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Abstract

It is proven that the essential spectrum of any self-adjoint operator associated with
the matrix differential expression
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consists of two branches. One of these branches (called regularity spectrum) can be
obtained by approximating the operator by regular operators (with coefficients which
are bounded near the origin), the second branch (called singularity spectrum) appears
due to singularity of the coefficients.

1 Introduction

The aim of this short note is to explain important spectral phenomenon which can be
observed for differential operators appearing in problems of magnetic hydrodynamics.
This phenomenon are due to the nonperturbative behavior of the essential spectrum. It
has been observed that the essential spectrum of a matrix differential operator on a finite
interval can be different from the limit of the essential spectra of the differential operators
determined by the same operator matrix on an increasing sequence of smaller intervals
tending to the original interval. Trivial counterpart of this phenomena is well known for
infinite intervals, since for example the essential spectrum of − d2

dx2 on a finite interval
[−an, bn] is empty and therefore does not give the essential spectrum of − d2

dx2 on the
whole line when an, bn → ∞. The phenomenon described in the current note is more
sophisticated and is due to a rather complicated interplay between the components of
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the matrix differential operator allowing singularities at the boundary points of a very
special form only. The aim of the current paper is to present an example of a matrix
differential operator on a finite interval with nonperturbative behavior of the essential
spectrum with respect to change of the interval. We develop algebraic technique which
can be used further to analyze similar phenomena for matrix partial differential operators.
The essential spectrum of this operator consists of two branches. One branch can be
described as the limit of the essential spectra of the operators restricted to the sets of
functions with the support on smaller intervals. The second branch is present for the
final interval only and is described by the singularities of the coefficients at the boundary
points of the interval. We call this branch the singularity spectrum, or the essential
spectrum due to singularity in order to separate this part of the essential spectrum
from the spectrum described by operator coefficients inside the interval – the regularity
spectrum.
Similar phenomena in connection with problems of magnetohydrodynamics have been

studied by V Adamyan, J Descloux, G Geymonat, G Grubb, T Kako, H Langer, A E Lif-
chitz, R Mennicken, M Möller, A Shkalikov, and others [1, 3, 4, 5, 6, 7, 8, 10, 12, 14, 15,
16, 17, 21, 22, 24]. Problems of magnetohydrodynamics are described by 3 × 3 matrix
differential operators [14, 12]. The existence of the new branch of the essential spectrum
was predicted by J Descloux and G Geymonat [4] and proven rigorously for the first time
by V Hardt, R Mennicken, and S Naboko [12]. In [7] another approach to the same
problem has been suggested using quasiregularity conditions, which are used intensively
in our approach. Connections between the new spectral branch and the zero set for the
symbol of the asymptotic Hain–Lüst operator were observed in [23]. The extension theory
for matrix non-singular differential operators was studied by many scientists, in particular
by F S Rofe-Beketov, L B Zelenko and H de Snoo [27, 30, 29]. The main teem of this
article is to study the corresponding problems with singularities and we concentrate our
attention to the phenomenon described above.
The operator under investigation in the current paper is determined by a 2 × 2 op-

erator matrix and represents the simplest differential operator possessing the described
phenomenon. It is defined on the interval [0, 1] and the matrix coefficients have singula-
rities at the origin. The order of the singularities as well as the differential order of the
matrix coefficients are chosen in such a way that they can cancel each other in the formal
determinant of

L :=
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
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
 . (1.1)

This operator resembles matrix differential operators appearing in the problems of mag-
netohydrodynamics [14, 12]. We describe first all self-adjoint operators associated with
this formal expression in the space H = L2[0, 1]⊕L2[0, 1]. In this description the quasireg-
ularity conditions (2.2) play a very important role. Under this condition the self-adjoint
operators associated with the matrix (1.1) are described by boundary condition at the
boundary point x = 1. Similar problem for block operators leading to Friedrichs exten-
sions of so-called minimal operator was analyzed by A Konstantinov and R Mennicken [19].
The differential operator is in the limit point case near the boundary point x = 0. In Sec-
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tion 3 we present the unitary transformation mapping the interval [0, 1] onto [0,∞) which
facilitates our studies of the singular point x = 0, being in the limit point case under
quasiregularity conditions. To establish the essential spectrum of the new operator (which
coincides with the essential spectrum of the original operator) we calculate its resolvent
on a certain subspace of finite co-dimension. The Hain–Lüst operator1 is introduced for
this purpose in Section 4. Since the essential spectrum is invariant under compact pertur-
bations of the resolvent we replace the original resolvent by another operator of the same
type so that the difference is a compact operator. We call this procedure cleaning of the
resolvent. To carry out this program we use the asymptotic Hain–Lüst operator. In order
to use the calculus of pseudo-differential operators, the operator is extended to the whole
axis without changing the essential spectrum. The spectrum is calculated in Section 6.
The two branches of the essential spectrum are presented explicitly and the relations with
the zeroes of the symbol of the asymptotic Hain–Lüst operator are discussed.
The aim of the current note is to explain the spectral phenomenon just described

without giving detailed proofs of all propositions to be found in our article [20].

