm−1(t− x− ℓ)

−2He−H(t−x)

∫ t−x

0

eHτP⊥

N−1

~fm−1(τ − ℓ)dτ

= ~fm−1(t+ x− ℓ) + S∞ ~fm−1(t− x− ℓ)

−2He−H(t−x−ℓ)

∫ t−x−ℓ

0

eHτP⊥

N−1

~fm−1(τ)dτ,

where

(3.9) S∞ = −PN−1
+ P⊥

N−1

is the large energy limit of the vertex scattering matrix:

S∞ = lim
k→∞

Sk = lim
k→∞

(k + 1)S1 + (k − 1)I

(k − 1)S1 + (k + 1)I
.
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We find now the solution to the system (3.1), (2.2), (3.2), (2.10) for t ∈ (2ℓ, 3ℓ).
This solution can be obtained from (3.8) by adding the wave reflected from the
boundary (Dirichlet conditions),
(3.10)

~w(x, t) = ~fm−1(t+ x− ℓ)

+S∞ ~fm−1(t− x− ℓ)− 2He−H(t−x−ℓ)

∫ t−x−ℓ

0

eHτP⊥

N−1

~fm−1(τ)dτ

−S∞ ~fm−1(t+ x− 3ℓ)

+2He−H(t+x−3ℓ)
∫ t+x−3ℓ

0
eHτP⊥

N−1

~fm−1(τ)dτ.

This implies the formula for the principal block of the dynamical response oper-
ator for T ∈ (0, 3ℓ):
(3.11)
(

RT ~fm−1
)

(t) = ∂n ~w(ℓ, t) = −
∂

∂x
~w(ℓ, t)

= −
d

dt
~fm−1(t) + 2S∞

d

dt
~fm−1(t− 2ℓ)− 4HP⊥

N−1

~fm−1(t− 2ℓ))

+4H2e−H(t−2ℓ)

∫ t−2ℓ

−∞

eHτP⊥

N−1

~fm−1(τ)dτ.

The response operator can be seen as an integral operator with the generalized
kernel r(t − τ) where

(3.12) r(t) = −δ′(t)+2S∞δ′(t−2ℓ)−4HP⊥

N−1
δ(t−2ℓ)+4H2e−H(t−2ℓ)P⊥

N−1
θ(t−2ℓ).

The kernel 4H2e−H(t−2ℓ)P⊥

N−1
θ(t − 2ℓ) is locally L2, therefore we have proven the

following lemma:

Lemma 3.1. The principal (m−1)×(m−1) block of the response operator RT , T >
2ℓ determines the principal (m− 1)× (m− 1) blocks of the limit scattering matrix
S∞

P⊥

mS∞P⊥

m

and of the H-operator

P⊥

mP⊥

N−1
HP⊥

N−1
P⊥

m ,

where P⊥
m denotes the orthogonal projector on the m − 1 dimensional subspace of

Cm spanned up by the first m− 1 basis vectors.

In what follows we discuss whether the matrices S∞ and H are determined by
their principal blocks. It is obvious that this reconstruction is not unique as we
have already discussed. We assume that not only the matrix S1, but also the limit
scattering matrix S∞ is irreducible.

Theorem 3.2. Consider the set of m×m irreducible limit vertex scattering matrices
S∞ having the same principal (m − 1) × (m − 1) block P⊥

mS∞P⊥
m . This family of

matrices can be described using one real phase parameter so that

(3.13) S∞

θ = RθS
∞R−θ, θ ∈ [0, 2π),

where Rθ is given by (2.12) and S∞ is a certain particular member of the family.

Proof. Reconstruction of any unitary matrix from its principal (m−1)×(m−1) block
contains in general two arbitrary phase parameters and can be carried out using
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the fact that the entries of such matrix satisfy the normalization and orthogonality
conditions:

∑m
j=1 |sij |

2 = 1,
∑m

i=1 |sij |
2 = 1,

∑m
j=1 sijslj = 0, i 6= l,

∑m
i=1 sijsil = 0, j 6= l.

Assume that the principal (m − 1) × (m − 1) block of the matrix S∞ is known.
Consider the last row in S∞. The absolute values of smj = (S∞)mj , j = 1, 2, ...,m−1
can be calculated from the normalization conditions. At least one of these numbers
is different from zero, otherwise the matrix S∞ is reducible. Consider any such
different from zero element, say with the index m1. All possible values of this
element can be described by one real phase parameter α as follows sm1 = s0m1e

iα,
where s0m1 is any complex number with the prescribed absolute value. Then all other
elements smj , j = 2, ...,m− 1 can be calculated using the orthogonality conditions.
In the same way one may consider the last column and introduce a certain parameter
β ∈ R such that s1m = s01meiβ . Then all elements sjm, j = 2, 3, . . . ,m are uniquely
determined.

