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Quantum graphs having one cycle are considered. It is shown that if the cycle contains at least three vertices,
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1. Introduction

Investigation of quantum graphs — differential oper-
ators on metric graphs — is a very important direction
of research in modern mathematical physics. Its impor-
tance is explained by possible applications of such mod-
els in nanophysics and studies of chaotic phenomena. If
spectral and scattering properties of such systems are
rather well-understood (see recent reviews in [1–5]), the
corresponding inverse problems appear to be rather dif-
ficult. Let us note that solution of the inverse problem
consists in reconstructing:

• the metric graph;

• the differential operator (or some of its coefficients,
like potential in the Schrödinger equation);

• the matching conditions at the vertices (coupling
together different edges and making the operator
self-adjoint).

The first inverse problem is relatively easy to analyze,
but numerous counterexamples show that pretty often
solution is not unique [6–10]. For general discussion of
the current status of inverse problems for graphs we refer
to [11] (see also [12–15]). The main subject of the cur-
rent paper is the second inverse problem in its classical
form: recovering of the potential in the Schrödinger equa-
tion. This problem has been solved in the case of trees
[16–24]. During these investigations it became clear that
the Titchmarsh–Weyl (TW) matrix function associated
with all boundary points of the graph may play the role
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of the spectral data for such problems†. This function
is sometimes called by Dirichlet-to-Neumann map, since
it connects Dirichlet and Neumann data for solutions of
the eigenfunction equation. It is a matrix Nevanlinna
function [25] and is closely related to the multichannel
scattering [26].

We are going to consider graphs with cycles. Very few
results are available for such systems and it appears natu-
ral to start our studies by looking at graphs with just one
cycle. The inverse problem for trees can be solved using
e.g. the boundary control method [27, 20, 24] allowing one
to reconstruct potential locally starting from the graph’s
boundary. If the graph has at least one cycle, then the
potential on the cycle cannot be reconstructed using local
methods: calculation of the potential requires consider-
ation of the whole cycle at once. Moreover this prob-
lem may not have a unique solution [28, 7, 29]. It ap-
peared that this inverse problem is closely related to the
inverse problem for periodic one-dimensional Schrödinger
operators and we are going to use methods developed in
[30–34]. These methods have been applied in [11] to an-
alyze simplest graphs with one cycle. It appears that the
number of vertices on the cycle plays a very important
role‡. In the case of graphs with loops (cycles attached
by its end points to just one vertex) potential cannot al-
ways be reconstructed uniquely. The same holds true in
the case of cycles containing just two vertices. It was sug-

† For general definitions of graph’s boundary and corresponding
Titchmarsh–Weyl function see [11]. In the special case under
consideration these objects are rigorously defined in Sect. 2.

‡ In what follows speaking about the number of vertices on the cy-
cle we are going to have in mind only vertices that join together
at least three edges. The vertices joining together just two ver-
tices can be removed, since only standard matching conditions
(2.1) are considered in this paper.
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gested in [11] to take into consideration magnetic fields
in order to extract additional information on the system.
It was shown that for graphs having one cycle which is
not a loop the knowledge of the Titchmarsh–Weyl func-
tion for two different values of the magnetic flux through
the cycle allows one to reconstruct potential uniquely,
provided certain non-resonance conditions are hold true.
But this approach is based on detailed studies of graphs
having one cycle with just two vertices. It was conjec-
tured that if the number of vertices on the cycle is larger
than two, then the potential may always be reconstructed
without any help of the magnetic field. Another conjec-
ture concerns the possibility to reconstruct potential in
the case of graphs completely covered by shortest paths
connecting all boundary points. In order to show that
these conjectures in general do not hold we decided to
study the case of graphs having one cycle with three ver-
tices. It is proven that the reconstruction is unique only
if the system has no resonance (described in Sect. 3). It
is also shown that if the system has a resonance, then the
inverse problem may have multiple solutions.

Our result is closely related to the theorem proven by
Yurko [29], who showed that the inverse problem for such
graphs has a unique solution, provided the set of spectral
data is extended by adding a certain sequence of signs.
Such extension of the set of scattering data is essential,
since it allows one to recover the potential even for loops.
It also appears problematic to obtain such sequence in a
realistic experiment. Moreover it is not clear whether
this sequence is really necessary. Our results imply that
under certain explicit conditions satisfied for almost all
potentials, the reconstruction can be done using just the
Titchmarsh–Weyl function and therefore the infinite se-
quence of signs may be redundant.