2 The differential operator and quasiregularity conditions

Consider the minimal differential operator associated with the following 2 × 2 operator
matrix (1.1), where the real valued functions ρ(x), q(x), β(x), and m(x) are continuously
differentiable and are not equal to zero in the closed interval [0, 1]

ρ, q, β,m ∈ C2[0, 1] and |ρ|, |β|, |m| ≥ c > 0. (2.1)

These conditions on the coefficients are far from being optimal, but we are going to use
these restrictions in order to make the presentation more explicit. Condition (2.1) imply
in particular that matrix elements in (1.1) have non-removable singularities at the origin.
In addition we are going to require that the coefficients satisfy so-called quasiregularity

conditions at the origin

ρm− β2
∣∣
x=0

= 0,
d

dx

(
ρm− β2

) ∣∣
x=0

= 0. (2.2)

These conditions are necessary for the essential spectrum of any self-adjoint operator
corresponding to (1.1) to be bounded. This will follow from formula (6.7) below.
By Lmin we denote the minimal operator determined by (1.1) in the Hilbert space

H = L2[0, 1]⊕ L2[0, 1] with the domain C∞
0 (0, 1)⊕ C∞

0 (0, 1). We keep the same notation
for the closure of this operator. The operator Lmin is symmetric but not self-adjoint in H.
The adjoint operator is determined by the same operator matrix (1.1) on the domain

of functions satisfying the following five conditions

•

U = (u1, u2) ∈ L2[0, 1]⊕ L2[0, 1]. (2.3)
1This operator was introduced for the first time by K Hain and R Lüst in application to problems of

magnetohydrodynamics [11].
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•
u1 ∈W 1

2 (ε, 1) for any 0 < ε < 1. (2.4)

• The function

ωU (x) := −ρ(x)u′1(x) +
β(x)
x
u2(x) (2.5)

is absolutely continuous on [0, 1].

•
d

dx
ωU (x) =

d

dx

(
−ρ(x) d

dx
u1 +

β(x)
x
u2

)
∈ L2[0, 1]. (2.6)

•

−β(x)
x

d

dx
u1 +

m

x2
u2 ∈ L2[0, 1]. (2.7)

The function ωU is called transformed derivative and is well-defined for any function
U = (u1, u2)), u1 ∈ W 1

2,loc(0, 1) ∩ L2[0, 1], u2 ∈ L2[0, 1]. The transformed derivative ap-
pearing in the boundary conditions for the matrix differential operator L plays the same
rôle as the usual derivative for the standard one-dimensional Schrödinger operator. The
function ωU corresponding to U ∈ Dom(L∗) belongs to W 1

2 (0, 1), since it is absolutely
continuous and (2.6) holds.
Integrating by parts one obtains the following sesquilinear boundary form of the adjoint

operator for arbitrary U, V ∈ Dom(Lmin) :

〈L∗
minU, V 〉 − 〈U,L∗

minV 〉
= lim

ε↘0,τ↗1
{ωU (x)v1(x)|τx=ε − u1(x)ωV (x)|τx=ε} . (2.8)

Using this boundary form we are able to calculate the deficiency indices of the minimal
operator and describe its self-adjoint extensions.

Theorem 2.1. Suppose that the quasiregularity conditions (2.2) are satisfied and the
functions ρ, β,m do not vanish (i.e. the operator matrix is not regular). Then the operator
Lmin is a symmetric operator in the Hilbert space H with the deficiency indices (1, 1) and
all self-adjoint extensions of Lmin are described by the standard boundary condition at
point x = 1

ωU (1) = h1u1(1), h1 ∈ R ∪ {∞}. (2.9)

In the case h =∞, the corresponding boundary condition should be written as u1(1) = 0.