Let us summarize our calculations by stating the following result: the family of
unitary matrices having the same principal (m−1)×(m−1) block can be described
using two real parameters so that

(3.14) S∞

α,β = RαS
∞Rβ ,

where S∞ is a certain particular member of the family.
It is clear that the unitary transformation (2.13) changes the matching conditions

in accordance with (2.14). The same relation holds for the limit vertex scattering
matrices.

Hence it remains to prove that if S∞ is a limit scattering matrix, then S∞Rβ

cannot be a limit scattering matrix. Let us recall that the limit scattering matrix is
not only unitary but also Hermitian (as follows from (3.9), its eigenvalues are equal
to ±1).

Multiplication of the Hermitian matrix S∞ by Rβ leads to a Hermitian matrix
only if all non-diagonal elements in the last column are equal to zero and thus the
matrix S∞ is block-diagonal, and hence reducible, which contradicts our assump-
tions.

Summing up, all possible matrices S∞ having the same principal (m−1)×(m−1)
block are described by formula (3.13).

The assumption of Theorem 3.2 that S∞ is irreducible can be weakened. In fact
we used just the fact that S∞

mm 6= ±1, in other words that S∞ is not block-diagonal
with (m− 1)× (m− 1) and 1× 1 blocks.

In the following Lemma we discuss the possibility to reconstruct the unitary
matrix S1.

Lemma 3.3. Assume that the limit scattering matrix S∞ is irreducible, then the
knowledge of the subspace N−1 and of the (m− 1)× (m− 1) matrix

(3.15) P⊥

mP⊥

N−1
HP⊥

N−1
P⊥

m

determines the unique matching condition, i.e. the unique matrix S1.

Proof. Consider the (m − 1) × (m − 1) Hermitian matrix (3.15). We extend it

to the Hermitian m × m matrix Ĥ = H ⊕ ON−1
, where ON−1

is the zero matrix

in the subspace N−1. The kernel of Ĥ contains the whole subspace N−1. Since
S∞ is irreducible, the subspace N−1 is not trivial and contains at least one vector
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with nonzero m-th component. (Otherwise S∞
mm = 1 and S∞ is reducible.) Then

applying the matrix Ĥ to this vector we should get zero vector. This fact allows us

to calculate the elements ĥjm, j = 1, 2, . . . ,m − 1 of the last column in Ĥ. Using

the fact that Ĥ is Hermitian we reconstruct the last row except the element ĥmm,
which again can be calculated using the fact that Ĥ maps every vector from N−1

to the zero vector.
It remains to calculate the unitary matrix S1:

(3.16) S1 =
iIN⊥

−1

+H

iIN⊥

−1

−H
⊕ (−1)IN−1

,

where IN⊥

−1

and IN−1
are the identity operators in N⊥

−1 and N−1 respectively and

(iIN⊥

−1

+H)(iIN⊥

−1

−H)−1 is considered as a unitary operator in N⊥
−1.

The last lemma may give an impression that using the knowledge of the principal
(m− 1)× (m− 1) block of S∞ and of P⊥

mPN⊥

−1

HPN⊥

−1

P⊥
m allows one to reconstruct

unique matching conditions. This is not true, since the principal (m− 1)× (m− 1)
block of S∞ allows one to reconstruct S∞ up to the unitary transformation (3.13),
i.e. the subspace N−1 is determined up to multiplication by Rθ. Choosing different
possible subspaces N−1 one gets different possible matrices S1 (described in fact by
the same unitary transformation (3.13)).

We summarize our studies in the following

Theorem 3.4. Let Γ be a star graph formed by m edges of length ℓ connected

together at the vertex v0. Consider the Laplace operator L = − d2

dx2 defined in L2(Γ)

on the domain of functions from W 2
2 (Γ \ {0}) = W 2

2 ([0, ℓ],C
m) satisfying matching

conditions (2.2) and Dirichlet boundary conditions at all boundary points. Let the
limit scattering matrix S∞ be irreducible. Then the principal (m − 1) × (m − 1)
block of the response operator RT , T > 2ℓ determines the matching conditions at
the central vertex up to the unitary transformation (2.14), in other words the family
of all possible operators L corresponding to the same principal (m − 1) × (m − 1)
block of the response operator can be parameterized as follows

(3.17) Lθ = RθLR−θ, θ ∈ [0, 2π),

where L is any particular member of the family.