2. Cycle with three contact points

Consider the graph Γ formed by one cycle with three
edges attached to it (see Fig. 1). The corresponding
Schrödinger operator L is defined on the domain Dom(L)
of functions from ⊕∑6

j=1 W 2
2 [x2j−1, x2j ] ⊂ L2(Γ ) satis-

fying standard matching conditions at the three inter-
nal vertices V1 = {x1, x6, x7}, V2 = {x2, x3, x9}, and
V3 = {x4, x5, x11}:{

ψ(xi) = ψ(xj), xi, xj ∈ Vm,∑
xj∈Vm

∂nψ(xj) = 0,
m = 1, 2, 3, (2.1)

and Dirichlet boundary conditions at the boundary ver-
tices V4 = {x8}, V5 = {x10}, and V6 = {x12}:

ψ(xj) = 0, j = 8, 10, 12. (2.2)
Here ∂nψ(xj) denotes the normal derivative of the func-
tion u in the direction from the corresponding vertex.
Depending on whether xj is the left or the right end point
of the corresponding interval, ∂nψ(xj) is equal either to
ψ′(xj) or to −ψ′(xj).

The action of the operator L is given by the
Schrödinger differential expression

Lψ = −ψ′′ + q(x)ψ, (2.3)
where q(x) ∈ L2(Γ ) is a real valued potential. The op-
erator L so defined is self-adjoint in the Hilbert space
L2(Γ ).

With the differential operator L we associate so-called
Titchmarsh–Weyl (matrix) function M(λ) (denoted by
TW-function in what follows). Let ψ be a solution to
the differential equation

−ψ′′ + q(x)ψ = λψ, =λ > 0, (2.4)
satisfying standard matching conditions (2.1) at all
internal vertices and prescribed boundary values
ψ(x8), ψ(x10), ψ(x12) at the boundary vertices. Such so-
lution always exists and is unique, since otherwise the
self-adjoint operator L would have a nonreal eigenvalue.

Fig. 1. Graph Γ . Ring with three wires.

It appears that the TW-function for the graph Γ in
general does not determine the potential q on its kernel,
i.e. on the cycle obtained from Γ by cutting off all three
boundary edges [x7, x8], [x9, x11] and [x11, x12]. From our
point of view the best way to describe sufficient con-
ditions which guarantee unique solution to the inverse
problem is using the notion of resonance introduced in
the following section.

3. Kernel resonance

Let us consider the following definition:
Definition 1. We are going to say that the

Schrödinger operator on the graph Γ has a resonance
with the energy E if and only if the Dirichlet–Dirichlet
spectra of the Sturm–Liouville operators on the intervals
[x1, x2], [x3, x4], and [x5, x6] contain one and the same
eigenvalue E§.

The following two lemmas characterize the notion of
the resonance.
Lemma 1. Assume that the operator L in L2(Γ ) has

an eigenfunction supported by the kernel of Γ , then the
system has a resonance with the same energy.

§ Using the transfer matrices T m for the intervals [x2m−1, x2m]
(defined by (4.2)) the resonance condition can be written in the
form t112(E) = t212(E) = t312(E) = 0.
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The proof is almost identical to the proof of Lemma
7.1 from [11].

To formulate the second lemma we shall need the no-
tion of the scattering matrix associated with the graph Γ .
Consider the extended graph Γ ext (see Fig. 2) obtained
from Γ by attaching semi-infinite intervals to its bound-
ary vertices x8, x10 and x12. The potential q is extended
to the whole Γ ext by putting q|Γext\Γ ≡ 0. Then the
scattering matrix S(λ) for the Schrödinger operator on
Γ ext and the TW-function for the graph Γ are related as
follows (see [11] for details):

S(λ) =
ik −M(λ)
ik + M(λ)

. (3.1)

Fig. 2. The extended graph Γ ext.

Lemma 2. Assume that the operator L has a reso-
nance with the energy E, then either the operator L has
an eigenfunction with the same energy supported by the
kernel of the graph (equivalently, has support separated
from the boundary) or the corresponding scattering ma-
trix S(E) is diagonal.
Proof. The proof is again similar to the proof of the

corresponding lemma in [11] (Lemma 7.2). Assume that
the system has a resonance with the energy E. Then us-
ing the eigenfunctions of the Sturm–Liouville operators
on [x1, x2], [x3, x4], and [x5, x6] one may construct a not
identically equal to zero function fker, which is equal to
zero at V1, V2 and V3 and has continuous derivative ev-
erywhere on the cycle (including vertices V2 and V3) but
may be not at the vertex V1. Consider the following two
possible cases:

1. If fker has continuous first derivative at V1, then
extending the function by zero to the rest of Γ we
get an eigenfunction of L supported by the kernel
of Γ .