Proof. The point x = 1 is a regular boundary point, since the functions ρ−1, β
x ,

m
x2

are infinitely differentiable in a neighborhood of this point. The symmetric boundary
condition at the point x = 1 can be written in the form

ωU (1) = h1u1(1), (2.10)
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where h1 ∈ R∪∞ is a real constant parametrizing all symmetric conditions. The extension
of the operator Lmin to the set of infinitely differentiable functions with support separated
from the origin and satisfying condition (2.10) at the point x = 1 will be denoted by Lh1 .
Let us study the deficiency indices of the operator Lh1 . The operator adjoint to Lh1 is

the restriction of L∗
min to the set of functions satisfying (2.10). This operator is defined

by the operator matrix with real coefficients, therefore the deficiency indices of Lh1 are
equal. Moreover the differential equation on the deficiency element gλ for any λ /∈ R [2]
is given by

d

dx

(
−ρ(x) d

dx
gλ
1 +

β(x)
x
gλ
2

)
+ q(x)gλ

1 = λg
λ
1 ,

−β(x)
x

d

dx
gλ
1 +

m(x)
x2

gλ
2 = λg

λ
2 ; (2.11)

and it can be reduced to the following scalar differential equation for the first component

− d

dx

(
ρ(x) +

β(x)
x

1
λ−m(x)/x2

β(x)
x

)
d

dx
gλ
1 + q(x)g

λ
1 = λg

λ
1 . (2.12)

The component gλ
2 can be calculated from gλ

1 using the formula

gλ
2 = − 1

λ−m(x)/x2

β(x)
x

d

dx
gλ
1 .

Equation (2.12) is a second order ordinary differential equation with continuously differen-
tiable coefficients. Since the principle coefficient in this equation for nonreal λ is separated
from zero on the interval (ε, 1], the solutions are two times continuously differentiable func-
tions [13].
Boundary condition (2.10) implies that the first component satisfies the boundary con-

dition at point x = 1

−
(
ρ(1) +

β2(1)
λ−m(1)

)
d

dx
gλ
1 (1) = h1g

λ
1 (1). (2.13)

This condition is nondegenerate, since λ is nonreal. Therefore the subspace of solutions
to equation (2.11) satisfying condition (2.10) has dimension 1. But these solutions do not
necessarily belong to the Hilbert space H = L2[0, 1] ⊕ L2[0, 1]. If the nontrivial solution
is from the Hilbert space, gλ ∈ H, then the operator Lh1 is symmetric with deficiency
indices (1, 1). Otherwise the operator Lh1 is essentially self-adjoint [28]. If the principal
coefficient of equation (2.12) is bounded and separated from zero on the interval [0, 1], then
gλ ∈ H and the operator Lh1 has deficiency indices (1, 1). The last condition is satisfied
if for example m(0) �= 0 and ρ(0)m(0) − β2(0) �= 0, since �λ �= 0. Complete analysis
of equation (2.12) can be carried out using WKB method [26]. We are going instead to
analyze the boundary form.
Consider the vector function

E =


 −

∫ 1

x

β(t)
tρ(t)

dt

1


 ,
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which belongs to the domain of the adjoint operator L∗
min due to quasiregularity conditions.

Therefore

ϕE ∈ Dom(L∗
h1
).

Then for any function U ∈ Dom(L∗
h1
) the boundary form is given by

〈L∗
h1
U,ϕE〉 − 〈U,L∗

h1
ϕE〉 = − lim

ε↘0
ωU (ε)e1(ε),

since ωE(ε) ≡ 0. Note that e1 diverges to infinity due to our assumption β(0) �= 0

v1(ε) ∼ε↘0
β(0)
ρ(0)

ln ε→ ∞.

Since the limit limε↘0 ωU (ε) exists it should be equal to zero

ωU (0) = 0. (2.14)

Hence taking into account that ωU ∈W 1
2 [0, 1] one concludes that

ωU (ε) = o
(√
ε
)
. (2.15)

On the other hand condition (2.6) implies that

x
d

dx
u1 =

β

ρ
u2 − x

ρ
ωU ∈ L2[0, 1]. (2.16)

It follows from Cauchy inequality that

u1(ε) = O
(
1√
ε

)
. (2.17)

Formulas (2.15) and (2.17) imply that the boundary form is identically equal to zero.
Therefore the operator L(h1) is essentially self-adjoint in this case. �

Complete analysis of self-adjoint extensions of the operator Lmin including the case
where the quasiregularity conditions are not satisfied can be found in [20].