The theorem is proven under the assumption that S∞ is irreducible, but it holds
true even under the weaker assumption that just S1 is irreducible. (The correspond-
ing proof is more involved.) However, in more general situation of the next section
we still have to assume that S∞ is irreducible.

4. Reconstruction of matching conditions for Schrödinger operators. Let
us consider the case where the potential may be different from zero. Our aim is to
prove the following theorem, which is one of the main results of this article.

Theorem 4.1. Assume that:

• Γ is a star graph formed by m edges of length ℓ connected together at the vertex
v0;

• A = L + Q is a Schrödinger operator in L2(Γ) = L2([0, ℓ],C
m), where L =

− d2

dx2 is the Laplace operator defined on the domain of functions from the
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space W 2
2 ([0, ℓ],C

m) satisfying matching conditions (2.2) and Dirichlet bound-
ary conditions at all boundary points, and Q = diag {q1, q2, . . . , qm}, ~q ∈
L2([0, ℓ],C

m) is a real valued potential;
• the matrix S1 parameterizing the matching conditions (2.2) is irreducible as
well as the limit scattering matrix S∞ defined by (3.9).

Then the principal (m−1)×(m−1) block of the response operator RT for any T ≥ 4ℓ
determines the Schrödinger operator A (i.e. the potential ~q and the matrix S1 from
the matching conditions at the central vertex) up to the similarity transformation
(2.14), in other words the family of all possible operators A corresponding to the
same principal (m−1)×(m−1) block of the response operator can be parameterized
as follows:

(4.1) Aθ = R−θARθ , θ ∈ [0, 2π),

where A is any particular member of the family.

The Theorem holds even if the principal (m − 1) × (m − 1) block of the TW-
function M(λ) is known. Note that to know RT , T > 2ℓ suffices to determine
the matching conditions (up to the described unitary transformation), whereas the
knowledge of RT , T ≥ 4ℓ is necessary for recovering the potential on ∆m.

To prove the theorem, we first consider the case where the potential is different
from zero only on the edge ∆m, then we reduce a general problem to this situation.

Lemma 4.2. Theorem 4.1 is valid under additional assumption that the potential
~q is different from zero only on the edge ∆m, i.e.

(4.2) qj(x) = 0, j = 1, 2, . . . ,m− 1.

Proof. Assume that the principal (m− 1)× (m− 1) block of the TW-function or of
the dynamical response operator is known.

Consider the wave equation (2.8), subject to the matching conditions (2.2), the
boundary control through the first m−1 boundary points (3.2) and with zero initial
data (2.10). Since the potential q is different from zero only on the edge ∆m, any
solution of (2.8) on the intervals ∆j , j = 1, 2, . . . ,m− 1 can be written as before as
a combination of d’Alembert waves:

(4.3) P⊥

m ~w(x, t) = ~bm−1(t+ x) + ~am−1(t− x).

The boundary control initiates the following wave travelling toward the central
vertex

P⊥

m ~w(x, t) = ~fm−1(t+ x− l), t < ℓ.

It is clear that

wm(x, t) = 0, t < ℓ,

and the last two formulas can be combined as

(4.4) ~w(x, t) = ~fm−1(t+ x− l), t < ℓ.

For slightly larger values of t (ℓ < t < 2ℓ) the solution will contain waves scattered
by the central vertex, but just the same incoming wave

(4.5) P⊥

m ~w(x, t) = ~fm−1(t+ x− l) + ~am−1(t− x), ℓ < t < 2ℓ.

The last component wm(x, t) will be in general different from zero for t > ℓ. The
values of wm(0, t) and its normal derivative ∂nwm(x, t)|x=0 = w′

m(0, t) are related

Inverse Problems and Imaging Volume 4, No. 4 (2010), 579–598



590 Sergei Avdonin, Pavel Kurasov and Marlena Nowaczyk

via the dynamical response operator RT
m for the interval ∆m:

(4.6) (RT
mwm(0, ·))(t) = w′

m(0, t),

where

(4.7) (RT
mg)(t) = −g′(t) +

∫ t

0

rm(t− τ)g(τ)dτ, t ∈ (0, 2ℓ).