2. If the first derivative of fker is not continuous at
V1, then consider the unique (up to a multiplier)
function fscat which solves (2.4) on the interval
[x7,∞) and satisfies Dirichlet boundary condition
at x7. Now using the functions fker and fscat one
may combine a scattered wave equal to zero on

[x9,∞) and [x11,∞) and satisfying matching condi-
tions (2.1) at all vertices. It follows that the corre-
sponding reflection coefficient has absolute value 1.

The other two wires can be considered in a similar way
leading to the conclusion that the system either has an
eigenfunction supported by its kernel, or the correspond-
ing scattering matrix is diagonal at this energy. ¤

Summing up we would like to underline that the no-
tion of the resonance is closely related to eigenfunctions
supported by the kernel of the graph and to quantum
blockade. The diagonality of the scattering matrix at a
certain energy implies that plane waves with this energy
do not penetrate through the system but are completely
reflected by it.

4. Solution of the inverse problem for systems
without resonances

The TW (matrix) function associated with the graph
Γ can easily be calculated using TW-functions associ-
ated with each interval [x2m−1, x2m], m = 1, . . . , 6. In
[11] it was proven that the potential on the boundary
edges, i.e. on the edges [x7, x8], [x9, x10], [x11, x12] in our
case, can be reconstructed using the boundary control
method described for example in [27, 24, 35]. Therefore
the problem we are going to discuss here is how to recon-
struct the kernel of the graph and potential q on it. The
kernel of the graph is nothing else than the cycle formed
by the intervals [x1, x2], [x3, x4], [x5, x6] coupled together
in a circular way. The kernel has three contact points
x7, x9, x11 and the corresponding TW function is a 3× 3
matrix function connecting together the boundary values
of any solution to the differential equation (2.4) satisfy-
ing the matching conditions (2.1):


ψ′(x7)
ψ′(x9)
ψ′(x11)


 = −Mker(λ)




ψ(x7)
ψ(x9)
ψ(x11)


 . (4.1)

This function can be calculated in terms of the transfer
matrices Tm associated with the intervals [x2m−1, x2m],
m = 1, 2, 3:(

ψ(x2m)
ψ′(x2m)

)
= Tm

(
ψ(x2m−1)
ψ′(x2m−1)

)
,

Tm =

(
tm11 tm12
tm21 tm22

)
, (4.2)

where ψ is any solution to (2.4) on [x2m−1, x2m]. The
matrices Tm have very special analytic properties and
uniquely determine the potential q on the corresponding
interval. In what follows it will be convenient to consider
tmij as functions of the spectral parameter k, k2 = λ.

To calculate the TW-matrix we put down the following
system of equations:
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



ψ(x7) = ψ(x1) = t311ψ(x5) + t312ψ
′(x5),

ψ(x9) = ψ(x3) = t111ψ(x1) + t112ψ
′(x1),

ψ(x11) = ψ(x5) = t211ψ(x3) + t212ψ
′(x3),

ψ′(x7) + ψ′(x1)−
[
t321ψ(x5) + t322ψ

′(x5)
]

= 0,

ψ′(x9) + ψ′(x3)−
[
t121ψ(x1) + t122ψ

′(x1)
]

= 0,

ψ′(x11) + ψ′(x5)−
[
t221ψ(x3) + t222ψ

′(x3)
]

= 0.

(4.3)

The first three lines express the fact that the function

ψ is continuous at the vertices and the last three equa-
tions describe the balance of the first derivatives at the
vertices (the second equation in (2.1)). In addition we
have expressed the values ψ(x2m), ψ′(x2m), m = 1, 2, 3
using the transfer matrices. The system (4.3) consists of
totally 9 linear equations connecting 12 variables. Ex-
cluding the variables ψ(x2m−1), ψ′(x2m−1), m = 1, 2, 3
one easily calculates the corresponding TW-function

Mker(λ) =




− t111t
3
12 + t112t

3
22

t112t
3
12

(t112)
−1 (t312)

−1

(t112)
−1 − t211t

1
12 + t212t

1
22

t212t
1
12

(t212)
−1

(t312)
−1 (t212)

−1 − t311t
2
12 + t312t

2
22

t312t
2
12




, (4.4)

or in other notations
Mker(λ)

=




− (T 1T 3)12
t112t

3
12

(t112)
−1 (t312)

−1

(t112)
−1 − (T 2T 1)12

t212t
1
12

(t212)
−1

(t312)
−1 (t212)

−1 − (T 3T 2)12
t312t

2
12




.