3 Transformation of the operator

The operator Lh1 is essentially self-adjoint under the quasiregularity conditions, in other
words the operator matrix is in the limit point case at the origin. Therefore in order to
calculate the essential spectrum of this operator it is convenient to transform the finite
interval [0, 1] onto the half-infinite interval [0,∞) for example using the following change
of variables

x = e−y,

dx = −e−ydy = −xdy, (3.1)
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and the corresponding unitary transformation between the spaces L2[0, 1] and L2[0,∞)
Φ : ψ(x) �→ ψ̃(y) = ψ(e−y)e−y/2. (3.2)

The transformed operator matrix is given by

K =




− d

dy

ρ

x2

d

dy
+
(
q(x) +

ρ′x
2x

− 3ρ
4x2

)
− d

dy

β

x2
+

β

2x2

β

x2

d

dy
+
1
2
β

x2

m

x2




:=
(
A C∗

C D

)
. (3.3)

The unitary transformation maps C∞
0 (0, 1) onto C

∞
0 (0,∞) and therefore the deficiency in-

dices of the minimal operator Kmin defined by (3.3) on the domain C∞
0 (0,∞)⊕C∞

0 (0,∞)
are equal to (1, 1) and all its self-adjoint extensions are described by one boundary con-
dition at the origin. Let us denote by K any of these operators self-adjoint in the space
H = L2(0,∞)⊕ L2(0,∞).

4 Resolvent equation and Hain–Lüst operator

It is sufficient to study the resolvent equation for the operator Kmin, since the difference
between any two self-adjoint extensions of this operator is a rank one operator and there-
fore the essential spectra of these two operators coincide. The resolvent equation for µ,
�µ �= 0

(Kmin − µ)−1F = U

can be written as follows

f1 = (A− µ)u1 + C∗u2,

f2 = Cu1 + (D − µ)u2.

Using the fact that the operator (D − µ) is invertible for nonreal µ one can calculate u2

from the second equation

u2 = (D − µ)−1f2 − (D − µ)−1Cu1

and substitute it into the first equation to get

f1 =
(
(A− µ)− C∗(D − µ)−1C

)
u1 + C∗(D − µ)−1f2.

The last equation can easily be resolved using Hain–Lüst operator, which is analogous
to the regularized determinant of the matrix K

T (µ) = (A− µI)− C∗(D − µI)−1C

= − d

dy

(
ρ

x2
− β2

x2(m− µx2)

)
d

dy
− µ

+
{
q(x) +

ρ′x
2x

− 3ρ
4x2

− β2

4x2(m− µx2)
− x d

dx

(
β2

2x2(m− µx2)

)}
. (4.1)

One can prove the following lemma.
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Lemma 4.1. Let µ /∈ Rangex∈[0,1]

(
m(x)
x2

)
, then the coefficients of the Hain–Lüst opera-

tor (4.1)

f(x) =
ρ

x2
− β2

x2(m− µx2)
;

and

g(x) = q(x) +
ρ′x
2x

− 3ρ
4x2

− β2

4x2(m− µx2)
− x d

dx

(
β2

2x2(m− µx2)

)
− µ,

are uniformly bounded functions if and only if the quasiregularity conditions (2.2) hold.

The resolvent matrix can be presented by

M(µ) ≡ (Kmin − µ)−1 (4.2)

=


 T−1(µ) −T−1(µ)

[
C∗(D − µI)−1

]
− [(D − µI)−1C

]
T−1(µ) (D − µI)−1 +

[
(D − µI)−1C

]
T−1(µ)

[
C∗(D − µI)−1

]

.

The last expression determines the resolvent of any self-adjoint extensionK of the minimal
operator Kmin on the subspace R(Kmin) which has finite codimension. Therefore this
resolvent matrix determines the essential spectrum of any self-adjoint extension K. In
order to calculate the essential spectrum we are going to consider perturbations of the
calculated resolvent by compact operators. This is discussed in the following section.

