
Pass 1
2003.01.28

Geometry of the Hilbert space
Hilbert space - complete metric space (vector space) with scalar prod-

uct

• a) scalar product 〈f, g〉

i) 〈f, g〉 = 〈g, f〉
ii) 〈α1f1 + α2f2, g〉 = α1〈f1, g〉+ α2〈f2, g〉
iii) 〈f, f〉 ≥ 0, 〈f, f〉 = 0 ⇔ f = 0.

• b) norm ‖ f ‖=
√
〈f, f〉

i) ‖ αf ‖= |α| ‖ f ‖;
ii) |〈f, g〉| ≤‖ f ‖ ‖ g ‖ Cauchy − Bunyakovsky − Schwarz inequality,
iii) ‖ f + g ‖≤‖ f ‖ + ‖ g ‖ triangle inequality

• c) Complete: every Cauchy sequence is converging to an element from
the space.

Theorem Every metric space can be completed.

• d) Separable - countable ε-net exists.

Distance of a point from a convex set in H
Convex set: f, g ∈ K ⇒ λf + (1− λ)g ∈ K
Th

K − closed convex set inH
δ = inf ‖ h− f ‖, f ∈ K

}
⇒ ∃!g ∈ K s.t. ‖ h− g ‖= δ.

Projection into a subspace

PGh = g ∈ G s.t. ‖ h− g ‖= inf ‖ h− g′ ‖, g′ ∈ G.

Th
h− PGh is orthogonal to G.
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Othogonalization of a sequence - Schmidt method.

h1 = e1

hn = en − PL{e1,e2,...,en−1}en

Bessel inequality:
en - othonormal sequence

∞∑

n=1

|〈h, ek〉|2 ≤‖ h ‖2

Closed system ⇔ every vector h ∈ H can be written in the form h =∑∞
n=1 hnen.
Parseval’s equation:

‖ h ‖2=
∞∑

n=1

|〈h, ek〉|2

In particular:

〈g, h〉 =
∞∑

k=1

〈g, ek〉〈ek, h〉

provided the ortonormal systme {ek} is closed.
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Pass 2
2003.02.03

Compact sets
(see Kolmogorov, Fomin vol1, p51-57)
We consider arbitrary metric space R with the metric ρ.
Compact set - every sequence of elements contains a subsequence con-

verging to some element from the set.
Relatively compact set - every sequence of elements contains a con-

verging subsequence.
i) In Rn every closed bounded set is compact. Every bounded set is

relatively compact.
ii) In l2 the unit ball is not compact.
iii) The fundamental parallelogram Π in l2 is compact

Π = {x = (x1, x2, . . .) : |xj| ≤ 1

2j
, j ∈ bfN}.

ε-net with respect to M - set such that for an arbitrary point x ∈ M
at least one point a from the net can be found such that

ρ(a, x) < ε.

Totally bounded set - for any positive ε a finite ε-net can be found
(NB! the net depends on ε, it does not necessarily belong to the set).

i) Every totally bounded set is bounded. These two notions are equivalent
in finite dimensional spaces only.

ii) The fundamental parallelogram in l2 is totally bounded.
Theorem A necessary and sufficient condition that a subset M of a com-

plete metric space R be relatively compact is that M be totally bounded.
Proof. Necessity. Consider the sequence x1, x2, . . . ∈ M such that

ρ(xj, xk) ≥ ε. This sequence is not compact.
Sufficiency. Trick with the diagonal subsequence.
Theorem A necessary and sufficient condition that a subset M of a com-

plete metric space R be relatively compact is that for every ε ≥ 0 there exist
in R a compact ε-net for M .
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Compact set in C[a, b].
Uniformly bounded set - there exists a positive number C such that

|ϕ(x)| < C for all x ∈ [a, b] and all functions ϕ from the set.
Equicontinuous set - for every ε > 0 there exists δ > 0 such that

|x1 − x2| < δ ⇒ |ϕ(x1)− ϕ(x2)| < ε

for all ϕ from the set.
Theorem (Arzela) A necessary and sufficient condition that a family of

continuous functions defined on the closed interval [a, b] be compact in C[a, b]
is that this family be uniformly bounded and equicontinuous.
Proof Necessity. Consider any finite ε/3-net ϕj, j = 1, 2, . . . . Each function
ϕj is uniformly bounded: |ϕj(x)| < Mj.

Set M = maxj Mj + ε/3. By definition of the ε-net we have for at least
one ϕj

max
x
|ϕ(x)− ϕj(x)| < ε/3

⇒ |ϕ(x)| < ϕj(x)|+ ε/3 < M.

Each of the functions ϕj is uniformly continuous, i.e. for any ε > 0 there
exists a δj such that

|x1 − x2| < δj ⇒ |ϕj(x1)− ϕj(x2)| < ε/3.

Set δ = minj δj. Then for |x1 − x2| < δ and any function ϕ from the family
and some ϕj we have

|ϕ(x1)−ϕ(x2)| ≤ |ϕ(x1)−ϕj(x1)|+ |ϕj(x1)−ϕj(x2)|+ |ϕj(x2)−ϕ(x2)| < ε.

Sufficiency. Let Φ be a uniformly bounded and equicontinuous family of func-
tions. We are going to construct a finite ε-net.

Subdivide the interval [−M, M ] on the y-axis by means of the points yk

such that yk < yk+1, yk+1 − yk < ε/5.
Subdivide the interval [a, b] on the x-axis by means of the points xn such

that xn < xn+1, xk+1 − xk < δ = δ(ε).
Claim: continuous functions with the graphs passing through the points

(xn, yk) form a finite ε-net for Φ. Obviously this set is finite.
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Consider any function ϕ ∈ Φ. Assign to this function a polygonal arc
ψ(x) such that |ψ(xn)− ϕ(xn)| < ε/5. Then by construction:

|ψ(xn)− ψ(xn+1)| < 3ε/5

⇒ |ψ(xn)− ψ(x)| for anyx ∈ [xn, xn+1].

Finally:

|ϕ(x)− ψ(x)| ≤ |ϕ(x)− ϕ(xn)|+ |ϕ(xn)− ψ(xn)|+ |ψ(xn)− ψ(x)| < ε,

where xn is the subdivision point which is closest to x from the left.
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Linear functionals in normed spaces.
Let R be a normed space with the norm ‖ · ‖ .
Linear functional f - numerical function (values belong to R or C)

defined on a normed linear space such that

f(αx + βy) = αf(x) + βf(y).

Continuous functional f at point x0 -

∀ε > 0∃δ > 0 :‖ x− x0 ‖< δ ⇒ |f(x)− f(x0)| < ε.

Theorem If the linear functional is continuous at some point x0, then it
is continuous everywhere on its domain.

Bounded functional f - there exists a constant N such that

|f(x)| ≤ N ‖ x ‖ .

Norm of the functional f

‖ f ‖= sup{|f(x)|/ ‖ x ‖; ‖ x ‖6= 0}.

Theorem For linear functional the conditions of continuity and bound-
edness are equivalent.

i) In Cn consider the functional

fa(x) = 〈x, a〉

parametrized by the vector a ∈ Cn.
ii) In C([a, b]) consider the functionals

I(x) =
∫ b

a
x(t)dt.

fa(x) =
∫ b

a
x(t)a(t)dt,

where a ∈ C([a, b]).
δt0(x) = x(t0).
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Hahn-Banach Theorem
Theorem Every linear functional f(x) defined on a linear subspace G of

a normed linear space E can be extended to the entire space with preservation
of norm, i.e. it is possible to construct a linear functional F (x) such that

F (x) = f(x) x ∈ G,
‖ F ‖E=‖ f ‖G .

Proof.
i) The theorem will be proved for separable spaces only
ii) It is enough to consider one-dimensional extensions only, since every

separable space E contains everywhere dense countable set. One can extend
the functional by extending it on one dimensional subspaces.

Consider G1 one dimensional extension of G obtained by adding one ele-
ment x0.

y ∈ G1 ⇒ y = tx0 + x, x ∈ G, t ∈ C.

To extend the functional it is enough to define it on the element x0

F (y) = F (tx0 + x) = tF (x0) + f(x).

This extension has the same norm as f iff

|f(x) + tF (x0)| ≤‖ f ‖ ‖ x + tx0 ‖

holds for all x ∈ G, t ∈ C. Putting z = x/t we get

|f(z) + F (x0)| ≤‖ f ‖ ‖ z + x0 ‖,

which is equivalent to

− ‖ f ‖ ‖ z + x0 ‖≤ f(z) + F (x0) ≤‖ f ‖ ‖ z + x0 ‖⇒

⇒ − (f(z)+ ‖ f ‖ ‖ z + x0 ‖) ≤ F (x0) ≤ −f(x)+ ‖ f ‖ ‖ z + x0 ‖ .

The constant F (x0) can be chosen iff for any two points z′, z′′ ∈ G the
following inequality holds

− (f(z′′)+ ‖ f ‖ ‖ z′′ − x0 ‖) ≤ −f(z′)+ ‖ f ‖ ‖ z′ − x0 ‖ .
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The last inequality follows from the boundedness of the original functional
and triangle inequality

f(z′)− f(z′′) ≤‖ f ‖ ‖ z′ − z′′ ‖

≤‖ f ‖ ‖ z′ − x0 ‖ + ‖ f ‖ ‖ z′′ − x0 ‖⇒
f(z′)− ‖ f ‖ ‖ z′ − x0 ‖≤ f(z′′)+ ‖ f ‖ ‖ z′′ − x0 ‖ .

2

Linear functionals in the Hilbert space
(AG 58-63 (Dover 30-36))
The following functionals are unbounded in the corresponding Hilbert

spaces:

•
δ(f) = f(0)

defined on the continuous functions from L2(R).

•
Φ(f) =

∫ +∞

−∞
f(t)dt

considered in the space L2(R); this functional is bounded in the space
L1(R).

•
Φ(f) = lim

n→∞〈f, e1 + e2 + . . . + en〉,
where {ek} is any orthonormal basis in the Hilbert space.

Example of the functional which is defined on the whole space but not
bounded - see AG p 60.

Theorem (F.Riesz) Every linear bounded (=continuous) functional Φ
in the Hilbert space H has the form

Φ(h) = 〈h, f〉,

where f is a certain element of H which is uniquellydefined by Φ; moreover

‖ Φ ‖=‖ f ‖ .
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Proof. Consider the kernel G of the functional

G ≡ {h ∈ H : Φ(h) = 0}.
It is obvious that G is a closed subspace of the Hilbert space H (follows from
the linearity and continuity of the functional).

If G = H then the functional Φ is equal to the zero functional Φ(h) ≡ 0
and the theorem holds for f = 0.

If G 6= H consider the orthogonal complement of the subspace G in H

G⊥ = H ªG.

We are going to prove that the subspace G⊥ is in fact one dimensional. Really
any two nonzero vectors h1, h2 ∈ G⊥ are linear dependent

Φ(Φ(h2)h1−Φ(h1)h2) = 0 ⇒ Φ(h2)h1−Φ(h1)h2 ∈ G = (G⊥)⊥ ⇒ Φ(h2)h1−Φ(h1)h2 = 0,

(Φhj 6= 0, j = 1, 2). Let us chose the basis vector f in G⊥ such that

Φ(f) =‖ f ‖2 .

Then the following formula holds

Φ(h) = Φ(αf + h‖) = αΦ(f) = α ‖ f ‖2= 〈h, f〉.
The uniqueness of the representation follows from the fact that the sub-

space G⊥ is one dimensional.
It remains to show that

‖ Φ ‖as linear functional=‖ f ‖as vector from the Hilbert space .

We have:

Φ(h) = 〈h, f〉 ⇒ |Φ(h)| ≤‖ h ‖ ‖ f ‖⇒‖ Φ ‖≤‖ f ‖ .

On the other hand, putting h = f we obtain

Φ(f) =‖ f ‖2⇒‖ Φ ‖≥‖ f ‖ .

It follows that ‖ Φ ‖=‖ f ‖ . 2

Corollary. Every Hilbert space coincides with its adjoint. Every contin-
uous linear functional defined on a closed subspace can uniquelly be extended
to the whole Hilbert space preserving the norm of the functional.
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Bounded linear operators
(AG 67-73 (Dover 39-43))
Linear operator T

1) domain Dom(T ) linear subspace of H
2) linear transformation T : f 7→ Tf, f ∈ Dom(T ), T f ∈ H;

T (αf + βg) = αTf + βTg.

Bounded operator:

sup
f∈Dom(T ),‖f‖=1

‖ Tf ‖< ∞.

⇒ norm ‖ T ‖= sup
f∈Dom(T ),‖f‖=1

‖ Tf ‖ .

Important facts

1. Every bounded linear operator is continuous.

2. Every continuous linear operator is bounded.

3. Extension by continuity: Suppose that Dom(T ) 6= Dom(T ). Then every
bounded linear operator can be extended to Dom(T ) by continuity.
Suppose that f ∈ Dom(T ). Then there exists a certain sequence fn →
f, fn ∈ Dom(T ). One can define Tf using the following equality

Tf = lim
n→∞Tfn.

Ex. 1 Show that the limit is independent of the chosen sequence {fn.}
Prove that the norm of the extended operator is equal to the norm of
the original one.

Sum of two linear operators S and T is defined on the common domain
Dom(S + T ) = Dom(S) ∩Dom(T ) using the following equality

(S + T )f = Sf + Tf.