(4.5)
Theorem 1. Let Γ be a metric graph with Euler char-

acteristic zero (i.e. having just one cycle) and the ker-
nel having three contact points. Let L = − d2

dx2 + q be
a Schrödinger operator in L2(Γ ) determined by a real
potential q ∈ L2(Γ ) and matching/boundary conditions
(2.1) and (2.2). Assume that there is no resonance, then
the Titchmarsh–Weyl function associated with all bound-
ary points of Γ determines the metric graph Γ and the
real potential q uniquely.
Proof. Every (finite) graph Γ can be seen as its ker-

nel with several branches attached to it [11]. In the case
under consideration the kernel is just one cycle and the
number of branches is equal to three. As is proven in
[24, 11], the boundary control method allows one to re-
construct all the branches and potentials on them using
the corresponding TW-function. Moreover, it is possible
to calculate the TW-function Mker(λ) associated with
the kernel of the graph. Thus it remains to prove that
the kernel of the graph and the potential on it can be
reconstructed from Mker(λ).

Reconstruction of the graph is a relatively simple prob-
lem, since the TW-function Mker(λ) allows one to cal-
culate the lengths of the shortest paths connecting the
boundary points (by considering the wave equation evo-
lution on the graph and the corresponding dynamical re-
sponse operators, which are in one-to-one correspondence

with the TW-function [24, 11]). Moreover, zeroes of the
TW-function determine the spectrum of the Schrödinger
operator on the cycle without any contact points, i.e. de-
fined on the functions which are continuous and have con-
tinuous derivatives at the vertices V1, V2, and V3. There-
fore the total length of the cycle is also determined by
Mker(λ). This information (the lengths of the shortest
paths and the total length) is enough to reconstruct the
kernel of Γ .

Reconstruction of the potential is a slightly more so-
phisticated problem. To determine the potential it is
enough to know the functions tm12 and tm11, m = 1, 2, 3
[36–39]. (Their zeroes determine the Dirichlet–Dirichlet
and Neumann–Dirichlet spectra of the corresponding
Sturm–Liouville operators.) Our method to obtain these
functions is closely related to the solution of the inverse
problem for periodic one-dimensional Schrödinger opera-
tor developed by Marchenko and Ostrovsky [33, 34], see
also [32] and [40]. It is clear that Mker(λ) determines
uniquely the following functions:

t112, t
2
12, t

3
12, (T

1T 3)12, (T 2T 1)12, (T 3T 2)12. (4.6)
Since the functions tm12 are already determined, in order
to determine potentials on the intervals [x2m−1, x2m] it
remains to calculate the functions tm11. These functions
are entire functions of exponential type not larger than
x2m− x2m−1 (considered as functions of the spectral pa-
rameter k, k2 = λ).

As an example let us discuss how to calculate the func-
tion t111. The function

(T 1T 3)12 = t111t
3
12 + t112t

3
22

is determined by the element (Mker(λ))11. Consider the
zeroes of the function t112 to be denoted by k1

j , so that the
numbers (k1

j )2 = λ1
j form the Dirichlet–Dirichlet spec-

trum on [x1, x2]. If t312(k
1
j ) 6= 0, then the value of the

function t111 at this point can be calculated
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t111(k
1
j ) = (T 1T 3)12(k1

j )/t312(k
1
j ).

If t312(k
1
j ) = 0, then consider the function

(T 2T 1)12 = t211t
1
12 + t212t

1
22

determined by (Mker(λ))22. Note that t212(k
1
j ) 6= 0, since

otherwise the system would have a resonance with the
energy E = (k1

j )2. Taking into account that the transfer
matrix has unit determinant we may calculate the value
of t111(k

1
j ):

t111(k
1
j ) =

1
t122(k

1
j )

=
t212(k

1
j )

(T 2T 1)12(k1
j )

.

Summing up we have calculated the values t111(k
1
j ) for all

j, but the points k1
j satisfy the standard asymptotics

k1
j =

πj

x2 − x1
+ O(1).

Hence the entire function t111 is uniquely determined by
its values at these points (see e.g. [41]).

The two other functions t211 and t311 can be recon-
structed in a similar way. Thus the functions tm11 and
tm12 are reconstructed, which allows one to calculate the
unique potential q on ker(Γ ). ¤

The theorem implies that for almost all potentials the
inverse problem has a unique solution, since generically

the resonance is absent. In principle the non-resonance
condition can be weakened, but as will be shown in the
following section, it is impossible to get rid of a certain
restricting condition completely. The proof of the theo-
rem shows that even in the case of resonance the kernel
of the graph can be reconstructed uniquely.