The kernel rm(t) belongs to L1 provided q ∈ L1 [3, 1].
In what follows it is convenient to use the notation am(t) = wm(0, t). Then the

matching conditions give us the following system of integro-differential equations

(4.8)
i(S1 − I)

(

~fm−1(t− ℓ) + ~a(t)
)

= (S1 + I)

(

d

dt
~fm−1(t− ℓ)−

d

dt
~a(t) +

∫ t

0

rm(t− τ)Pm~a(τ)dτ

)

,

where Pm is the projector on the last basis vector in Cm. Consider this system of
equations in the orthogonal decomposition

C
m = N−1 ⊕N⊥

−1.

Projecting the left and right hand sides of the equation on N−1 we get the system
of easily solvable linear equations

(4.9) PN−1

~fm−1(t− ℓ) + PN−1
~a(t) = 0 ⇒ PN−1

~a(t) = −PN−1

~fm−1(t− ℓ).

On the other hand, projection onto N⊥
−1 gives the system of integro-differential

equations

H
(

PN⊥

−1

~fm−1(t− ℓ) + PN⊥

−1

~a(t)
)

=
d

dt
PN⊥

−1

~fm−1(t− ℓ)−
d

dt
PN⊥

−1

~a(t) +

∫ t

0

rm(t− τ)PN⊥

−1

Pm~a(τ)dτ

⇒ HPN⊥

−1

~a(t) +
d

dt
PN⊥

−1

~a(t)−

∫ t

0

rm(t− τ)PN⊥

−1

Pm~a(τ)dτ

(4.10) = −HPN⊥

−1

~fm−1(t− ℓ) +
d

dt
PN⊥

−1

~fm−1(t− ℓ).

Multiplying the last equation by exp(Ht) and integrating from t = 0 to t = t′ gives
us

exp(Ht′)PN⊥

−1

~a(t′)−

∫ t′

0

exp(Ht)

∫ t

0

rm(t− τ)PN⊥

−1

Pm~a(τ)dτdt

(4.11) = exp(Ht′)PN⊥

−1

~fm−1(t′ − ℓ)− 2H

∫ t′

0

exp(Ht)PN⊥

−1

~fm−1(t− ℓ)dt.

Finally we arrive at the equation

(4.12)
PN⊥

−1

~a(t)−

∫ t

0

k(t− τ)~a(τ)dτ

= PN⊥

−1

~fm−1(t− ℓ)− 2H exp(−Ht)

∫ t

0

exp(Hτ)PN⊥

−1

~fm−1(τ − ℓ)dτ,

with the matrix-valued difference kernel k,
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(4.13) k(s) = exp(−Hs)

∫ s

0

exp(Hy)rm(y)PN⊥

−1

Pmdy.

Let us note that the kernel is continuous and equal to zero at the origin; its first
derivative belongs to L1 locally.

We denote the right hand side of (4.12) by PN⊥

−1

~a0(t), since it represents the

solution to the differential equation in the case of zero potential (i.e. rm ≡ 0). In
order to put this equation into Volterra form, let us use the decomposition

~a = PN⊥

−1

~a+ PN−1
~a

to get

(4.14) PN⊥

−1

~a(t)−

∫ t

0

k(t− τ)PN⊥

−1

~a(τ)dτ = PN⊥

−1

~a0(t) +

∫ t

0

k(t− τ)PN−1
~a(τ)dτ.

Note that the vector valued function PN−1
~a(τ) is already determined by (4.9). Equa-

tion (4.14) can be solved by iterations:
(4.15)

PN⊥

−1

~a(t) = PN⊥

−1

~a0(t) +

∫ t

0

k(t− τ)PN−1
~a(τ)dτ

+

∫ t

0

p(t− τ)

(

PN⊥

−1

~a0(τ) +

∫ τ

0

k(τ − s)PN−1
~a(s)ds

)

dτ,

where the kernel p(s) has properties similar to those of k(s), i.e. p is a continuous
function and its derivative is from L1 locally, moreover p(0) = 0.