Product of two linear operators S and T is defined on the domain

Dom(ST ) = {f ∈ Dom(T ) ⊂ H : Tf ∈ Dom(S)}
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by the formula (ST )f = S(Tf).
NB! The domains Dom(ST ) and Dom(TS) could be different.
Orthogonal sum of two linear operators

Let T1 and T2 be two linear operators acting in the Hilbert spaces H1 and
H2 respectively. Then the operator T = T1 ⊕ T2 is defined in the Hilbert
space H = H1 ⊕H2 on the domain Dom(H) = Dom(H1)⊕Dom(H2) by the
following formula

T (h1, h2) = (T1h1, T2h2).

Bilinear forms
Bilinear form (sesquilinear) Ω in H - mapping H ×H → C

Ω : (f, g) → Ω(f, g)

such that:
i) Ω(α1f1 + α2f2, g) = α1Ω(f1, g) + α2Ω(f2, g)
ii) Ω(f, β1g1 + β2g2) = β1Ω(f, g1) + β2Ω(f, g2)
Bilinear form is called bounded if

sup
‖f‖=1,‖g‖=1

|Ω(f, g)| < ∞.

Theorem Every bounded bilinear form Ω(f, g) in H has the form

Ω(f, g) = 〈Af, g〉,

where A is a bounded linear operator in H and is uniquelly determined by Ω.
Also

‖ A ‖=‖ Ω ‖ .

Proof. Follows from F.Riesz‘s theorem.
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Lecture 3

Adjoint operator
Let A be a bounded linear operator defined on the whole space H. Then

the adjoint operator A∗ is the unique operator in H, such that for all f, g ∈ H
the following equality holds

〈Af, g〉 = 〈f,A∗g〉,
Dom(A∗) = H.

The following formula holds

(AB)∗ = B∗A∗.

Bounded linear operator A defined on the whole Hilbert space is called
symmetric or self-adjoint if the following relation holds:

A = A∗.

The definitions of symmetric and self-adjoint operators coincide in the case
of bounded operators only!!!.

Def Let A be an unbounded operator with the domain Dom (A) = H.
An element g ∈ H is said to belong to the domain Dom (A∗) of the adjoint
operator A∗ if there exists h ∈ H, such that

〈Af, g〉 = 〈f, h〉, ∀f ∈ Dom (A).

In this case the adjoint operator A∗ maps the element g into h: A∗g = h.
The domain of the adjoint operator is the set of all g ∈ H such that

〈Af, g〉 ≤ Cg ‖ f ‖ . The adjoint operator is defined (uniquely) only if the
original operator is densely defined.

Def The linear operator A is called symmetric if and only if for any
f, g ∈ Dom (A) the following equality holds

〈Af, g〉 = 〈f, Ag〉.
Theorem Let A be a densely defined symmetric operator in the Hilbert

space H. Then the domain of the adjoint operator A∗ contains the domain
Dom (A) of the original operator

Dom (A∗) ⊃ Dom (A)
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and moreover
A|Dom (A) = A∗|Dom(A),

i.e. the adjoint operator is an extension of the operator A

A ¹ A∗.

Compact operators
(AG 91-97, F.Riesz, B.Sz.-Nagy, 227-244)
A linear operator A defined on the whole Hilbert space H is called

compact if it maps every bounded set onto a compact set.
Every compact operator is bounded.
Ex 2 Show that product of any compact operator and a bounded operator

defined on the whole space is compact.
Ex 3 Show that the sum of two compact operators is compact.
Theorem If A is a bounded linear operator defined on the whole space

H, and if the operator A∗A is compact, then the operator A is compact.
Proof.

‖ Afn − Afm ‖2= 〈A∗A(fn − fm), fn − fm〉 ≤‖ A∗A(fn − fm) ‖ ‖ fn − fm ‖ .

Theorem The norm limit of compact operators is a compact operator.
Proof. Consider trick with the diagonal sequence.

Theorem
Absolute norm of an operator

Consider arbitrary orthonormal basis ϕnn∈N in the separable Hilbert
space H. Then the map

Φ : H → `2

Φ : f 7→ {〈f, ϕn〉}
defines a one-to-one correspondance between all elements from the Hilbert
space H and `2. Every bounded operator can be then represented by its
(infinite) matrix

Ajk = 〈Aϕj, ϕk〉.
The absolute norm of the operator A is given by

N(A) =
√ ∑

jk∈N

|Ajk|2 =
√ ∑

jk∈N

|〈Aϕj, ϕk〉|2.
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The ordinary norm does not exceed the absolute norm

N(A) ≥‖ A ‖ .

Theorem If the absolute norm of the operator is finite, then the operator
is compact.
Proof. Follows from the approximations of the operator A by finite rank
operators

An =
∑

j,k≤n

Akj〈ϕk, ·〉ϕj.

The matrix {Ajk} is infinite and its diagonalization even in the symmetric
case is a hard problem. We are going to prove that every compact symmetric
operator has a basis, where its matrix is diagonal.

Spectral theorem for compact operators
(F.Riesz, B.Sz.-Nagy, p 227-244)
Theorem

Let A be a symmetric bounded operator acting in the Hilbert space H, then:
1) its eigenvalues are real,
2) the eigenfunctions corresponding to different eigenvalues are orthogonal,
3) the quadratic form

QA(f, f) ≡ 〈Af, f〉
is real valued,
4) the smallest constant NA for which

|Q(f, f)| ≤ NA ‖ f ‖2

equals to ‖ A ‖ .
Proof. Points 1-2: the proof follows the same lines as the proof for Hermitian
matrices.
3)

Q(f, f) = 〈Af, f〉 = 〈f, Af〉 = 〈Af, f〉 = Q(f, f)

⇒ Q(f, f) ∈ R.

4) The quadratic form of the operator is bounded by the same constant as
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the operator.
a) NA ≤‖ A ‖

|Q(f, f)| = |〈Af, f〉| ≤‖ Af ‖ ‖ f ‖≤‖ A ‖ ‖ f ‖2

⇒ NA ≤‖ A ‖

b) NA ≥‖ A ‖

‖ Af ‖2=
1

4

[〈
A(λf +

1

λ
Af), λf +

1

λ
Af

〉
−

〈
A(λf − 1

λ
Af), λf − 1

λ
Af

〉]

≤ 1

4

[
NA ‖ λf +

1

λ
Af ‖2 +NA ‖ λf − 1

λ
Af ‖

]
=

1

2
NA

[
λ2 ‖ f ‖2 +

1

λ2
‖ Af ‖

]
.

Chosing λ2 = ‖Af‖
‖f‖ we get

‖ Af ‖2≤ NA ‖ Af ‖ ‖ f ‖⇒‖ A ‖≤ NA.

2

Theorem (Hilbert)
Every nonzero compact operator A has at least one eigenvalue µ1 different
from zero, such that |µ1| =‖ A ‖.
Proof. Consider the set F = {f ∈ H :‖ f ‖= 1}, and a sequence fn ∈ F
such that

lim
n→∞〈Afn, fn〉 = µ1 = ± ‖ A ‖ .

Consider the limit

‖ Afn − µ1fn ‖2=‖ Afn ‖2 −2µ1〈Afn, fn〉+ µ2
1 ‖ fn ‖2→ 0.

It follows that
lim

n→∞Afn = µfn.

The operator A is compact, therefore one can find a subsequence fnk
such

that Afnk
is converging. It follows that the sequence fnk

is converging. The
limit denoted by f has the following properties:

Af = µ1f.

2
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Theorem Spectral theorem for compact operators (Hilbert)
Every compact operator in the Hilbert space has a finite or infite set of real
eigenvalues µs of finite mutiplicity approaching zero. The set of corresponding
eigenvectors ϕs can be chosen forming an orthonormal basis in the Hilbert
space H ªKerA. The action of the operator A is then given by the following
formula

f =
∑

s∈N

〈f, ϕs〉ϕs + f0, f0 ∈ KerA;

Af =
∑

s∈N

µs〈f, ϕs〉ϕs.

Proof. The previous theorem states that at least one eigenvalue µ1 exists
and the corresponding eigenfunction ϕ1 can be chosen having unit norm.
Consider the space H1 of functions from H orthogonal to ϕ1. The space H1

is a Hilbert space and it is invariant with respect to the operator A: let
f ∈ H1 then

〈Af, ϕ1〉 = 〈f,Aϕ1〉 = µ1〈f, ϕ〉 = 0.

The restricted operator is compact and the same theorem implies that there
exists µ2, |µ2| ≤ |µ1|.

Applying this procedure many times we get a set of eigenvalues µ1, µ2, ....;
|µs| ≥ |µs+1|. All these eigenvalues (except zero eigenvalue) have finite mul-
tiplicity. Otherwise the operator is not compact. The corresponding eigen-
vectors form orthonormal basis in H ªKerA.

2
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Lecture 4

Hilbert-Schmidt operators
Consider the function k(s, t) ∈ L2(R

2), i.e. such that

∫ ∞

−∞

∫ ∞

−∞
|K(s, t)|2dsdt < ∞.

The corresponding linear operator defined on the whole Hilbert space L2 is
called Hilbert-Schmidt operator

Kf(s) =
∫ ∞

−∞
K(s, t)f(t)dt.

The last formula defines the function Kf almost everywhere.
It is a bounded operator, since

‖ g ‖2≤‖ k ‖2
L2(R2)‖ f ‖2 .

⇒‖ K ‖≤‖ k ‖L2(R2) .

The absolute norm of this operator is bounded

‖ K ‖≤
√∫ ∞

−∞

∫ ∞

−∞
|K(s, t)|2dsdt = N(K).

Corollary Every Hilbert-Schmidt operator in L2(R) is compact.
Using any orthonormal basis in L2(R) and formula for the absolute norm

of an operator in terms of its matrix coefficients we get that

N(K) =‖ k ‖L2(R2)

and that every operator in L2(R) with finite absolute norm is a Hilbert-
Schmidt operator.

Spectral theorem for Sturm-Liouville
operator
on a finite interval [a, b]!!!

Consider the Hilbert space L2[a, b] and the linear operator

Lu = − d

dx

[
p(x)

d

dx

]
+ q(x)u
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defined on the domain of functions having square integrable second derivative
and absolutely continuous first derivative and certain boundary conditions
at the end points, for example

u(a) = u(b) = 0.

The coefficients p, q satisfy

p(x), p′(x), q(x) ∈ C[a, b], p(x) ≥ p0 > 0, q(x) > 0.

The operator A is a positive unbounded operator in L2[a, b].
The energy norm and the energy space
Positive symmetric operator ⇒ the energy norm

‖ u ‖2
A= 〈Au, u〉

The energy scalar product

〈u, v〉A = 〈Au, v〉.
The energy space HA - the completion of Dom (A) in the energy norm.
Theorem Let A be a positive operator A ≥ a > 0. Then the energy space

is a subspace of the original Hilbert space. It is a Hilbert space itself with
respect to the energy scalar product.

It is clear that the energy scalar product satisfies all axioms for the scalar
product in a Hilbert space. Suppose that u is an element from the energy
space. Then there exists a sequence un ∈ Dom (A) converging to u in the
energy norm. This sequence is a Cauchy sequence both in the energy and in
the original Hilbert spaces:

‖ un − um ‖A→ 0 ⇒‖ un − um ‖→ 0.

It follows that the limit vector lim un = u can be associated with a certain
vector from the original Hilbert space H, i.e. that HA can be embedded into
H.

Dom (A) ⊂ HA ⊂ H.

Example

Au = −d2u

dx2
in L2[0, 1]
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with Dirichlet boundary conditions at the end points.

〈u, v〉A =
∫ 1

0
u′(x)v′(x)dx.

The energy space consists of absolutely continuous functions equal to zero at
the end points and having square integrable first derivatives.

Theorem Let A be a positive definite operator, such that, every set
bounded in the energy norm is compact in the original norm. Then the
spectrum of this operator is discrete, i.e. there is an infinite sequence of
eigenvalues λn and eigenfunctions ϕn complete in the Hilbert space H.
Observation The operator is positive definite ⇒ the operator is symmet-
ric ⇒ the spectrum is real (and therefore positive) and the eigenfunctions
corresponding to different eigenvalues are orthogonal.

Proof.
1. λa = inf ‖ u ‖2, u ∈ HA, ‖ u ‖= 1. Minimizing sequence is bounded in the
energy norm and therefore a subsequence is converging in the original norm
⇒ the first eigenvalue and the first eigenfunction.
2. Consider Hn

A = HA ª L{ϕ1, ..., ϕn}. The same trick to find λ2, λ2 ≥ λ1.
3. Numbers λn tend to +∞. Suppose not ⇒ there are two possibilities
a) either the sequence is finite - trivial case
b) or there is an orthonormal sequence of functions, which is bounded in the
energy norm ⇒ contradiction.
4. The system {ϕn} is complete in HA. Consider the space H∞

A and

λ∞ = inf ‖ u ‖2
A,∈ u ∈ H∞

A , ‖ u ‖= 1.

It is an eigenvalue (the proof is identical to 1.) ⇒ contradiction.
5. The system {ϕn} is complete in H.

‖ u−
N∑

k=1

αkϕk ‖A< ε ⇒‖ u−
N∑

k=1

αkϕk ‖< ε/
√

a.

Sturm-Liouville operator
Theorem The spectrum of the Sturm-Liouville operator L in L2[a, b] is

discrete and consists of an infinite number of eigenvalues tending to +∞.
The corresponding eigenfunctions form a complete system in L2[a, b].

Consider the energy norm

‖ u ‖2
L=

∫ b

a

(
p(x)u′2 + q(x)u2

)
dx ≥ p0

∫ b

a
u′2dx

19



It follows that every set bounded in the energy norm is bounded in W 1
2 norm.