5 Asymptotic Hain–Lüst operator
and cleaning of the resolvent

Let us introduce the asymptotic Hain–Lüst operator for the generic case m(0) �= 0

Tas(µ) = a(µ)
(
− d2

dy2
+ c(µ)

)
≡ a(µ) (p2 + c(µ)) , (5.1)

where

a(µ) = lim
x→0

(
ρ

x2
− β2

x2(m− µx2)

)
= l0 − µ ρ(0)

m(0)
,

l0 = lim
x→0

(
ρ− β2

m

x2

)
,

c(µ) =
1
4
− µ

a(µ)
. (5.2)

The domain of the asymptotic Hain–Lüst coincides with the set of functions from the
Sobolev space W 2

2 satisfying the Dirichlet boundary condition at the origin:

{ψ ∈W 2
2 ([0,∞)), ψ(0) = 0}.
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We obtain the asymptotic Hain–Lüst operator by substituting the coefficients of the second
order differential Hain–Lüst operator by their limit values at the singular point. It will be
shown that the additional branch of essential spectrum of K (and any Lh1) is determined
exactly by the symbol of asymptotic Hain–Lüst operator.
One can prove using methods of [20] that the difference between the two operator

valued Herglotz functions −T−1(µ) and −T−1
as (µ) is a compact operator for sufficiently

large |µ|. It can be proven then that the difference between the resolvent matrix M(µ)
and the asymptotic matrix

Mas(µ) = (5.3)

=̇




1
a(µ)

1
p2 + c(µ)

−b(0, µ)
a(µ)

ip+ 1/2
p2 + c(µ)

−b(0, µ)
a(µ)

−ip+ 1/2
p2 + c(µ)

x2

m− µx2
+
b2(0, µ)
a(µ)

1/4− c(µ)
p2 + c(µ)

+
b2(x, µ)

ρ
x2 − β2

x2(m−µx2)


 ,

is a compact operator. Therefore to calculate the essential spectrum of K it is enough to
study the last resolvent matrix.
In Section 4 to handle pseudodifferential operators we discussed the idea to “extend”

the operator K to a certain operator K acting in the Hilbert space H = L2(R)⊕L2(R) ⊃
L2[0,∞)⊕L2[0,∞), preserving the essential spectrum (if one does not count the multiplici-
ty). This procedure can easily be carried out for the cleaned resolvent. Let us continue all
involved functions b(x(y), µ), ρ(x(y)) and m(x(y)) to the whole real line as even functions
of y. Consider the operator generated by the continuous matrix symbol

X(x(y)) + P (p).

This operator is bounded operator defined on the whole Hilbert space H. The essential
spectrum of the new operator coincides (without counting multiplicity) with the essential
spectrum of the original operator M(µ). Really Glasman’s splitting procedure [2] and
Weyl theorem on compact perturbations [18] imply that the essential spectrum of the new
operator coincides with the union of the essential spectra of the two operators generated
by the operator matrix on the two half-axes:

1
p2 + c(µ)

∣∣∣
L2(R)

=̇
1

p2 + c(µ)

∣∣∣
L2(−∞,0]

⊕ 1
p2 + c(µ)

∣∣∣
L2[0,∞)

,

where 1
p2+c(µ)

|L2(−∞,0] and 1
p2+c(µ)

|L2[0,∞) denote the resolvents of the Laplace operator p2

on the corresponding semiaxis with the Dirichlet boundary condition at the origin. In the
last formula p denotes the momentum operator in the left hand side and the differential
expression in the right one.
One can easily prove that the unitary transformation(

f1(y)
f2(y)

)
�→
(

f1(−y)
−f2(−y)

)

relates the matrix operators generated in the orthogonal decomposition of the Hilbert
space

H = (L2(−∞, 0]⊕ L2(−∞, 0])⊕ (L2[0,∞)⊕ L2[0,∞)) .
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Hence the two operators appearing in this orthogonal decomposition are unitary equivalent
and therefore have the same essential spectrum.

6 The essential spectrum

To calculate the essential spectrum of the operator K we are going to use the following
proposition from [20, Proposition 10.1]

Proposition 6.1. Let M be any n× n matrix separable pseudodifferential operator gene-
rated in the Hilbert space L2(R,Cn) by the symbol

M(y, p) = Q+ Y (y) + P (p), p =
1
i

d

dy,
(6.1)

where Q is a constant diagonalizable matrix with simple spectrum, and the matrix func-
tions Y (y) and P (p) are essentially bounded and satisfy the following two asymptotic
conditions

lim
x→∞Y (y) = 0, lim

p→∞P (p) = 0. (6.2)

Then the essential spectrum of the operator M is given by

σess(M) = σess(Q+P) ∪ σess(Q+Y). (6.3)

The matrix function Mas(µ) can be written as a sum of the following three matrices

Mas(µ) = Q+ Y (y) + P (p),

where

Q =


 0 0

0
ρ(0)

m(0)a(µ)


 ,

Y (y) =



0 0

0
x2

m− µx2
+

b2(x, µ)
ρ
x2 − β2

x2(m−µx2)

− ρ(0)
m(0)a(µ)


 ,

P (p) =




1
a(µ)

1
p2 + c(µ)

−b(0, µ)
a(µ)

ip+ 1/2
p2 + c(µ)

−b(0, µ)
a(µ)

−ip+ 1/2
p2 + c(µ)

b2(0, µ)
a(µ)

1/4− c(µ)
p2 + c(µ)


 .