Finally, the function ~a is determined by the formula

(4.16)
~a(t)
= PN−1

~a(t) + PN⊥

−1

~a(t)

= −PN−1

~fm−1(t− ℓ) + PN⊥

−1

~fm−1(t− ℓ)

−2H exp(−Ht)

∫ t

0

exp(Hτ)PN⊥

−1

~fm−1(τ − ℓ)dτ −

∫ t

0

k(t− τ)PN−1

~fm−1(τ − ℓ)dτ

+

∫ t

0

p(t− τ)
(

PN⊥

−1

~fm−1(τ − ℓ)− 2H exp(−Hτ)
∫ τ

0 exp(Hs)PN⊥

−1

~fm−1(s− ℓ)ds
)

dτ

−

∫ t

0

p(t− τ)

∫ τ

0

k(τ − s)PN−1

~fm−1(s− ℓ)dsdτ.

Summing up the solution to the system (2.8), (2.2), (3.2), and (2.10) for ℓ < t < 2ℓ
on the first m− 1 edges is given by
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(4.17)

P⊥

m ~w(x, t)

= ~fm−1(t+ x− ℓ) + P⊥

mS∞ ~fm−1(t− x− ℓ)

−2P⊥

mH exp(−H(t− x))

∫ t−x

ℓ

exp(Hτ)PN⊥

−1

~fm−1(τ − ℓ)dτ

−P⊥

m

∫ t−x

ℓ

k(t− x− τ)PN−1

~fm−1(τ − ℓ)dτ

+P⊥

m

∫ t−x

ℓ

p(t− x− τ)
(

PN⊥

−1

~fm−1(τ − ℓ)− 2H exp(−Hτ)
∫ τ

ℓ
exp(Hs)PN⊥

−1

~fm−1(s− ℓ)ds
)

dτ

−P⊥

m

∫ t−x

ℓ

p(t− x− τ)

∫ τ

ℓ

k(τ − s)PN−1

~fm−1(s− ℓ)dsdτ,

where we have changed some of the integration limits taking into account that
~fm−1(t) = ~0 for t < 0. The corresponding dynamical response operator RT for
t ∈ (0, 2ℓ) does not feel the reflection from the central vertex, since the scattered
wave ~a(t − x) is equal to zero for x = ℓ and t < 2ℓ. In order to get a nontrivial
response one has to consider the values of t which are greater than 2ℓ. Only for
such values of t the wave initiated by the boundary control has enough time to get
to the central vertex, to be reflected from it and to reach the boundary again.

Consider now the interval 2ℓ < t < 3ℓ. In order to calculate the solution for
such values of t one has to take into account the reflection of the ~a-wave from the
boundary. Since we consider the Dirichlet boundary control (3.2), the solution is:

(4.18) P⊥

m ~w(x, t) = ~fm−1(t+ x− ℓ) + P⊥

m~a(t− x)− P⊥

m~a(t+ x− 2ℓ),

where ~a is the function given by (4.16). To determine the principal (m−1)×(m−1)
block of the response operator we have to calculate

∂nP
⊥

m ~w(ℓ, t) = −
∂

∂x
P⊥

m ~w(x, t)|x=ℓ = −
d

dt
~fm−1(t) + 2P⊥

m

d

dt
~a(t− ℓ).

It follows that

(4.19)

(

P⊥

mRTP⊥

m
~fm−1

)

(t)

= −
d

dt
~fm−1(t) + 2P⊥

mS∞P⊥

m

d

dt
~fm−1(t− 2ℓ)

−4P⊥

mPN⊥

−1

HPN⊥

−1

P⊥

m
~fm−1(t− 2ℓ) +

∫ t−ℓ

ℓ

g(t− τ)~fm−1(τ − ℓ)dτ,

where g is a certain L1 kernel. The last formula shows that the kernel of the
response operator in the presence of a nontrivial potential on ∆m has the same main
singularities as the kernel of the response operator for the Laplacian (corresponding
to the same matching conditions at the central vertex).

Formula (4.19) shows that the principal block of the response operator determines
the following matrices

P⊥

mS∞P⊥

m and P⊥

mP⊥

N−1
HP⊥

N−1
P⊥

m ,

which in accordance with Theorem 3.2 and Lemma 3.3 determine the matrix S1 up
to the transformation (3.13) containing the real parameter θ.