But every such set is compact in L2, since

u(x) =
∫ x

a
u′(t)dt =

∫ b

a
k(x, t)u′(t)dt,

where

k(x, t) =

{
1, a ≤ t ≤ x,
0, x < t ≤ b

is a Hilbert-Schmidt operator.
Ex 4 Write down all details concerning the spectral theorem for Sturm-

Liouville operators.

Projection operator
(AG 103-112 (Dover 63–71))
Spectral projector for Hermitian matrices
Projection operator

Let G be a subspace of the Hilbert space H. Then every vector h ∈ H can
be written in the form

h = h‖ + h⊥,

where h‖ ∈ G, h⊥ ⊥ G. The operator

PG : h 7→ h‖

is called the projector operator on G.
Proposition Every projection operator P possesses the following proper-

ties
1. ‖ P ‖= 1;
2. P 2 = P ;
3. P ∗ = P ;
4. P ≥ 0.

Theorem If P is an operator defined everywhere in H, and such that,
for all h1, h2 ∈ H
1) 〈P 2h1, h2〉 = 〈Ph1, h2〉
2) 〈Ph1, h2〉 = 〈h1, Ph2〉,
then there is a sub-space G ∈ H such that P = PG.
Proof The operator P is bounded by 1, since

‖ Ph ‖2= 〈Ph, Ph〉 = 〈P 2h, h〉 = 〈Ph, h〉 ≤‖ Ph ‖ ‖ h ‖ .
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Let G be the eigensubspace corresponding to the eigenvalue 1

g ∈ G ⇔ Pg = g.

The subspace G is closed linear subspace. Moreover Range (P ) = G. The
same is true for the projector PG. Therefore let us prove that 〈Pf, g〉 =
〈PGf, g〉 for any g ∈ G

〈Pf, g〉 = 〈f, Pg〉 = 〈f, PGg〉 = 〈PGf, g〉 ⇒ P = PG.

Theorems

1. The product of two projection operators PG1 and PG2 is a projection
operator iff these operators commute

PG1PG2 = PG2PG1

if this condition is satisfied, then

PG1PG2 = PG

where G = G1 ∩G2.

2. The two sub-spaces G1 and G2 are orthogonal iff

PG1PG2 = 0.

3. A sum of projections is a projection operator iff the subspaces are pair-
wise orthogonal

4. The difference of two projectors

PG1 − PG2

is a projector iff G2 ∈ G1, then G = G1 ªG2.

Proof
1. a) Let PG1PG2 be a projector ⇒

PG1PG2 = (PG1PG2)
∗ = P ∗

G2
P ∗

G1
= PG2PG1 .

21



b) Suppose that PG1PG2 = PG2PG1 ⇒
(PG1PG2)

2 = ... = PG1PG2

(PG1PG2)
∗ = ... = PG1PG2

c)
g ∈ Range(PG1PG2) ⇒ g ∈ G1

g ∈ Range(PG2PG1) ⇒ g ∈ G2




⇒ g ∈ G1 ∩G2.

2. G1 ⊥ G2 ⇒ PG1PG2 = 0.

PG1PG2 = 0 : h
PG1−→ g ∈ G1 arbitrary

PG2−→ 0 ⇒ G1 ⊥ G2

3. Consider the operator

Q = PG1 + PG2 + ... + PGn .

Suppose that Gj ⊥ Gk ⇒ PGj
PGk

= 0

⇒




Q2 = ... = Q

Q∗ = ... = Q
⇒ Q is a projection.

Theorem If {Pk} is an infinite monotonic sequence of projection opera-
tors, then as k →∞ Pk converges strongly to some projector P.
NB! The theorem is not true for the convergence in the operator norm.
Proof Suppose that the sequence is increasing Pk+1 ≥ Pk. Then the sequence
of subspaces Gk is increasing as well: Gk+1 ⊃ Gk. Let us denote by G the
closure of the union of all Gk : G = ∪Gk. Then G possesses the following
decomposition

G = G1 ⊕ (G2 ªG1)⊕ (G3 ªG2)⊕ ....

Then every vector f ∈ H can be presented as an orthogonal sum

f = f0 + f1 + f2 + ..., f0 ∈ G⊥, fj ∈ Gj ªGj−1.

The norm f can be calculated using

‖ f ‖2=‖ f1 ‖2 + ‖ f2 ‖2 +...

Then the sequence Pkf converges strongly to PGf

‖ Pgf − Pkf ‖2=‖
∞∑

j=k+1

Pjf ‖2=
∞∑

j=k+1

‖ fj ‖2→ 0, k →∞.
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Lecture 5

Introduction into the theory
of unbounded linear operators

(Birman, Solomyak 60-72)
Linear operator:

domain of the operator Dom (A) - linear subset of the Hilbert space H;
linear mapping

A : Dom (A) → H
x 7→ Ax ∈ Range (A) ⊂ H.

Two operators A1 and A2 are equal if and only if their domains are equal
as well as the corresponding mappings.

Graph norm
The domain of the operator is a pre-Hilbert space (=not necessarily complete)
with respect to the inner product

〈x, y〉A = 〈x, y〉+ 〈Ax,Ay〉.

Kernel of the operator N(A) = {x ∈ Dom (A) : Ax = 0}.
Theorem

Let A be a linear operator on H. Then A has a bounded inverse if and only
if

‖ Tx ‖≥ c ‖ x ‖, c > 0, ∀x ∈ Dom (A).

Graph of an operator Γ(A) - subset of H⊕H

{(x, y) : x ∈ Dom (A), y = Ax}.

The scalar product between any two vectors in Γ(A) is equal to the corre-
sponding graph inner product

〈(x,Ax), (y, Ay)〉H⊕H = 〈x, y〉+ 〈Ax,Ay〉 = 〈x, y〉A.

Theorem
Linear set M ⊂ H⊕H is a graph of a linear operator iff

N(P1|M) = {0},

where P1 denotes the projector operator onto H⊕ {0} in H⊕H.
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Closed operator
Three equivalent definitions
I An operator A is closed iff the domain the operator is complete with respect
to the graph norm 〈x, y〉A.
II An operator A is closed iff Γ(A) is closed in H⊕H.
III An operator A is closed if relations

xn ∈ Dom (A), lim
n→∞xn = x, lim

n→∞Axn = y

imply that
x ∈ Dom (A), Ax = y.

These definitions are equivalent. Note the difference between bounded
and closed operators.

Theorem
A bounded operator A is closed if and only if the domain of the operator is
closed.

Theorem
Let A1, A2, A3 be linear operators, A1 ⊂ A2 ⊂ A3, A1 and A3 are closed
operators, and

dim[Dom (A3)/Dom (A1)] < ∞.

Then A2 is closed.
Theorem ( Important !)

If A is closed and Dom (A) is a subspace of the Hilbert space H, then A is a
bounded operator.

(to be proven later)
Theorem

Let A be a closed operator having an inverse and a closed range. Then A−1

is bounded.
Proof The graph norms of the operator and its inverse coincide. Hence
the inverse operator is closed and its domain Dom (A−1) = Range (A) is a
subspace of H.

Closure of an operator

Suppose that Γ(A) is a graph of an operator. Then this operator is called
the closure of A and denoted by A.

An operator A is closable iff for any sequence {xn} in Dom (A) satisfying
limn→∞ xn = 0 and limn→∞ Txn = y we have y = 0.
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Example 1.
H = L2(0, 1), Bx(t) = 1

i
d
dt

x(t), Dom (B) = C∞
0 (0, 1). Then the closure of B

is the second derivative operator with the domain

x ∈ W 1
2 (0, 1), x(0) = 0.

Example 2.
H = L2(0, 1), Ax(t) = x(0)1(t), Dom (A) = W 1

2 (0, 1). The operator A is not
closable

xn(t) = (1− t)n.

The inner product is given by

〈x, y〉 =
∫ 1

0
x(t)y(t)dt + x(0)y(0).

Closure of this operator can be defined in the space L2(0, 1)⊕C.
Adjoint operator

The domain Dom (A∗) of the adjoint operator A∗ consists of all vectors y ∈ H
such that 〈Ax, y〉 is a bounded linear functional with respect to x,i.e.

〈Ax, y〉 ≤ Cy ‖ x ‖ .

Every such functional is given by a certain element h ∈ H. The mapping
y 7→ h is linear and determines the adjoint operator.
1. Adjoint operators are defined for densely defined operators only, otherwise
the element h is not unique.
2. The domain Dom (A∗) is never empty (3 0).

Let us introduce the operator W : H⊕H → H⊕H; (x, y) 7→ (−y, x).
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Lecture 6

Introduction into the theory
of unbounded linear operators

(continuation)
(Birman, Solomyak 68-75)
Theorem

Let A be a densely defined linear operator. Then

[WΓ(A)]⊥ = Γ(A∗).

Corollary
1. The operator A∗ is linear and closed.
2. If A is closable, then (A)∗ = A∗.

Theorem
a) B bounded operator ⇒ (A + B)∗ = A∗ + B∗.
b) B,B−1 - bounded operators ⇒ (AB)∗ = B∗A∗, (BA)∗ = A∗B∗.
Proof. a) Let y ∈ Dom(A)

〈Ax + Bx, y〉 = 〈Ax, y〉+ 〈Bx, y〉.
〈Bx, y〉 is a bounded linear functional with respect to x for any y. Therefore
〈Ax+Bx, y〉 is a bounded linear functional iff 〈Ax, y〉 is bounded with respect
to x. Hence Dom ((A + B)∗) = Dom (A∗). Let x ∈ Dom (A), y ∈ Dom (A∗),
then equality

〈Ax + Bx, y〉 = 〈x,A∗y〉+ 〈x,B∗y〉
implies that the proposition.

b) We note first that Dom (AB) = B−1Dom (A), i.e. every element x ∈
Dom (AB) possesses the representation x = B−1z, z ∈ Dom (A). The norms
of x and z are equivalent

c ‖ x ‖≤‖ z ‖≤ C ‖ x ‖ .

Consider any x = B−1z ∈ Dom (AB), then

〈ABx, y〉 = 〈Az, y〉
determines a bounded linear functional with respect to x iff it determines a
bounded linear functional with respect to z. It follows that Dom ((AB)∗) =
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Dom (A∗). Then the following equality proofs the theorem

〈ABx, y〉 = 〈A(Bx), y〉 = 〈Bx,A∗y〉 = 〈x,B∗A∗y〉.

Theorem
The subspaces Range (A) and Kernel (A∗) are orthogonal in H and

H = Range (A)⊕Kernel (A∗).

In particular:

H = Range (A− λI)⊕Kernel (A∗ − λI).

Without proof:
Theorem
Let Dom (A) = Range (A) = H and let A have an inverse. Then the adjoint
A∗ also has an inverse and

(A∗)−1 = (A−1)∗.

Theorem
Let A be a densely defined and closable, then

A∗∗ = A.

The proof is based on the formula valid for closed operators:

WΓ(T )⊕ Γ(A∗) = H⊕H

Theorem (The closed graph theorem)
Let A be a closed operator in the Hilbert spaceH and its domain is a subspace
of H. Then A is bounded.
Proof
1. There is a ball in Dom (A), such that the vectors mapped to a bounded
set form a dense subset. Let us denote by S the following subset of Dom (A)

S = {u ∈ Dom (A) :‖ Au ‖< 1} .
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Then Dom (A) is the union of the open sets S, 2S, 3S, .... It follows from Bair’s
theorem1 that S contains a ball, say B(u0, r).
2. This ball can be chosen having center at the origin. Any u ∈ Dom (A), ‖
u ‖< 2r can be written in the form u = u′− u′′, with u′, u′′ ∈ B(u0, r). Since
B ⊂ S there are two sequences

u′n → u′, u′′n → u′′, u′n, u′′n ∈ S.

From ‖ A(u′n−u′′n) ‖≤‖ Au′n ‖ + ‖ Au′′n ‖≤ 2 it follows that u = limn→∞(u′n−
u′′n) ∈ 2S. Using homogeneity we conclude that the ball B(0, λr) is a subset
of λS for any λ > 0.
3. The operator A maps the whole ball to a bounded set. Consider arbitrary
u ∈ Dom (A), ‖ u ‖< r, we shall prove that ‖ Au ‖ is uniformly bounded, i.e.
that the operator A maps a unit ball to a bounded set. Take any ε, 0 < ε < 1.
u ∈ S ⇒ there exists u1 ∈ S, such that ‖ u− u1 ‖≤ εr. The difference u− u1

belongs to the set εS and therefore there exists u2 ∈ εS (‖ Au2 ‖< ε ) such
that ‖ u − u1 − u2 ‖≤ ε2r. Proceeding in this way we get the sequence un

with the properties

‖ u− u1 − u2 − ...− un ‖< εnr, ‖ Aun ‖< εn−1.

Both sequences
∑n

k=1 uk and A
∑n

k=1 uk are Cauchy sequences. Moreover∑n
k=1 uk → u and it follows that

‖ Au ‖=‖ lim
n→∞

n∑

k=1

Auk ‖≤
n∑

k=1

εk−1 = (1− ε)−1.

It follows that the operator A is bounded and

‖ A ‖≤ 1/r,

since the real number ε is arbitrary between 0 and 1.

Perturbation theory for closed operators
Perturbation by bounded operators

1Theorem (Baire)
If a Banach space X is the union of countable number of closed subsets sn, at least one
of the sn contains a ball.
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Theorem
Let A be a closed operator and B be a bounded operator, such that Dom (B) ⊃
Dom (A). Then the operator A+B defined on the domain Dom (A) is closed.
Proof Let xn be an arbitrary sequence from Dom (A) such that

lim
n→∞xn = x, lim

n→∞(A + B)xn = y.