The matrices Q, Y (y), P (p) satisfy all necessary conditions of Proposition 6.1. Thus the
essential spectrum is given by

σess(M(µ)) = σess(Q+P) ∪ σess(Q+Y).

The determinants of the two matrices are equal to zero and therefore one of their eigenva-
lues is always 0. Thus the essential spectra coincide with the range of the second (nontri-
vial) eiqenvalues when y resp. p runs over the whole real axis and can be calculated using
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the traces of Q+ Y and Q+P . The nontrivial eigenvalues coincide with the traces of the
corresponding 2 × 2 matrices Q + P (p) and Q + Y (y). The trace of the matrix M(µ) is
given by

Tr (M(µ)) = Tr (Y (y)) + Tr (P (p))− Tr (Q)

=
1
a(µ)

1
p2 + c(µ)

+
x2

m− µx2
+
b2(0, µ)
a(µ)

1/4− c(µ)
p2 + c(µ)

+
b2(x, µ)

ρ
x2 − β2

x2(m−µx2)

.

The last expression can be factorized into the sum of three factors

Tr (M(µ)) = ϕ(x(y)) + ψ(p)− Tr (Q),
TrQ =

ρ(0)
m(0)a(µ)

,

where the functions ϕ(x(y)) and ψ(p) tend to zero as y resp. p tend to∞. The factorization
is unique and obvious

ϕ(x) =
x2

m− µx2
+

b2(x, µ)
ρ
x2 − β2

x2(m−µx2)

,

ψ(p) =
1
a(µ)

1
p2 + c(µ)

+
b2(0, µ)
a(µ)

1/4− c(µ)
p2 + c(µ)

+
ρ(0)

m(0)a(µ)
. (6.4)

Proposition 6.1 implies that the essential spectrum of the resolvent operator is given by

σess(M(µ)) = (Range(ϕ(x)) ∪ Range(ψ(x)) + ϕ(0)) . (6.5)

Straightforward calculations imply

σess(L) = Rangex∈[0,1]



m− β2

ρ

x2


 ∪


 l0

4 + ρ(0)
m(0)

,
l0

ρ(0)
m(0)


 , (6.6)

where l0 is given by (5.2). The parameter µ disappears eventually as one can expect. This
parameter is pure axillary.
We conclude that the essential spectrum of L consists of two parts having different

origin. The so-called regularity spectrum [23]

Rangex∈[0,1]



m− β2

ρ

x2


 (6.7)

is determined by all coefficients of the operator matrix on the whole interval [0, 1]. This
part of the spectrum coincides with the limit of the essential spectra of the truncated
operators L(ε)

Rangex∈[0,1]



m− β2

ρ

x2


 = ∪ε>0σess(L(ε)).
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On the contrary the singularity spectrum
 l0

4 + ρ(0)
m(0)

,
l0

ρ(0)
m(0)




is due to the singularity of the operator matrix at the origin is depends on the behavior of
the matrix coefficients at the origin only. This part of the essential spectrum is absent for
all truncated operators L(ε) and cannot be obtained by the limit procedure ε → 0. This
fact explains the name singularity spectrum given in [23]. The appearance of this interval
of the essential spectrum generated by the singularity was predicted by J Descloux and
G Geymonat. Note that the end point l0

ρ(0)
m(0)

of the singularity spectrum always belongs to

the interval of regularity spectrum, since

lim
x→0

m− β2

ρ

x2
=

l0
ρ(0)
m(0)

.

Remark. Let us remind that the essential spectrum has been calculated provided m(0) �=
0 and the quasiregularity conditions are satisfied. If m(0) = 0, the quasiregularity condi-
tions imply that β(0) = 0 and hence m′(0) = 0. No singularity appears in the coefficients
of the matrix L given by (1.1). Therefore the operator is regular and its essential spectrum

equals to Rangex∈[0,1]

{
m−β2

ρ

x2

}
[3]. No singularity spectrum appears in this case.
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