It remains to prove that the potential on ∆m is also uniquely determined by the
principal (m − 1)× (m − 1) block of the response operator RT , T ≥ 4ℓ. Equation
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(4.8) can be written as
(4.20)

i(S1 − I)
(

~fm−1(t− ℓ) + ~am−1(t)
)

− (S1 + I)
d

dt

(

~fm−1(t− ℓ)− ~am−1(t)
)

= −iam(t) (S1 − I)~em + (RT
mam)(t) (S1 + I)~em,

where ~em is the m-th basic vector in Cm and ~am−1 = P⊥
m~a. We assume that the

matrix S1 is known, then the last equation allows one to calculate both am - the con-
trol function for the interval ∆m and RT

mam - the corresponding response. We need
to show that any admissible function am ∈ W 1

2 [ℓ, 3ℓ], am(ℓ) = 0, can be obtained.
(The reflected wave am is equal to zero for t < ℓ.)

Since the matrix S1 is irreducible, the subspace N−1 contains a vector ~u ∈ N−1

with um 6= 0, then it holds

(S1 + I)P⊥

m~u = −um(S1 + I)~em.

It follows in particular that the two ranges coincide

R(S1 + I)P⊥

m = R(S1 + I) (= C
m ⊖N−1) .

Similarly the space Cm⊖N−1 contains a vector ~w ∈ Cm⊖N−1 with wm 6= 0, which
implies that (S1 − I)~w ⊥ N−1. Then there exists a certain vector ~vm−1 such that

(S1 − I)~w = (S1 + I)~vm−1.

The last equation implies that

(S1 − I)P⊥

m ~w − (S1 + I)~vm−1 = −wm(S1 − I)~em

i.e. the equation

(S1 − I)~wm−1 − (S1 + I)~vm−1 = (S1 − I)~em

has a solution.
Summing up one can always find a solution to (4.20), i.e. the functions

~fm−1(t− ℓ) + ~am−1(t)

and
d

dt

(

~fm−1(t− ℓ)− ~am−1(t)
)

,

allowing to calculate the control ~fm−1 and the reflected wave ~am−1 leading to any
given am. To reconstruct potential on ∆m we need to know the response operator
RT

m for T ≥ 3ℓ, which in turn requires knowledge of the principal (m− 1)× (m− 1)
block of the reponse operator RT for T ≥ 4ℓ. The potential on ∆m is independent
of the parameter θ in the matrix S1.

We return now to the proof of the theorem formulated at the beginning of this
section.
Proof of Theorem 4.1. The principal block of the dynamical response operator for
T = 2ℓ determines the potential on the first m − 1 edges [1]. It was proven that
the diagonal element of dynamical response operator known for T = 2d determines
the potential on the corresponding boundary edge on the distance less or equal to
d from the boundary (provided d is less than the length of the boundary edge).
The reconstruction procedure is local and can be applied to trees with arbitrary
matching conditions at the vertices. Hence the principal block of the dynamical
response operator for A known for T = 2ℓ determines the potential on the first
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m− 1 edges. It remains to prove that the matching conditions and the potential on
∆m can be recovered.

For readers convenience we present here a proof based on TW-function instead
of the dynamical response operator. Let us consider two Schrödinger operators A
and Â both acting in L2(Γ) and defined by the same matching condition at the
central vertex, but by different potentials:

A = L+Q, Q = diag {q1, q2, . . . , qm},

Â = L+ Q̂, Q̂ = diag {0, 0, . . . , 0, qm},

where L is a Laplacian defined by matching conditions (2.2). Let M(λ) and M̂(λ)
denote the corresponding TW-functions. To prove Theorem 4.1 it is enough to

calculate the principal block of M̂(λ) from the principal block of M(λ). Consider
any vector ~vm−1 and the corresponding solution u to equation (2.6) subject to
matching conditions (2.2) and boundary conditions

~u(ℓ) = ~vm−1.

The normal derivatives of u can be calculated

(4.21) P⊥

m∂n~u(ℓ) = P⊥

mM(λ)P⊥

m~vm−1.

The knowledge of uj(ℓ), u
′

j(ℓ) and of the corresponding potential qj(x) allows one

to calculate uj(0), u
′

j(0), j = 1, 2, . . . ,m − 1. Consider now solutions û to the
Schrödinger equation with zero potential,

(4.22) − û′′

j (x) = k2ûj(x),

satisfying the same initial data

(4.23) ûj(0) = uj(0), û′

j(0) = u′

j(0), j = 1, 2, . . . ,m− 1.

Let us introduce the notations

v̂j = ûj(ℓ), ∂nv̂j = −û′

j(ℓ).

It is clear that the vectors ~̂vm−1 and ∂n~̂v
m−1 are uniquely determined by ~vm−1.