Since the operator B is bounded and limn→∞ xn = x, the sequence Bxn

converges to the vector Bx. Hence the sequence xn satisfies the two conditions

lim
n→∞xn = x, lim

n→∞Axn = y −Bx.

Using that the operator A is closed one concludes that x ∈ Dom (A) and
y −Bx = Ax. The theorem is proven.

Perturbation by dominated operators
Def Operator B is called A-bounded iff

Dom (B) ⊃ Dom (A);
‖ Bu ‖2≤ a2 ‖ Au ‖2 +b2 ‖ u ‖2 .
The operator B is called strongly dominated by A if the constant a can
be chosen less than 1.

Equivalent condition

‖ Bu ‖≤ α ‖ Au ‖ +β ‖ u ‖ . (∗)
Theorem

Let A be a closed operator and B be strongly dominated by A. Then the
operator A + B defined on Dom (A) is closed.
Proof. Suppose that β ≤ α in (∗), then the graph norms for the operator A
and A + B are equivalent

‖ Ax + Bx ‖ + ‖ x ‖≥‖ Ax ‖ − ‖ Bx ‖ + ‖ x ‖≥ (1− α) (‖ Ax ‖ + ‖ x ‖) .

‖ Ax + Bx ‖ + ‖ x ‖≤‖ Ax ‖ + ‖ Bx ‖ + ‖ x ‖≤ (1 + α) (‖ Ax ‖ + ‖ x ‖) .

Since the operator A is closed, its domain is closed with respect to the graph
norm ‖ x ‖A, but then it is closed with respect to the graph norm ‖ x ‖A+B,
i.e. the operator A + B is closed on the domain Dom (A).

The case β > α can be treated using the operators qA and qB with
q = α/β.

Ex 5 Prove that the inverse operator to any invertible closed operator A
with Range (A) being a subspace of H is bounded.
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Lecture 7
03.03.10

Please read paragraphs 5 and 6 from Birman, Solomyak yourself. (Pages
75-81)

Defect Number, Spectrum
and Resolvent

(Birman, Solomyak 81-86, AG 124-139(Dover 88-93))
All operators in this section are closed and densely defined!!
Def Defect number - the dimension of the orthogonal complement to

Range (A)
dA = dim(Hª Range (A)) = dim Kernel (A∗).

The defect number is the number of conditions one needs to impose in
order to guarantee that the equation Au = f is solvable, provided that the
operator A is invertible. In particular, if dA = 0, then the inverse operator
is defined on the whole Hilbert space if ‖ Au ‖≥ c ‖ u ‖ .

Theorem
Let A be a closed operator satisfying

‖ Au ‖≥ c ‖ u ‖, ∀u ∈ Dom (A)

, Dom (B) ⊃ Dom (A) and

‖ Bu ‖≤ a ‖ Au ‖, a < 1, u ∈ Dom (A).

Then A + B is closed on Dom (A) and the defect numbers of A and A + B
are equal

dA+B = dA.

Proof The operator B is strongly dominated by A and thus the operator
sum A + B is closed on the domain of the original operator. Moreover

‖ (A + B)u ‖≥‖ Au ‖ − ‖ Bu ‖≥ (1− a)c ‖ u ‖,

and it follows that Range(A + B) is a subspace. To prove that dA+B = dA

consider two possibilities:
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1 dA+B < dA Then there exists a certain vector u ∈ Dom (A) such that
Au is orthogonal to Range(A + B) and in particular Au ⊥ (A + B)u

→ 〈(A + B)u,Au〉 = 0 ⇒‖ Au ‖2= |〈Au,Bu〉| ≤ c ‖ Au ‖2,

which is possible only if u = 0.
2 dA+B > dA Then there exists a certain vector u ∈ Dom (A) such that

(A + B)u is orthogonal to Range(A) and in particular (A + B)u ⊥ Au. The
same calculations lead to a contradiction.

It follows that dA+B = dA.
Consider the family of operator A− λI, λ ∈ C.
Def The defect number of A at λ

dA(λ) = dA−λI .

Def The quasiregular set of A ρ̂(A) - the set of points λ for which A−λI
has continuous inverse on Range (A− λI)

‖ (A− λ)u ‖≥ c ‖ u ‖, ∀u ∈ Dom (A).

Theorem
The set ρ̂(A) is open. The function dA(λ) is constant on each connected
component of ρ̂(A).
Proof We prove first that each point λ0 belongs to ρ̂ together with a certain
neighborhood. Really λ0 ∈ ρ̂(A) implies that there exists a certain constant
c0 such that the following estimate holds

‖ (A− λ0)u ‖≥ c0 ‖ u ‖, ∀u ∈ Dom (A).

Take any λ from the disk |λ− λ0| < c0 and consider the decomposition

A− λI = (A− λ0I) + (λ0 − λ)I.

It follows that
‖ (A− λ)u ‖≥ (c0 − |λ0 − λ|) ‖ u ‖,

which implies that the point λ is inside ρ̂.
Consider any two points belonging to the same connected component of ρ̂.

The path connected these points can be covered by a finite number of disks.
Therefore the defect number is constant on each connected component.
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Def Regular points - the values of the parameter λ for which the inverse
operator (A− λI)−1 exists and is a bounded operator defined everywhere in
H

dA(λ) = 0.

The set of all regular points will be denoted by ρ(A).
Def Spectrum of the operator A - all points from C which are not regular

σ(A) = C \ ρ(A).

Theorem The correspondence between Dom (A) and R(A − λI) deter-
mined by the operator A− λI is one-to-one iff λ is not an eigenvalue of the
operator A.

Def Self-adjoint operator - A = A∗.
Theorem A number λ is an eigenvalue of a self-adjoint operator A iff

R(A− λI) 6= H.

The eigensubspace corresponding to the eigenvalue λ can be calculated as
follows

G(λ) = H ªR(A− λI).

Proof. The proof is based on the formula

N(A− λI) = H ªR(A− λI).

Theorem (Boundedness of the resolvent of a self-adjoint operator)
Non-real points in the complex λ−plane are regular points for any self-adjoint
operator A.
Proof.

g = (A− λI)f ⇒‖ g ‖2≥ (=λ)2 ‖ f ‖2 .

Hence

‖ (A− λI)−1g ‖≤ 1

|=λ| ‖ g ‖ .

σ(A) ⊂ R

Corollary The set of regular points of a self-adjoint operator A coincide
with the set of points for which R(A− λI) = H.
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Def
Point spectrum of a self-adjoint operator A - the set of points for which

R(A− λI) 6= H.
Continuous spectrum of a self-adjoint operator A - the of point for which

R(A− λI) 6= R(A− λI).
NB Sometimes the eigenvalues of infinite multiplicity are included into

continuous spectrum (like in AG book).
Theorem The spectrum of a self-adjoint operator is closed.

The resolvent
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Lecture 8
03.03.24

Resolvent
Def The operator-valued function Rλ(A) = (A − λI)−1 defined for λ ∈

ρ(A) is called the resolvent of A.
Hilbert identity:

Rλ −Rµ = (λ− µ)RλRµ

Theorem The resolvent Rλ(A) depends analytically on λ ∈ ρ(A). In a
neighborhood of each point λ0 ∈ ρ(A) the resolvent is represented by the
power series

Rλ(A) =
∞∑

0

(λ− λ0)
kRk+1

λ0

converging uniformly in the disk |λ− λ0| <‖ Rλ0 ‖ .
Ex 6 Calculate the resolvents of the following operators:

L1 = − d2

dx2
in L2(0, π)

Dom (L1) = {ψ ∈ W 2
2 (0, π) : ψ(0) = ψ(π) = 0}

L2 = − d2

dx2
in L2(0, π)

Dom (L2) = {ψ ∈ W 2
2 (0, π) : ψ′(0) = ψ′(π) = 0}

Check that the singularities of the resolvents coincide with the eigenvalues of
the corresponding operators. Show that the difference between the resolvents
is an operator of rank two.
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Symmetric and self-adjoint operators
(Birman, Solomyak 97-100, AG 128-131(Dover 85-87))
Operator A is called symmetric iff

〈Ax, y〉 = 〈x,Ay〉

for any x, y ∈ Dom (A).
Operator A is called self-adjoint iff A = A∗.
Every self-adjoint operator is symmetric, but the opposite is not true in

general.
The adjoint operator to any symmetric operator is an extension of the

symmetric operator:

A− symmetric ⇒ A∗ ⊃ A.

Lemma
Let A be a symmetric operator, Ã - its symmetric extension, then the fol-
lowing relation holds

A ⊂ Ã ⊂ Ã∗ ⊂ A∗.

Maximal symmetric operator - the operator that cannot be extended
to another different symmetric operator. Such operator is not necessarily
self-adjoint.

Theorem
Let A be a symmetric operator. Then the upper half-plane =λ > 0 and the
lower half-plane =λ < 0 are contained in the quasiregular set ρ̂(A).
Proof

‖ (A− λ)f ‖2 = ‖ (A− a− ib)f ‖2

= ‖ (A− a)f ‖2 +|b|2 ‖ f ‖2 +2<ib〈(A− a)f, f〉
= ‖ (A− a)f ‖2 +|b|2 ‖ f ‖2

≥ |=λ| ‖ f ‖2

The operator A− λ is boundedly invertible if =λ 6= 0.
Corollary

The core of the spectrum of a closed symmetric operator is contained in R.
Deficiency indices n±(A) for a symmetric operator A - the defect num-

bers of the operator in the upper and lower half-planes.

35



n±(A) = dim(A∗ ∓ i)

Lemma
If a symmetric operator A has at least one real quasiregular point, then
n+(A) = n−(A).

In particular: any semibounded symmetric operator has equal deficiency
indices.

Theorem
In order that a closed symmetric operator A be self-adjoint it is necessary
and sufficient that n+(A) = n−(A) = 0.
Proof.
Necessity
Let A be self-adjoint, λ /∈ R then

Kernel(A∗ − λ) = Kernel(A− λ) = 0 ⇒ n±(A) = 0.

Sufficiency. Take any y ∈ Dom(A∗). Calculate h = (A∗+ i)y. Since n±(A) =
0 ⇒ Range(A ∓ i) = H, there exists certain y0 ∈ Dom(A) such that (A +
i)y0 = h. For any x ∈ Dom(A) the following chain of equalities holds

〈(A− i)x, y〉 = 〈x, (A∗ + i)y〉 = 〈x, h〉 = 〈x, (A + i)y0〉 = 〈(A− i)x, y0〉.

It follows that y0 = y since (A− i)x runs over the whole Hilbert space H.
Corollary

A symmetric operator A such that the range of A−λ is all ofH is self-adjoint.
Ex 7 Prove that one of the following operators is self-adjoint

L3 = − d2

dx2
in L2(0,∞)

Dom (L3) = {ψ ∈ W 2
2 (0,∞) : ψ(0) = ψ′(0) = 0}

L4 = − d2

dx2
in L2(0,∞)

Dom (L4) = {ψ ∈ W 2
2 (0,∞) : ψ(0) = 0}

36



Lecture 9
03.03.31

Isometric operators
Def

Linear operator V is called isometric iff for any x ∈ Dom (V ) the following
equality holds

‖ V x ‖=‖ x ‖ .

The kernel of any isometric operator is trivial ⇒ every isometric operator
is invertible and the inverse operator V −1 defined on Dom (V −1) = Range (V )
is isometric.

Theorem
The core of the spectrum of an isometric operator belongs to the unit circle.

Proof Consider any z, |z| 6= 1.

‖ (V − z)x ‖≥ | ‖ V x ‖ −z ‖ x ‖ | = |1− |z|| ‖ x ‖
⇒ the operator (V − z)−1 is bounded and z belongs to the quasiregular set.

Deficiency indices
ni(V ) = def R(V − zI), |z| < 1,
ne(V ) = def R(V − zI), |z| > 1.

Theorem
Let V be an isometric operator.

ni(V ) = def Range (V ), ne(V ) = def Dom (V ).

Proof
ni(V ) = def Range(V − 0) = def Range (V ).

def Dom(V ) = dIDom(V )
= dzIDom(V )

= dzIDom(V )−V

Vi use the fact that perturbation of the operator zIDom(V ) by the operator V
does not change the defect, since

‖ V x ‖≤ (1− ε) ‖ zIDom(V )x ‖= (1− ε)|x| ‖ x ‖

Lemma
The eigenvectors corresponding to different eigenvalues of an isometric oper-
ator are orthogonal.
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Def
Linear operator is called unitary iff
1. Dom (V ) = H, Range (V ) = H;
2. it is isometric ‖ V x ‖=‖ x ‖ .

Lemma
A linear operator is unitary iff

V ∗V = V V ∗ = I.

Theorem
Let V be an isometric operator. Then the adjoint operator defined originally
on the whole H is isometric between the spaces Dom (V ∗) = Range (V ) and
Range (V ∗) = Dom (V ). Moreover

V ∗V = PDom(V ), V V ∗ = PRange(V ).

Cayley transform
V = (A− λI)(A− λ̄I)−1

h = (A− λ̄)f, V h = (A− λ)f

‖ V h ‖2 = ‖ (A− λ)f ‖2 = ‖ (A− α)f ‖2 +β2 ‖ f ‖2

‖ h ‖2 = ‖ (A− λ̄)f ‖2 = ‖ (A− α)f ‖2 +β2 ‖ f ‖2

The inverse Cayley transform

A = (λ̄V − λI)(V − I)−1

It is necessary that Range (V − I) = H. Point 1 is not an eigenvalue of
V.

Theorem
The Cayley transform

V = (A− λI)(A− λ̄I)−1
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is a one-to-one correspondence between the set of closed symmetric operators
and the set of isometric operators satisfying

Range (V − I) = H.