5. Remark on magnetic Schrödinger operators

One may try to consider the same procedure as the
one developed in [11] for cycles with just two contact
points by considering external magnetic fields and thus
using spectral data for different values of the magnetic
flux through the cycle. Consider the differential operator

Lq,a =
[
−1

i
d
dx

+ a(x)
]2

+ q(x), (5.1)

where a ∈ C(Γ ) and q ∈ L2(Γ ) are real magnetic and
(electric) potentials, respectively. Let us denote by Φj

the integrals of the magnetic potential a along the inter-
vals [x2j−1, x2j ]:

Φj =
∫ x2j

x2j−1

a(x)dx.

The corresponding TW-function is given by

Mker(λ) =




− t111t
3
12 + t112t

3
22

t112t
3
12

e− iΦ1

t112

e iΦ3

t312

e iΦ1

t112
− t211t

1
12 + t212t

1
22

t212t
1
12

e− iΦ2

t212

e− iΦ3

t312

e iΦ12

t212
− t311t

2
12 + t312t

2
22

t312t
2
12




. (5.2)

One can see that considering spectral data depending
on the magnetic flux does not help us to obtain any new
function in addition to the list given in (4.6). On the
other hand, the phases Φj can easily be reconstructed
from (5.2) (up to 2πk, k ∈ Z) and therefore all possible in-
formation concerning the magnetic potential is uniquely
determined by Mker(λ). (The magnetic Schrödinger op-
erators with equal electric potentials q and the same
phases Φj are unitary equivalent.)

6. Counterexample

In this section we are going to present a counterexam-
ple showing that in general Mker(λ) does not determine
a unique potential on kerΓ , in other words, that certain
conditions that guarantee uniqueness are really needed.

This counterexample is a modification of the example
presented in [11].

Consider the case where kerΓ is a ring divided into
three equal intervals, i.e. x2 − x1 = x4 − x3 = x6 − x5.
In addition, we assume that the corresponding potentials
have transfer matrices with equal traces and elements 12:

t112 = t212 = t312 := t12,

t111 + t122 = t211 + t222 = t311 + t322 := 2u+. (6.1)
Introducing notations

um
− = (tm11 − tm22)/2, m = 1, 2, 3,

the corresponding TW-function can be written in the
form
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Mker(λ) =
1

t12



−(u1

− − u3
− + 2u+) 1 1

1 −(u2
− − u1

− + 2u+) 1
1 1 −(u3

− − u2
− + 2u+)


 . (6.2)

The matrix function Mker(λ) allows one to reconstruct
the following functions:

t12 = 1/(Mker(λ))12,

u+ = −t12TrMker(λ)/6,

um
− − um−1

− = −t12Mmm(λ)− 2u+,

m = 1, 2, 3, (6.3)
(with the indices 0 and 3 identified). Since the entries
of Mker(λ) depend only on the listed functions no other
characteristics of the system may be calculated.

Knowledge of u+ and t12 is not enough to reconstruct
potentials on the corresponding intervals. Consider ze-
roes kj of the function t12. It appears that the values of
um
− at these points are determined up to the signs νm

j :

um
− (kj) = νm

j

√
u2

+(kj)− 1.

Hence, provided the functions t12 and u+ are known, the
function um

− is uniquely determined by the sequence of
signs {νm

j }, νm
j = ±1.

Consider the case where ν1
j = ν2

j = ν3
j for a certain j.

These signs may be changed to the opposite ones and this
transformation does not affect the functions um

− − um−1
− .

It is clear that such modification of the functions um
− leads

to a different potential. One may obtain discrete fami-
lies of isomorphic potentials by changing several equal
indices.

7. Conclusions

It is interesting to compare these results with [11],
where the case of one cycle with just one and two contact
points was considered. It appears that in some sense it
becomes “easier” to reconstruct potential as the number
of vertices on the cycle increases. In the case of one vertex
this reconstruction in general is not unique. If the num-
ber of vertices is equal to two, then considering spectral
data for different values of the magnetic flux through the
cycle, one may reconstruct the potential, provided there
is no resonance. In the case of three vertices, to recon-
struct the potential it is enough to know the TW-function
for just one value of the magnetic flux.

It is clear that all phenomena discussed here are
present in the case of graphs with one cycle and several
(more than three) contact points as well as for graphs
having more than one cycle. The results of these in-
vestigations will be presented in one of the forthcoming
publications. It is clear that the notion of the resonance
discussed here is going to play a crucial role in these in-
vestigations.
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