Moreover the mapping

~vm−1 7→ ~̂vm−1

is one-to-one, since the vector ~vm−1 is uniquely determined by ~̂vm−1. (The trans-

formation is similar to the one just described.) Hence the vectors ~̂vm−1 span the

m − 1-dimensional subspace of Cm and the matrix P⊥
mM̂(λ)P⊥

m connecting ~̂vm−1

and ∂n~̂v
m−1 is unique

∂n~̂v
m−1 = P⊥

mM̂(λ)P⊥

m
~̂vm−1.

Summing up P⊥
mM(λ)P⊥

m determines P⊥
mM̂(λ)P⊥

m . Using the principal block of

M̂(λ), one can reconstruct the potential on ∆m and the matching conditions up to
the transformation described by (4.1).

To accomplish the proof we have to show that the knowledge of P⊥
mRTP⊥

m for
T = 4ℓ is enough. This can be done by contradiction. We are going to use once
more the ideas developed in the proof of Lemma 4.2. Assume that two different
Schrödinger operators on Γ determine the dynamical response operators RT and
R̃T such that

(4.24) P⊥

mRTP⊥

m = P⊥

mR̃TP⊥

m for T = 4ℓ,
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but

(4.25) P⊥

mRTP⊥

m 6= P⊥

mR̃TP⊥

m ,

in general. The expression (4.19) has to be modified, but will contain the same main
singularities allowing to reconstruct the matching conditions, up to the parameter
θ of course. Hence the two Schrödinger operators may be different only if the
potentials on ∆m are different and therefore if the corresponding response operators
RT

m and R̃T
m are different already for T = 3ℓ4, i.e. there exists a certain am, such

that RT
mam 6= R̃T

mam. Equation (4.20) can be written as follows

(4.26)
i(S1 − I)~wm−1(0, t)− (S1 + I)

∂

∂x
~wm−1(0, t)

= −iam(t)(S1 − I)~em + (RT
mam)(t)(S1 + I)~em,

where ~w(x, t) is a solution to the corresponding wave equation. The vector functions
~wm−1(0, t) and ∂

∂x
~wm−1(0, t) for t ∈ [0, 3ℓ] are uniquely determined by the con-

trol function ~fm−1(t) = ~wm−1(ℓ, t) and the corresponding response − ∂
∂x

~w(0, t) =

(P⊥
mRTP⊥

m
~fm−1)(t) for t ∈ [0, 4ℓ]. On the other hand as in the proof of Lemma

4.2, equation (4.26) shows that the vector functions ~wm−1(0, t) and ∂
∂x

~wm−1(0, t)

determine unique am and RT
mam, which implies that RT

mam = R̃T
mam and we get a

contradiction. To see that every admissble function am is possible, consider again
(4.26) allowing from am and RT

mam to find (non unique) vector functions ~wm−1(0, t)

and ∂
∂x

~wm−1(0, t), which in turn allow to calculate control ~fm−1(t) = ~wm−1(ℓ, t)
leading to given am.

5. Arbitrary star graphs: Generalizations and discussions. Developed meth-
ods can be easily applied to arbitrary star graphs, i.e. the restriction that the
lengths of the edges are all equal is not essential. Vector notations for the potential
q and the function u are not appropriate anymore. Nevertheless we do not need to
reformulate all definitions (for the TW-function, the dynamical response operator,
etc.), since all necessary changes are completely obvious (see, e.g. [1]).

Theorem 5.1. Assume that:

• Γ is a star graph formed by m edges ∆j = [x2j−1, x2j ], j = 1, 2, . . . ,m con-
nected together at the vertex v0 = {x1, x3, . . . , x2m−1};

• L = − d2

dx2 is a Laplace operator in L2(Γ) defined on the domain of functions

from w ∈ W 2
2 (Γ \ {v0}) satisfying the matching conditions at the vertex v0

(5.1) i(S1 − I)











w(x1)
w(x3)

...
w(x2m−1)











= (S1 + I)











w′(x1)
w′(x3)

...
w′(x2m−1)











and Dirichlet boundary conditions at the vertices vj = {x2j}

(5.2) w(x2j) = 0, j = 1, 2, . . . ,m;

• A = L + q is a Schrödinger operator in L2(Γ) with a certain real potential
q ∈ L2(Γ);

• the matrix S1 parameterizing the matching conditions (5.1) is irreducible as
well as the limiting scattering matrix S∞ defined by (3.9);

4The corresponding control functions vanish for t < ℓ.
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• M(λ) and RT are the TW-function and the dynamical response operator as-
sociated with the graph boundary ∂Γ = {x2, x4, . . . , x2m}.