Theorem
A symmetric operator A is self-adjoint if and only if its Cayley transform is
a unitary operator.

λ = i

V = (A− i)(A + i)−1, A = −i(V + 1)(V − 1)−1.
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Lecture 10
03.04.06

Extensions of Symmetric operators,
von Neumann formulas

(Birman Solomyak 105-122, Akhiezer, Glazman vol 2, 91–101)
V - closed isometric operator with the domain Dom (V ) and range Range (V ).
Consider the subspaces D0 ⊂ H ª Dom (V ), R0 ⊂ H ª Range (V ) and

isometric operator

V0 : D0 → R0 (⇒ dim D0 = dim R0).

Then the operator Ṽ = V ⊕ V0 is an isometric extension of V.
Moreover

ni(Ṽ ) = dim (Hª Range (Ṽ ) = ni(V )− dim (D0);

ne(Ṽ ) = dim (HªDom (Ṽ ) = ne(V )− dim (D0).

Conclusions:
Isometric operator V has a nontrivial extension iff both deficiency indices are
different from zero;
Isometric operator V can be extended to a unitary operator iff the deficiency
indices are equal;
Every nontrivial extension of isometric operator V is unitary if ni(V ) =
ne(V ) = 1.

The Cayley transform makes it possible to translate these conclusions to
the language of symmetric– self-adjoint operators
Symmetric operator A has a nontrivial extension iff both deficiency indices
are different from zero;
Symmetric operator A can be extended to a self-adjoint operator iff the
deficiency indices are equal;
Every nontrivial extension of symmetric operator A is self-adjoint if n+(V ) =
n−(V ) = 1.

von Neumann formulae
Theorem

A - closed symmetric operator; λ - nonreal complex number. Then the
domain of the adjoint operator possesses the decomposition

Dom (A∗) = Dom (A)+̇Kernel (A∗ − λI)+̇Kernel (A∗ − λ̄I).
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Proof Let y be an element from Dom (A∗). Then equality

H = Range (A− λI)⊕Kernel (A∗ − λ̄I)

implies that vector (A∗ − λ)y can be presented as follows

(A∗ − λ)y = (A− λ)x + (λ̄− λ)xλ̄.

⇒ (A∗ − λ) (y − x− xλ̄) = 0

⇒ y − x− xλ̄ ∈ Kernel (A∗ − λ)

⇒ y = x + xλ̄ + xλ,

where

x ∈ Dom (A), xλ̄ ∈ Kernel (A∗ − λ̄), xλ ∈ Kernel (A∗ − λ).

Action of the adjoint operator:

A∗(x + xλ + xλ̄) = Ax + λxλ + λ̄xλ̄.

Theorem
Let D0 ⊂ Kernel (A∗− λI), R0 ⊂ Kernel(A∗− λ̄I) be subspaces of the same
dimension. Let V0 be a unitary isometric mapping of D0 onto R0. Then the
restriction of the adjoint operator A∗ to the domain

Dom (Ã) = Dom(A)+̇(V0 − I)D0

is a closed symmetric extension of the operator A.
Proof is based on the formula

Dom (A) = Range (V − I)

Birman-Krein-Vishik theory for semibounded operators
A - positive symmetric operator

A - any positive self-adjoint extension of A
Theorem

Then the domain of the adjoint operator possesses the decomposition

Dom (A∗) = Dom (A)+̇Kernel (A∗ + I).
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Action of the adjoint operator:

A∗(x + x−1) = Ax− x−1.

Theorem
Self-adjoint extensions of the operator A can be described as restrictions of
the operator A∗ to the set of functions satisfying the following boundary
conditions

Ux−1 = (A + 1)x,

where U is a certain isometric operator.
(see the paper by Simon)
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Pass 11-13
I. Rank one perturbations

(after the book S.Albeverio and P.Kurasov Singular perturbations of dif-
ferential operators, Cambridge 2000, chapter 1)

Bounded perturbations
Resolvent analysis
Let us start our investigation of finite rank perturbations of self–adjoint

operators with the simplest sort of perturbation – a rank one bounded pertur-
bation. Let A be a self–adjoint (perhaps unbounded) operator in the Hilbert
space H with domain Dom (A). Let ϕ be a vector from the Hilbert space,
ϕ ∈ H and α be a real number, α ∈ R. A symmetric rank one bounded
perturbation of A is the operator defined by the following formula

Aα = A + α〈ϕ, ·〉ϕ, (1)

where 〈·, ·〉 denotes the scalar product in the Hilbert space H. The rank one
operator α〈ϕ, ·〉ϕ is a bounded operator in the Hilbert space and the operator
sum Aα is well defined. Actually the operator Aα is self–adjoint on the
domain Dom (A) of the operator A. The spectral properties of the perturbed
operator can be obtained using its resolvent, which can be calculated using
Krein’s formula connecting the resolvents of two self–adjoint extensions of
one symmetric operator with finite deficiency indices. In fact the operators
Aα and A are two self–adjoint extensions of the symmetric operator A0 being
the restriction of the operator A to the set of all functions orthogonal to the
vector ϕ :

Dom (A0) = {ψ ∈ Dom (A) : 〈ϕ, ψ〉 = 0}.
The operator A0 is a symmetric nondensely defined operator, since ϕ ∈ H.
Self–adjoint extensions of such symmetric operators have been studied by M.
A. Krasnosel’skĭı [?, ?]. The resolvent of the operator Aα can be calculated
in this case without using the extension theory for symmetric operators.

Theorem 1 Let A be a self–adjoint operator acting in the Hilbert space
H and let ϕ be arbitrary vector from the Hilbert space, ϕ ∈ H. Then the
resolvents of the original operator A and its rank one perturbation Aα =
A + α〈ϕ, ·〉ϕ, α ∈ R, are related as follows for arbitrary z,=z 6= 0,

1

Aα − z
− 1

A− z
= − α

1 + αF (z)

〈
1

A− z̄
ϕ, ·

〉
1

A− z
ϕ, (2)
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where

F (z) =
〈
ϕ,

1

A− z
ϕ

〉
. (3)

Proof To calculate the resolvent of the self–adjoint operator Aα we have to
solve the following equation

h = (Aα − z)f,

for a given h ∈ H and f ∈ Dom (Aα) = Dom (A). We assume that the
imaginary part of the spectral parameter z is positive =z > 0. We apply the
operator Aα − z to the latter equality

h = (A + α〈ϕ, ·〉ϕ− z) f

= Af − zf + α〈ϕ, f〉ϕ.

By applying the resolvent of the original operator we get

1

A− z
h = f + α〈ϕ, f〉 1

A− z
ϕ.

Projection on the vector ϕ leads to the following formula for 〈ϕ, f〉

〈ϕ, f〉 =
〈ϕ, 1

A−z
h〉

1 + α〈ϕ, 1
A−z

ϕ〉 .

It follows that

f =
1

A− z
h− α

1 + α〈ϕ, 1
A−z

ϕ〉
〈
ϕ,

1

A− z
g
〉

1

A− z
ϕ,

which is exactly formula (2). The theorem is proven.
2

Formula (2) can be used to calculate the resolvent of the operator Aα =
A + α〈ϕ, ·〉ϕ even in the case where the vector ϕ is not an element from
the Hilbert space, but a linear functional on the domain Dom (A). The
perturbation can then be defined using the quadratic form α〈ϕ, ·〉ϕ, where
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the scalar product is understood as the action of linear functionals. Such
generalized perturbations will be studied in the following sections of this
chapter. Formula (2) can even be used to define the perturbed operator Aα

in the case where the perturbation α〈ϕ, ·〉 is not a bounded operator in the
Hilbert space. In the latter case the domains of the operators A and Aα

are different in the general situation and the extension theory for symmetric
operators starts to play an important role during the investigation of such
perturbations. (In fact we have not used the extension theory to derive the
resolvent formula (2).) See the following section where the case of infinite
coupling constant α is considered.

Let us study first the spectral properties of the bounded perturbations
defined above. These properties are described by the function

Fα(z) =
〈
ϕ,

1

Aα − z
ϕ

〉
. (4)

The function F0(z) ≡ F (z) appears in the denominator in formula (2). This
function is related to Krein’s Q-function

Qα(z) =

〈
ϕ,

1 + Aαz

Aα − z

1

A2
α + 1

ϕ

〉
,

which will be defined later

Fα(z) =

〈
ϕ,

1

A2
α + 1

ϕ

〉
+ Qα(z).

The function Fα is a Nevanlinna function, i.e. a holomorphic function in
C \R satisfying the following conditions

F (z) = F (z); (5)

=F (z)

=z
≥ 0, z ∈ C \R. (6)

Such functions are also called Herglotz and R-functions. Every Nevanlinna
function R possesses the representation

R(z) = a + bz +
∫

R

1 + λz

λ− z

1

λ2 + 1
dσ(λ), (7)
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where a ∈ R, b ≥ 0 and the positive measure dσ(λ) satisfies

∫

R

dσ(λ)

λ2 + 1
< ∞. (8)

The operator Aα is self–adjoint and the vector ϕ is an element from the
Hilbert space. Therefore there exists a spectral measure dµα such that the
function Fα(z) is given by the integral

Fα(z) =
∫

R

dµα(λ)

λ− z
,

where the measure µα is finite, i.e.

∫

R
dµα < ∞.

The functions Fα(z) belong to the class R0 of Nevanlinna functions [?]. The
classR0 is the subset of Nevanlinna functions R with the following properties

sup
y>0

y=R(iy) < ∞,

lim
y→∞R(iy) = 0.

Every Nevanlinna function from the class R0 possesses the following repre-
sentation

R(z) =
∫

R

dσ(λ)

λ− z

where the measure dσ is finite,
∫
R dσ(λ) < ∞.

Formula (2) implies that the functions Fα(z) and F0(z) are related by the
following rational transformation

Fα(z) =
F0(z)

1 + αF0(z)
. (9)

The difference of the resolvents of the original and perturbed operators is a
rank one operator and its trace can easily be calculated

Tr
[

1

A− z
− 1

Aα − z

]
=

α

1 + αF0(z)

〈
ϕ,

1

(A− z)2
ϕ

〉
.

46



We use the relation 〈
ϕ,

1

(A− z)2
ϕ

〉
=

dF0(z)

dz

to get the following formula

Tr
[

1

A− z
− 1

Aα − z

]
=

d

dz
ln (1 + αF0(z)) , (10)

The branch of the logarithm can be fixed arbitrarily. Different branches of
the ln function lead to the same result after differentiation.

The family of measures µα, α ∈ R, is characterized by the following
lemma.

Lemma 1 Let A be a self–adjoint operator in H, Aα = A + α〈ϕ, ·〉ϕ be
its bounded rank one perturbation. Let dµα(E) be the corresponding spectral
measure. Let f ∈ L1(R). Then f ∈ L1(R, dµα) for almost every α and we
have

α 7→
∫

R
f(E)dµα(E) ∈ L1(R, dα)

and ∫

R

(∫

R
f(E)dµα(E)

)
dα =

∫

R
f(E)dE. (11)

Proof We prove the lemma first for functions of the form

fz(E) =
1

E − z
− 1

E + i
,

where z ∈ C \R. The integral on right hand side of (11) can be calculated
by closing the contour in the upper half plane

∫

R
fz(E)dE =

{
0 =z < 0
2πi =z > 0.

On the other hand

hz(α) =
∫

R
fz(E)dµα(E)

= Fα(z)− Fα(−i)

=
1

α + F0(z)−1
− 1

α + F0(−i)−1
.
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The function F0(z) belongs to the Nevanlinna class and the poles of the
function hz(α) are situated in the same half planes as those of the function
fz(E). Integration of the function hz(α) with respect to α gives the same
result as the integration of fz(E) with respect to E. The result is proven for
every function fz(E). The statement of the lemma follows from the Stone–
Weierstrass approximation theorem.

2

The results obtained here for bounded rank one perturbations will be gen-
eralized in what follows for arbitrary perturbations having finite and even
infinite rank.

Infinite coupling
We have just considered rank one bounded perturbations of self–adjoint

operators given by (1). Only finite real parameters α have been considered.
If the coupling constant α is infinite then formula (1) has only a heuristic
meaning. We use instead the resolvent formula to define the perturbation
in this case. We are going to show that such a perturbation determines a
self–adjoint operator relation, not a self–adjoint operator.

The operator corresponding to the formal expression (1) when α = ∞
is well defined on the domain Dom (A0) = {ψ ∈ D(A) : 〈ϕ, ψ〉 = 0}. The
domain Dom (A0) is not dense in the Hilbert space. One can define the
perturbed operator in this case using the resolvent formula (2). This formula
gives the following expression for the perturbed resolvent in the case α =
∞⇒ 1/α = 0

1

A∞ − z
=

1

A− z
− 1

1/α + F0(z)

〈
1

A− z̄
ϕ, ·

〉
1

A− z
ϕ

=
1

A− z
− 1

F0(z)

〈
1

A− z̄
ϕ, ·

〉
1

A− z
ϕ.

(12)

The latter expression defines a self–adjoint relation A∞ in the Hilbert space
H, not a self–adjoint operator. To prove this we apply the latter operator
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equality to the vector ϕ and get the following equation

1

A∞ − z
ϕ =

1

A− z
ϕ− 1

F0(z)

〈
1

A− z̄
ϕ, ϕ

〉
1

A− z
ϕ

=
1

A− z
ϕ− 1

F0(z)
F0(z)

1

A− z
ϕ

= 0

due to the formula (4). It follows that formula (12) does not define the
resolvent of any self–adjoint operator. It gives the formula for the resolvent of
the self–adjoint relation A0+̇(0, ϕ). The latter formula implies that F∞(z) ≡
0, which coincides with the limit

lim
α→∞Fα(z) = lim

α→∞
F0(z)

1 + αF0(z)
= 0.

In what follows we are going to consider only self–adjoint operators and
we try to avoid discussing self–adjoint relations. But we have to keep in
mind that using Krein’s formula one obtains not only operators, but also
operator relations. The operator relations in connection with the finite rank
perturbations have been recently studied by H. de Snoo and S. Hassi [?, ?,
?, ?, ?, ?].

Krein’s formula
Bounded and singular perturbations
We have mentioned in the previous section that not only can bounded

rank one perturbations be defined in the framework of the theory of self–
adjoint operators, but formula (2) can define a rank one perturbation of the
self–adjoint operator A even if ϕ is not an element from the Hilbert space.
We start with two examples. Consider first the formal linear differential
operator

Bαψ = − d2

dx2
ψ + α〈δ, ψ〉δ, (13)

defined on functions on the real line, where the symbol δ denotes Dirac’s
delta function and the scalar product 〈δ, ψ〉 is defined as the action of the
linear functional δ on the function ψ. The standard norm on the domain of
the operator B0 is equal to the norm in the Sobolev space W 2

2 (R). Therefore
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the scalar product 〈δ, ψ〉 is well defined since the function ψ is continuous at
the origin. Suppose that there exists a self–adjoint operator acting in L2(R)
corresponding to the formal differential expression (13). Then this operator
coincides with the unperturbed operator B = −d2/dx2 on the set of functions
vanishing at the origin, i.e. on the domain

Dom (B0) = {ψ ∈ W 2
2 (R) : ψ(0) = 0}.

The restricted operator B0 = B|Dom(B0) is a symmetric operator with the
deficiency indices (1, 1). The restricted operator is densely defined and all
its self–adjoint extensions can be calculated using the von Neumann theory.
The adjoint operator B0∗ coincides with the second derivative operator and
has domain Dom (B0∗) = {ψ ∈ W 2

2 (R \ {0}) : ψ(−0) = ψ(+0)}. To define
the self–adjoint operator Bα we apply the linear operator (13) to an arbitrary
function ψ from the domain of the adjoint operator B0∗

ψ ∈ Dom (B0∗).

The expression

Bαψ =

(
− d2

dx2
+ α〈δ, ·〉δ

)
ψ

is well defined in the distributional sense, since every ψ ∈ Dom (B0∗) is a
continuous square integrable function due to the Sobolev embedding theorem
(see [?]). The result in general is equal to the sum of a square integrable
function and a distribution with support at the origin. From the condition
that the range of the function ψ belongs to the Hilbert space L2(R) we get

−ψ′(+0) + ψ′(−0) + αψ(0) = 0.

If the function ψ satisfies the latter condition, then Bαψ ∈ L2(R). Consider
the restriction of the operator Bα to the domain

Dom (Bα) = {ψ ∈ W 2
2 (R \ {0}) : ψ(−0) = ψ(+0) ≡ ψ(0)

ψ′(+0)− ψ′(−0) = αψ(0)}.

The restrictions of the operators Bα and B0∗ to this domain coincide. This
operator is a self–adjoint extension of the operator B0 and this operator can
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be considered as a natural definition for the operator Bα in the framework
of the theory of self–adjoint operators.

The above example shows that formula (1) can define a rank one pertur-
bation of the self–adjoint operator A even if the vector ϕ does not belong to
the corresponding Hilbert space. But the vector ϕ cannot be arbitrary. To
define the perturbed operator we used the restriction of the original opera-
tor B to the domain Dom (B0). Therefore the vector ϕ should be a linear
bounded functional on the domain of the operator A with the graph norm.
Only in this case does the restriction of the self–adjoint operator A have non-
trivial deficiency indices. But not every vector ϕ ∈ Dom (A)∗ defines a rank
one perturbation in a unique way. Consider the following linear differential
operator

B′
αψ = − d2

dx2
ψ + α〈δ(1), ψ〉δ(1), (14)

where δ(1) denotes the first derivative of the delta function. If the self–adjoint
operator in L2(R) corresponding to the formal expression (14) exists, then
it coincides with the operator B = −d2/dx2 restricted to the domain of
functions from W 2

2 (R \ {0}), satisfying certain boundary conditions at the
origin. Consider the formal expression B′

αψ, where ψ ∈ W 2
2 (R \ {0}). The

scalar product 〈δ(1), ψ〉 is well defined only if the function ψ is continuous at
the origin and has continuous first derivative at this point. But if these two
conditions are satisfied, then B′

αψ belongs to the Hilbert space L2(R) if and
only if ψ′(0) = 0. The second derivative operator defined on the domain of
C1(R) functions from W 2

2 (R\{0}) satisfying the latter condition is symmetric
but not self–adjoint. Therefore the heuristic rank one perturbation (14) does
not determine any self–adjoint operator, but only a symmetric operator. The
corresponding family of self–adjoint extensions of this symmetric operator is
described by one real parameter, which is not determined by the heuristic
expression (14). One needs additional assumptions on the interaction to
define the unique self–adjoint operator in this case.

The two examples considered show that the rank one perturbations can
be defined by vectors ϕ ∈ Dom (A)∗. We are going to refer to the perturba-
tions defined by vectors ϕ which do not belong to the Hilbert space, ϕ /∈ H
singular. The perturbations defined by vectors from the Hilbert space will
be called bounded. The main difference between singular and bounded rank
one perturbations is that the domains of any self–adjoint operator and its
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rank one singular perturbation are in general different, while the domain of
the operator does not change under rank one bounded perturbations. We
are going to consider differential operators with singular interactions. The
first mathematically rigorous study of such operators was carried out by
F.A.Beresin and L.D.Faddeev [?]. The Laplace operator with delta interac-
tion in L2(R

3) was considered. We are going to discuss this operator in more
detail in later. In the rest of this chapter we concentrate our attention on
rank one singular perturbations.

Scale of Hilbert spaces
The scale of Hilbert spaces associated with the self–adjoint operator A

acting in the Hilbert space H will be defined using the modulus |A| of the
operator A, where

|A| ≡ (A∗A)1/2.

The operator |A| is positive and self–adjoint, its domain coincides with the
domain of the operator A. For s ≥ 0, Hs(A) is Dom (|A|s/2) with norm equal
to the graph norm of the operator

‖ ψ ‖s=‖ (|A|+ 1)s/2ψ ‖H . (15)

The space Hs with norm ‖ · ‖s is complete. The adjoint spaces formed by
the linear bounded functionals will be denoted by H−s(A) = Hs(A)∗. The
norm in the space H−s(A) is defined by the formula

‖ ψ ‖−s=
∣∣∣
∣∣∣ 1

(|A|+ 1)s/2
ψ

∣∣∣
∣∣∣H, (16)

where the operator 1/(|A|+ 1)s/2 is defined in the generalized sense. Let
ψ ∈ H−s(A), η ∈ H = H0(A). Then

〈
1

(|A|+ 1)s/2
ψ, η

〉
=

〈
ψ,

1

(|A|+ 1)s/2
η

〉
.

It follows that
(
1/(|A|+ 1)s/2

)
ψ ∈ H and the norm of the functional is given

by the formula (16).
The operator (|A| + 1)t/2 defines an isometry from Hs(A) to Hs−t(A).

Each space H−s(A) is equal to the completion of the Hilbert space H in the
norm (16).
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In what follows we are going to use the brackets 〈·, ·〉 to denote not only
the scalar product in the Hilbert space H, but the action of the functionals.
Let ψ ∈ H−s(A), η ∈ Hs(A). Then we define

〈ψ, η〉 ≡
〈

1

(|A|+ 1)s/2
ψ, (|A|+ 1)s/2η

〉
, (17)

where the bracket on the right hand side denotes the scalar product.
The spaces Hs(A) form the following chain of triplets

... ⊂ H2(A) ⊂ H1(A) ⊂ H = H0(A) ⊂ H−1(A) ⊂ H−2(A) ⊂ ....

The space H2(A) coincides with the domain of the operator A and H1(A) is
the domain of |A|1/2. For every two s, t; s ≤ t, the space Ht(A) is dense in
Hs(A) in the norm ‖ · ‖s . The norm in the original Hilbert space H will be
denoted

‖ · ‖0=‖ · ‖H . (18)

The norm in the space H1(A) can be calculated as follows

‖ ψ ‖2
1 = 〈(|A|+ 1)1/2ψ, (|A|+ 1)1/2ψ〉

= 〈ψ, (|A|+ 1)ψ〉

= 〈(
√
|A|+ i)ψ, (

√
|A|+ i)ψ〉.

(19)

Similarly we have

‖ ψ ‖2
−1=

〈
1√

|A|+ i
ψ,

1√
|A|+ i

ψ

〉
. (20)

One can also introduce the norms ‖ · ‖∗2 and ‖ · ‖∗−2 in the spaces H2(A) and
H−2(A), which are equivalent to the standard norms in these spaces

‖ ψ ‖∗22 = ‖ (A− i)ψ ‖2 = 〈ψ, (A2 + 1)ψ〉;

‖ ψ ‖∗2−2 = ‖ 1

A− i
ψ ‖2 = 〈ψ,

1

A2 + 1
ψ〉.

(21)
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In fact the spacesHs(A) are Hilbert spaces with the scalar product associated
with the standard norm

〈ψ, ϕ〉s = 〈ψ, (|A|+ 1)sϕ〉.

Form bounded and form unbounded perturbations
It has been shown that rank one perturbations of a given operator A can

be defined only by the vectors ϕ which are bounded linear functionals on
the domain of the operator A, i.e. by the vectors ϕ being elements from the
space H−2(A). If the operator A is positive then every rank one perturba-
tion defined by the vectors ϕ from H−1(A) can be defined using the form
perturbation theory. Let us explain this in more detail. The linear operator

〈ϕ, ·〉ϕ : H2(A) → H−2(A)

defines naturally the following sesquilinear positive form

Vϕ[ψ, η] = 〈ϕ, ψ〉〈η, ϕ〉 = 〈ϕ, ψ〉〈ϕ, η〉

for ψ, η ∈ H2(A). The sesquilinear positive form V [ψ, η] will be called form
bounded with respect to the operator A if and only if the domain
Dom (V ) of the form is contained in the space H1(A) and there exist two
positive real constants a and b such that for any ψ ∈ Dom(V ) the following
estimate holds:

V [ψ, ψ] ≤ a ‖ ψ ‖2
1 +b ‖ ψ ‖2

H . (22)

If the constant a can be chosen arbitrarily small, the form V is said to be
infinitesimally form bounded with respect to the operator A. Note
that to define form bounded and infinitesimally form bounded perturbations
we have actually used the quadratic form of the positive operator |A|, since
the norms defined by

a ‖ ψ ‖2
1 +b ‖ ψ ‖2

H

and
a〈ψ, |A|ψ〉+ b〈ψ, ψ〉

are equivalent.

Lemma 2 Let ϕ ∈ H−1(A). Then the sesquilinear from Vϕ[ψ, η] = 〈ϕ, ψ〉〈ϕ, η〉
is infinitesimally form bounded with respect to the operator A.
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Proof The Hilbert space H is dense in H−1(A) and for any ε > 0 there
exists ϕ0 ∈ H such that ‖ ϕ−ϕ0 ‖2

−1≤ ε/2. For any ψ ∈ H2(A) ⊂ H1(A) the
following estimate proves the lemma

Vϕ[ψ, ψ] = |(ϕ, ψ)|2 ≤ 2|(ϕ− ϕ0, ψ)|2 + 2|(ϕ0, ψ)|2

≤ ε ‖ ψ ‖2
1 +2 ‖ ϕ0 ‖2‖ ψ ‖2

H .

The lemma is proven.
2

The latter lemma is valid for any self–adjoint operator A. If the operator
A is a positive self–adjoint operator then the KLMN theorem [?] implies
that for any real α the formal expression A + α〈ϕ, ·〉ϕ defines a certain self–
adjoint operator Aα. One can prove that perturbations defined by vectors
from H−2(A) \ H−1(A) are not form bounded.

Lemma 3 Let ϕ ∈ H−2(A) \ H−1(A). Then the sesquilinear from

Vϕ[ψ, η] = 〈ϕ, ψ〉〈ϕ, η〉

is not form bounded with respect to the operator A.

Proof Suppose that the bilinear form Vϕ is form bounded i.e. there exist
positive constants a, b such that

Vϕ[ψ, ψ] ≤ a ‖ ψ ‖2
1 +b ‖ ψ ‖2

H .

The latter estimate is valid for every ψ ∈ H2(A), which is dense in H1(A). It
follows that ϕ can be extended as a linear bounded functional to the whole
of H1(A). We get a contradiction which proves the lemma.

2

Thus we have proven that rank one perturbations of positive operators are
uniquely defined if ϕ ∈ H−1(A). The perturbations defined by vectors ϕ ∈
H−2 \ H−1(A) cannot be defined using the form perturbation technique.
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In what follows we are going to call form bounded all rank one per-
turbations determined by the vectors ϕ from the space H−1(A), even if the
operator A is not positive. Rank one perturbations defined by the vectors
ϕ ∈ H−2(A) \ H−1(A) will be called form unbounded. Note that Lemma
2 implies that every form bounded rank one perturbation is in fact infinites-
imally form bounded.