Then the reduced spectral data consisting either of the principal (m−1)×(m−1) block
of the TW-function or of the response operator RT , T ≥ 2maxj=1,2,...,m−1{ℓj+ℓm},
where ℓj = x2j − x2j−1, determine the Schrödinger operator A, more precisely the
potential q and the matrix S1 from the matching conditions at the central vertex,
up to the similarity transformation

(5.3) A 7→ ρ−θAρθ,

where ρθ is the unitary operator of multiplication by the function

ρθ =

{

1, x ∈ ∆j , j = 1, 2, . . . ,m− 1;
eiθ, x ∈ ∆m;

θ ∈ [0, 2π)

All possible operators A corresponding to the same reduced spectral data can be
parameterized as follows

(5.4) Aθ = ρ−θAρθ, θ ∈ [0, 2π)

where A is any particular member of the family.
In other words, the reduced spectral data determine the unique real potential q

and the matching conditions at the central vertex up to the similarity transformation

S1 7→ RθS
1R−θ, θ ∈ [0, 2π).

Proof. The proof follows the main lines of proof of Theorem 4.1. The diagonal
part of the principal block of the dynamical response operator RT determines the
potential on the edges ∆j , j = 1, 2, . . . ,m− 1.

Together with the graph Γ let us consider another star graph Γ̃ formed by m− 1
edges all having the same length ℓ and the edge ∆m. Consider the Schrödinger
operator Ã in L2(Γ̃) determined by the same matching conditions at the central
vertex and the potential

q̃(x) =

{

0, x /∈ ∆m,
qm(x), x ∈ ∆m.

The corresponding TW-function and the dynamical response operator will be de-
noted by M̃(λ) and R̃T respectively.

Let us show how to calculate the principal block of M̃(λ) from the principal block
of M(λ). This transformation is similar to one used in the proof of Theorem 4.1.
Consider any vector ~vm−1 and the corresponding solutions u to the equation

−u′′ + q(x)u = λu, x ∈ ∆j , j = 1, 2, . . . ,m,

to matching conditions (2.2) and boundary conditions

u(x2j) = vj , u(x2m) = 0.

The derivatives of u at the points x2j , j = 1, 2, . . . ,m− 1 can be calculated

(5.5) P⊥

m















u′(x2)
u′(x4)

...
u′(x2m−2)

0















= −P⊥

mM(λ)P⊥

m~vm−1.
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The knowledge of u(x2j), u
′(x2j) and of the corresponding potential q(x), x ∈

∆j allows one to calculate u(x2j−1), u
′(x2j−1), j = 1, 2, . . . ,m − 1. Consider now

solutions ũj to the Schrödinger equation with zero potential,

−ũ′′

j = λũj , x ∈ [0, ℓ],

satisfying the just calculated initial conditions
{

ũj(0) = u(x2j−1),
ũ′

j(0) = u′(x2j−1).

We introduce the notations:

ṽj = ũj(ℓ), ṽm = 0, ∂nṽj = −ũ′

j(ℓ), ∂nṽm = 0.

The vectors ~̃vm−1 span the m− 1 dimensional subspace of Cm up and the relation

∂nṽ
m−1 = P⊥

mM̃(λ)P⊥

m
~̃vm−1

determines P⊥
mM̃(λ)P⊥

m .

As the proof of Theorem 4.2 shows the principal block P⊥
mM̃(λ)P⊥

m determines
the matching conditions at the central vertex (up to the similarity transformation)
and the TW-function Mm(λ) associated with the Schrödinger operator in L2(∆m).

Summing up we were able to reconstruct the real potential q and the matching
conditions (5.1) up to the similarity transformation (2.14).

Finally we would like to underline that our approach based on the Boundary
Control Method allows one not only to prove the uniqueness theorems, but to
develop an effective algorithm enabling one to reconstruct the tree, potential and
matching conditions. This algorithm has a local character. The method can also be
used to recover the geometric graph, i.e. the lengths of all adges, but under certain
additional assumptions on the matrix S1.

The results proven in the current article will be used to solve the inverse problem
for quantum trees in its full generality, i.e. it will be shown how to reconstruct
the tree, the potential and the matching conditions at all internal vertices. This
programme will be carried out in one of our future publications.

Acknowledgments. The authors would like to thank the referee for several valu-
able remarks that helped to improve the manuscript.
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