Rank one perturbations and the extension theory for symmetric
operators

Consider the self–adjoint operator A and its rank one perturbation Aα =
A + α〈ϕ, ·〉ϕ restricted to the set of functions Dom (A0) = {ψ ∈ Dom (A) :
〈ϕ, ψ〉 = 0}. Let us denote the restricted operator by A0. In the case of a
bounded perturbation the operator A0 is not densely defined. If the rank one
perturbation is singular, then the operator A0 is a densely defined symmetric
operator with deficiency indices (1, 1).

Lemma 4 Let A be a self–adjoint operator acting in the Hilbert space H and
let ϕ ∈ H−2(A) \H. Then the restriction A0 of the operator A to the domain
of functions Dom (A0) = {ψ ∈ Dom (A) : 〈ϕ, ψ〉 = 0} is a densely defined
symmetric operator with deficiency indices (1, 1).

Proof We prove first that the restricted operator is densely defined. The
operator A is densely defined and thus for every f ∈ H there exists a sequence
fn ∈ Dom (A) = H2(A) converging to f in the Hilbert space norm:

lim
n→∞ ‖ f − fn ‖H= 0.

The functional ϕ is not a bounded functional on the Hilbert space H. It fol-
lows that there exists a sequence ψn ∈ Dom (A) = H2(A) with the unit norm
‖ ψn ‖H= 1 such that the corresponding sequence 〈ϕ, ψn〉 diverges to infinity.
This sequence can be chosen in such a way that limn→∞ 〈ϕ, fn〉/〈ϕ, ψn〉 = 0.
Then the sequence fn − (〈ϕ, fn〉/〈ϕ, ψn〉) ψn belongs to the domain of the
restricted operator 〈

ϕ, fn − 〈ϕ, fn〉
〈ϕ, ψn〉ψn

〉
= 0

and converges to the element f in the Hilbert space norm

∣∣∣
∣∣∣fn − (ϕ, fn)

(ϕ, ψn)
ψn − f

∣∣∣
∣∣∣
H

≤ ‖ fn − f ‖H +

∣∣∣∣∣
(ϕ, fn)

(ϕ, ψn)

∣∣∣∣∣ →n→∞ 0.
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Thus the operator A0 is densely defined.
The deficiency elements of the operator A0 at the point λ = i are equal to

gi = (A− i)−1ϕ. The latter equality has to be understood in the generalized
sense, i.e. gλ is the bounded linear functional which acts on every ψ ∈ H in
accordance with the formula

〈gi, ψ〉 = 〈(A− i)−1ϕ, ψ〉

= 〈ϕ, (A + i)−1ψ〉

≤ ‖ ϕ ‖−2

(∣∣∣
∣∣∣ |A|
A + i

ψ
∣∣∣
∣∣∣H +

∣∣∣
∣∣∣ 1

A + i
ψ

∣∣∣
∣∣∣H

)

≤ 2 ‖ ϕ ‖−2‖ ψ ‖0 .

Let ψ ∈ Dom (A0). Then the following equalities hold

〈ψ, A∗gi〉 = 〈Aψ, gi〉 =
〈

A

A + i
ψ, ϕ

〉

=
〈 −i

A + i
ψ, ϕ

〉
= i〈ψ, gi〉.

It follows that gi is the deficiency element for the restricted operator and
corresponds to the complex number i. The deficiency element is unique (up
to multiplication by complex numbers) and this finishes the proof of the
lemma.

2

We see that the self–adjoint operator corresponding to the formal expres-
sion Aα = A+α〈ϕ, ·〉ϕ , ϕ ∈ H−2(A)\H, is one of the self–adjoint extensions
of the symmetric operator A0 having deficiency indices (1, 1). Let us discuss
now the extension theory for such operators.

In what follows we are going to normalize the vector ϕ ∈ H−2(A) using
the norm ‖ · ‖∗−2 defined by (21)

∣∣∣
∣∣∣ 1

A− i
ϕ

∣∣∣
∣∣∣ =

∣∣∣
∣∣∣ϕ

∣∣∣
∣∣∣
∗
−2

= 1. (23)

Then the deficiency elements g±i = (1/(A∓ i)) ϕ have unit norms in the
Hilbert space H.
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The extension theory and Krein’s formula
In this section we are going to study the self–adjoint extensions of sym-

metric operators with unit deficiency indices. Let A0 be a certain densely
defined symmetric operator acting in the Hilbert space H. Without loss of
generality we suppose that the operator A0 is closed. Suppose also that the
deficiency indices are equal to (1, 1) and let gi and g−i be two normalized
deficiency elements corresponding to λ = ±i

A0∗g±i = ±ig±i;

‖ g±i ‖H= 1.

Then the domain of the adjoint operator is equal to the following linear sum
Dom (A0∗) = Dom (A0)+̇L{gi, g−i}, where +̇ denotes the direct sum. Every
element ψ from the domain of the adjoint operator possesses the following
representation

ψ = ψ̂ + a+(ψ)gi + a−(ψ)g−i, (24)

where ψ̂ ∈ Dom (A0), a±(ψ) ∈ C. The adjoint operator A0∗ acts as follows
on every ψ ∈ Dom (A0∗)

A0∗(ψ̂ + a+(ψ)gi + a−(ψ)g−i) = Aψ̂ + ia+(ψ)gi − ia−(ψ)g−i. (25)

All self–adjoint extensions of the operator A0 can be parametrized by one
unimodular parameter v; |v| = 1 using the von Neumann theory. Every
self–adjoint extension A(v) coincides with the restriction of the operator A0∗

to the domain Dom(A(v)) = {ψ ∈ Dom (A0∗) : −va−(ψ) = a+(ψ)}.
Let us denote by A the self–adjoint extension corresponding to v = 1.

Then the deficiency elements gi and g−i are related as follows

g−i =
A− i

A + i
gi. (26)

We are also going to use the following representation for the functions
ψ ∈ Dom (A0∗)

ψ = ψ̃ +
b(ψ)

2
(gi + g−i)

= ψ̃ + b(ψ)
A

A + i
gi,

(27)
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where ψ̃ ∈ Dom (A). This representation is related to the representation (24)
via the formulas





ψ̃ = ψ̂ +
a+(ψ)− a−(ψ)

2
(gi − g−i)

= ψ̂ + (a+(ψ)− a−(ψ))
i

A + i
gi;

b(ψ) = a+(ψ) + a−(ψ),

where we have used (26). Using representation (27) the action of the adjoint
operator A0∗ is given by

A0∗ψ = A0∗
(
ψ̃ + b(ψ)

A

A + i
gi

)

= Aψ̃ − b(ψ)
1

A + i
gi.

(28)

The latter formula follows directly from (25). Let us calculate the boundary
form 〈A0∗ψ, η〉 − 〈ψ, A0∗η〉 of the adjoint operator for two functions ψ, η ∈
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Dom (A0∗)

〈A0∗ψ, η〉 − 〈ψ,A0∗η〉

=
〈
Aψ̃ − b(ψ)

1

A + i
gi, η̃ + b(η)

A

A + i
gi

〉

−
〈
ψ̃ + b(ψ)

A

A + i
gi, Aη̃ − b(η)

1

A + i
gi

〉

= 〈Aψ̃, η̃〉 − b̄(ψ)
〈

1

A + i
gi, η̃

〉

+b(η)
〈
Aψ̃,

A

A + i
gi

〉
− b̄(ψ)b(η)

〈
1

A + i
gi,

A

A + i
gi

〉

−〈ψ̃, Aη̃〉 − b̄(ψ)
〈

A

A + i
gi, Aη̃

〉

+b(η)
〈
ψ̃,

1

A + i
gi

〉
+ b̄(ψ)b(η)

〈
A

A + i
gi,

1

A + i
gi

〉

= 〈(A− i)gi, ψ̃〉b(η)− b(ψ)〈(A− i)gi, η̃〉.
The deficiency element gi belongs to the Hilbert space. Therefore the vector
(A− i)gi is a bounded linear functional on the domain of the operator A, i.e.
belongs to H−2(A) and the scalar products 〈(A − i)gi, ψ̃〉 and 〈(A − i)gi, η̃〉
appearing in the latter formula are well defined. Another way to parametrize
the self–adjoint extensions is to use a real parameter γ instead of the unitary
parameter v appeared in the von Neumann formulas. Let us denote by Aγ

the restriction of the operator A0∗ to the domain

Dom (Aγ) = {ψ ∈ Dom (A0∗) : 〈(A− i)gi, ψ̃〉 = γb(ψ)}. (29)

We are even going to consider infinite values of the parameter γ : γ ∈
R ∪ {∞}. For γ = ∞ we put formally

Dom (A∞) = {ψ ∈ Dom (A0∗) : b(ψ) = 0} ≡ Dom (A),
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i.e. the operator A∞ coincides with the operator A. The operators A(v) and
Aγ coincide if the parameters v and γ are related as follows

v =
γ + i

γ − i
⇔ γ = −i

1 + v

1− v
. (30)

When γ runs over all real numbers including infinity, the parameter v runs
over all unimodular complex numbers. Therefore every self–adjoint extension
of A0 is described by a certain parameter γ ∈ R ∪ {∞}. In what follows we
are going to use both descriptions of self–adjoint extensions.

The resolvents of two self–adjoint extensions of one symmetric operator
are related by Krein’s formula [?, ?]:

Theorem 2 Let A and B be two self–adjoint extensions of a certain sym-
metric densely defined operator A0 with unit deficiency indices. Then there
exists a real number γ ∈ R ∪ {∞} such that the resolvents of the operators
A and B are related as follows

1

B − z
=

1

A− z
+

1

γ − 〈gi,
1+Az
A−z

gi〉
〈

A− i

A− z̄
gi, ·

〉
A− i

A− z
gi, =z 6= 0, (31)

where gi is the normalized deficiency element for A0 at the point λ = i. If
A = B, then γ = ∞ and the resolvents of the self–adjoint operators coincide:

1

B − z
=

1

A− z
, =z 6= 0. (32)

Proof The operator A is a self–adjoint extension of A0. Therefore the func-
tion ((A− i)/(A + i)) gi is a deficiency element for A0 at the point λ = −i
and we can choose

g−i =
A− i

A + i
gi.

Let us describe the self–adjoint extensions of A0 using (29). Then the opera-
tor A coincides with the operator A∞. The operator B is also a self–adjoint
extension of A0, therefore there exists a certain real parameter γ ∈ R∪{∞}
such that B = Aγ.

If γ = ∞, then the operators A and B coincide and formula (32) obviously
holds.
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To prove the theorem we have to calculate the resolvent of the operator
Aγ, i.e. we have to solve the following equation

h = (Aγ − z)f, (33)

for a given h ∈ H. The function f belongs to the domain of the operator Aγ,
f ∈ Dom (Aγ). Let γ 6= 0,∞. Then every function f from the domain of the
operator Aγ possesses the representation

f = f̃ +
1

γ
〈(A− i)gi, f̃〉 A

A + i
gi.

Equality (33) and formula (28) imply that

h = Af̃ − zf̃ − 1

γ
〈(A− i)gi, f̃〉1 + Az

A + i
gi.

Applying the resolvent of the original operator A to the latter equation and
then projecting to the element (A− i)gi ∈ H−2(A) we get

〈(A− i)gi, f̃〉 =
〈A−i

A−z̄
gi, h〉

1− 1
γ
〈gi,

1+Az
A−z

gi〉
. (34)

It follows that the function f is given by

f =
1

A− z
h +

1

γ
〈(A− i)gi, f̃〉1 + Az

A− z

1

A + i
gi

+
1

γ
〈(A− i)gi, f̃〉 A

A + i
gi

=
1

A− z
h +

1

γ
〈(A− i)gi, f̃〉A− i

A− z
gi

=
1

A− z
h +

〈A−i
A−z̄

gi, h〉
γ − 〈gi,

1+Az
A−z

gi〉
A− i

A− z
gi.

The latter formula implies (31).
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In the exceptional case γ = 0 the resolvent formula is obviously satisfied.
The theorem is proven.

2

In fact we have proven that the resolvent of any self–adjoint extension Aγ of
A0 is given by

1

Aγ − z
=

1

A− z
+

1

γ − 〈gi,
1+Az
A−z

gi〉
〈

A− i

A− z̄
gi, ·

〉
A− i

A− z
gi, =z 6= 0. (35)

The function

Q(z) =
〈
gi,

1 + Az

A− z
gi

〉
(36)

is called Krein’s Q-function. It is a Nevanlinna function, since the defi-
ciency element gi has finite norm. Usually the Q-function is defined by the
following relation

Q(λ)−Q(z)

λ− z̄
= 〈gλ, gz〉 ≡

〈
A− i

A− λ
gi,

A− i

A− z
gi

〉
. (37)

Obviously the latter relation defines the Q-function uniquely up to real con-
stants. In general two self–adjoint extensions of one symmetric operator with
deficiency indices (1, 1) define a one-parameter family of Q-functions which
differ by real constants. In what follows we are going to use definition (36)
for the Krein’s Q-function, i.e. we are going to distinguish the Q-functions
which differ by real constants. We hope that this convention will not cause
any problem for the reader.

Comparing formula (36) and representation (7) for an arbitrary Nevan-
linna function we see that the Q-functions corresponding to self–adjoint ex-
tensions of densely defined symmetric operators do not have a linear term
in the asymptotics, i.e. the constants b appeared in (7) are always equal to
zero.

A similar analysis can be carried out in the case where the operator A0 is
not densely defined [?, ?]. The resolvents of the self–adjoint extensions are
related by similar formulas. The difference is that Krein’s formula for the
resolvent describes in this case not only the resolvents of all extensions that
are self–adjoint operators but also the resolvents of the self–adjoint relations
which are extensions of the symmetric operator.
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Q-function for rank one perturbations
Let us continue discussion of the operator Aα formally given by Aα =

A+α〈ϕ, ·〉ϕ already started in Section . Lemma 4 implies that the deficiency
element for the operator A0 at the point λ = i is given by gi = (1/(A− i)) ϕ.
Therefore the Q-function corresponding to the operators A0 and A is given
by

Q(z) =
〈
gi,

1 + Az

A− z
gi

〉
=

〈
ϕ,

1 + Az

A− z

1

A2 + 1
ϕ

〉
. (38)

If ϕ ∈ H−2(A), then the scalar product appeared in the latter formula is well
defined.

Let ϕ be an element from H−1(A). One can write the following formula
for the corresponding Q-function

Q(z) =
〈
ϕ,

1

A− z
ϕ

〉
−

〈
ϕ,

A

A2 + 1
ϕ

〉
. (39)

It follows that Q(z) possesses the integral representation

Q(z) = a +
∫ +∞

−∞
dτ(λ)

λ− z
, =z 6= 0, (40)

where a ∈ R and ∫ +∞

−∞
dτ(λ)

1 + |λ| < ∞.

Therefore the function Q(z) belongs to the class R1 of Nevanlinna functions
[?]. The class R1 is the subset of Nevanlinna functions R with the following
property ∫ +∞

1

=R(iy)

y
dy < ∞. (41)

Obviously the class R1 contains the class R0 of Nevanlinna functions.
Let us define another scale of Hilbert spaces associated with the operator

A and the vector ϕ ∈ H−2(A) \H

H2(A) = Dom (A) ⊂ Hϕ(A) ⊂ H ⊂ Hϕ(A)∗ ⊂ Dom (A)∗ = H−2(A). (42)

Here Hϕ(A) denotes the domain of the adjoint operator A0∗

Hϕ(A) = Dom (A0∗).
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In the spaces H2(A) and H−2(A) we are going to use the norms ‖ · ‖∗2 and
‖ · ‖∗−2 defined by (21).

Consider the resolvent 1/(A− i) of the operator A acting in the gener-
alized sense. Let ϕ ∈ Dom (A)∗. Then (1/(A− i)) ϕ is the linear functional
which acts on every ψ ∈ H in accordance with the formula

∣∣∣∣
〈

1

A− i
ϕ, ψ

〉∣∣∣∣ =
∣∣∣∣
〈
ϕ,

1

A + i
ψ

〉∣∣∣∣ ≤‖ ϕ ‖∗2
∣∣∣
∣∣∣ 1

A + i
ψ

∣∣∣
∣∣∣
2
.

It follows that (1/(A− i)) ϕ is a bounded functional on H and thus is an
element from the Hilbert space H.

The norm in the space Hϕ(A) will be defined using representation (27)
as follows

‖ ψ ‖Hϕ(A) =
∣∣∣
∣∣∣ψ̃ + b(ψ)

A

A2 + 1
ϕ

∣∣∣
∣∣∣
Hϕ(A)

= ‖ ψ̃ ‖∗2 +|b(ψ)|,
(43)

since Hϕ(A) is a one dimensional extension of the space Dom (A). The space
Hϕ(A)∗ is adjoint to Hϕ(A). Let ψ ∈ Dom (A). Then

‖ ψ ‖Bϕ(A)=‖ ψ ‖∗2 .

The inclusion (42) are now obvious.
The second scale of spaces is constructed using the functional ϕ, while

the standard scale of Hilbert spaces is determined by the operator A only.
This determines the main difference between the two scales of Hilbert spaces.

Singular rank one perturbations
Form bounded rank one singular perturbations
Let us consider first form bounded rank one perturbations. We have seen

that the operator

Aα = A + α〈ϕ, ·〉ϕ, ϕ ∈ H−1(A) (44)

can be defined using the form perturbation technique if the operator A is
positive. Another way to define the self–adjoint operator corresponding to
the latter formal expression is to consider the linear operator defined by this
expression. Consider the operator A defined in the generalized sense. Then
formula (44) determines a linear operator on H1(A) with the range in the
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space H−1(A). The corresponding operator acting in the Hilbert space is
defined by the restriction of the linear operator Aα to the following domain

Dom (Aα) = {ψ ∈ H1(A) ⊂ H : Aαψ ∈ H}. (45)

The operator Aα restricted in this way is self–adjoint and will be considered
as the unique self–adjoint operator corresponding to the heuristic expression
(44).

Theorem 3 Let ϕ ∈ H−1(A) \ H. Then the domain of the self–adjoint op-
erator Aα = A + α〈ϕ, ·〉ϕ coincides with the following set

Dom (Aα) =
{
ψ ∈ Hϕ(A) : 〈ϕ, ψ̃〉 = −

(
1

α
+ 〈ϕ,

A

A2 + 1
ϕ〉

)
b(ψ)

}
. (46)

Aα is a self–adjoint extension of A0. For α = 0 we have A0 = A.

Proof The linear operator Aα maps the vector space H1(A) to the space
H−1(A). Let ψ be an element from H1(A). Let us study the question: Under
what conditions is the distribution Aαψ an element from the Hilbert space
H? Consider an arbitrary vector η from the domain Dom (A0) ⊂ H. Then
〈η, Aαψ〉 is a bounded linear functional on η only if ψ ∈ Dom (A0∗), since the
following equalities hold

〈η, Aαψ〉 = 〈η,A + α〈ϕ, ψ〉ϕ〉

= 〈η,Aψ〉+ α〈ϕ, ψ〉〈η, ϕ〉

= 〈Aη, ψ〉.

We have taken into account that 〈η, ϕ〉 = 0 (as an element from Dom (A0))
and the operator A is defined in the generalized sense on the vectors from
H1(A).

Let ψ ∈ Dom (A0∗) = Hϕ(A). Then the representation (27) is valid and
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the linear operator acts as follows

Aαψ = (A + α〈ϕ, ·〉ϕ)
(
ψ̃ + b(ψ)

A

A2 + 1
ϕ

)

= Aψ̃ + α〈ϕ, ψ̃〉ϕ + b(ψ) A2

A2+1
ϕ

+αb(ψ)
〈
ϕ,

A

A2 + 1
ϕ

〉
ϕ

=
{
Aψ̃ − b(ψ)

1

A2 + 1
ϕ

}

+
[
α〈ϕ, ψ̃〉b(ψ) + αb(ψ)〈ϕ,

A

A2 + 1
ϕ〉

]
ϕ.

(47)

The expression in the braces { } belongs to the original Hilbert space H.
Therefore the vector element Aαψ belongs to H if and only if the expression
in the square brackets [ ] is equal to zero, i.e. if the following equality holds

〈ϕ, ψ̃〉 = −
(

1

α
+

〈
ϕ,

A

A2 + 1
ϕ

〉)
b(ψ). (48)

The parameter

γ = − 1

α
−

〈
ϕ,

A

A2 + 1
ϕ

〉
(49)

is real and the adjoint operator A0∗ restricted to the domain of functions from
Hϕ(A) satisfying the boundary condition (48) is self–adjoint. The restrictions
of the operators Aα and A0∗ to this domain are identical since the expression
in the square brackets [ ] in formula (47) vanishes for the elements satisfying
the boundary conditions (48). Thus we have proven that the self–adjoint
operator defined by the formal expression (44) is a self–adjoint extension of
the operator A0 described by the parameter γ given by (49).

If α = 0 then the parameter γ = ∞ and corresponding operator coincides
with the original operator A. The theorem is thus proven.

2

The latter theorem describes the rank one perturbations of the operator A
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using the real parameter γ. The unitary parameter v describing the Aα is
given by

v =
1 + α〈ϕ, 1

A+i
ϕ〉

1 + α〈ϕ, 1
A−i

ϕ〉 . (50)

Considering different α ∈ R ∪ {∞} all self–adjoint extensions of the
symmetric operator A0 can be obtained. The formula (48) establishes a one–
to–one correspondence between the parameters α and γ, α, γ ∈ R∪{∞}. The
parameter α describes all self–adjoint extensions of the symmetric operator
A0 in an additive manner, while the real parameter γ appeared in Krein’s
formula and the unitary parameter v from the von Neumann formula are not
additive.

We have proven once more that the self–adjoint operator corresponding to
a singular rank one perturbation is a self–adjoint extension of the symmetric
operator A0, which is a restriction of the original operator A. In the case
of form bounded perturbations the self–adjoint operator is uniquely defined
even for operators that are not semibounded. Form unbounded perturbations
will be studied in the following section.

Family of rank one form unbounded perturbations
Consider a form unbounded rank one perturbation defined by the same

formal expression

Aα = A + α〈ϕ, ·〉ϕ, ϕ ∈ H−2(A) \ H−1(A). (51)

We have shown that any self–adjoint operator corresponding to this formal
expression is an extension of the symmetric operator A0. Considering rank
one form bounded perturbations we have determined the unique self–adjoint
extension of the operator A0 which coincides with the linear operator Aα

defined in the generalized sense. In the case under consideration the linear
operator Aα is not in general defined on the space Hϕ(A) = Dom (A0∗).
The reason is that the linear functional ϕ is not defined on this domain.
It is defined on the domain Dom (A) = H−2(A). Thus to define the linear
operator on the domain Dom (A0∗) one has to extend the functional ϕ. The
extension has to be chosen in such a way that the corresponding sesquilinear
form is real. The following lemma describes all possible real extensions.
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Lemma 5 Every extension of the functional ϕ to the domain Hϕ(A) =
Dom (A0∗) is defined by one parameter c ∈ C. Let

ψ = ψ̃ + b(ψ)
A

A2 + 1
∈ Hϕ(A).

Then the extended functional ϕc acts as follows

〈ϕc, ψ〉 = 〈ϕ, ψ̃〉+ c̄b(ψ). (52)

This extension defines a real quadratic form Q[ψ, ψ] = 〈ψ, (A/(A2 + 1)) ψ〉
with domain Dom (Q) = H+̇L{ϕ} if and only if the parameter c is real.

Proof The linear functional ϕc defined by formula (52) is bounded and
defined on any element ψ from the domain of the adjoint operator. The
norm in the space Hϕ(A) has been defined by (43). The quadratic form
corresponding to this extension is real if the parameter c is real.

Consider now an arbitrary bounded linear extension ϕ̂ of the functional
ϕ to the domain of the adjoint operator. Let ψ = ψ̃ + b(ψ) (A/(A2 + 1)) ϕ
be an element from the domain Dom (A0∗) of the adjoint operator. Since the
functional ϕ̂ is a linear extension of ϕ, the following equality holds

〈ϕ̂, ψ〉 = 〈ϕ, ψ̃〉+ b(ψ)
〈
ϕ̂,

A

A2 + 1
ϕ

〉
.

Thus every bounded linear extension of the functional ϕ is defined by one
parameter

c̄ =
〈
ϕ̂,

A

A2 + 1
ϕ

〉
.

Consider an arbitrary element ψ = ψ̃ + q(ψ)ϕ ∈ Dom (Q), where ψ̃ ∈
H, q(ψ) ∈ C. Then the quadratic form can be calculated as follows

Q[ψ, ψ] =
〈
ψ̃ + q(ψ)ϕ̂,

A

A2 + 1
(ψ̃ + q(ψ)ϕ̂)

〉

=
〈
ψ̃,

A

A2 + 1
ψ̃

〉
+ q̄(ψ)

〈
ϕ,

A

A2 + 1
ψ̃

〉

+q(ψ)
〈
ψ̃,

A

A2 + 1
ϕ

〉
+ |q(ψ)|2

〈
ϕ̂,

A

A2 + 1
ϕ

〉

= <
(〈

ψ̃,
A

A2 + 1
ψ̃

〉
+ 2q(ψ)

〈
ϕ,

A

A2 + 1
ψ̃

〉)
+ |q(ψ)|2c̄.
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The latter formula shows that the quadratic form is real if and only if the
parameter c is real. The lemma is proven.

2

The following definition will be used below.

Definition 1 Let ϕ ∈ H−2(A)\H−1(A). Then the functional ϕc is the linear
bounded extension of the functional ϕ to the domain Hϕ(A) defined by the
condition 〈

ϕc,
A

A2 + 1
ϕ

〉
= c, (53)

where c ∈ R.

The following theorem describes the domain of the self–adjoint operator
corresponding to the formal expression (51) and extension (53).

Theorem 4 Let ϕc be a linear bounded extension of the functional ϕ ∈
H−2(A) \ H−1(A). Then the domain of the self–adjoint operator

Aα = A + α〈ϕc, ·〉ϕ,

being a rank one form unbounded perturbation of A, coincides with the fol-
lowing set

Dom (Aα) =
{
ψ = ψ̃ + b(ψ)

A

A2 + 1
ϕ ∈ Dom (A0∗) :

〈ϕ, ψ̃〉 = −
(

1

α
+ c

)
b(ψ)

}
.

Aα is a self–adjoint extension of A0 if c ∈ R. For α = 0 we have A0 = A.

Proof The proof is similar to that of theorem 3. The linear operator Aα
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acts as follows on the domain Dom (A0∗) 3 ψ

Aαψ = (A + α〈ϕc, ·〉ϕ)
(
ψ̃ + b(ψ)

A

A2 + 1
ϕ

)

= Aψ̃ + α〈ϕ, ψ̃〉ϕ + b(ψ)
A2

A2 + 1
ϕ

+αb(ψ)
〈
ϕc,

A

A2 + 1
ϕ

〉

=
{
Aψ̂ − b(ψ)

1

A2 + 1
ϕ

}

+
[
α〈ϕ, ψ̃〉+ b(ψ) + αcb(ψ)

]
ϕ.

The range of the linear operator Aα does not belong to the Hilbert space.
The domain of the self–adjoint operator Aα is equal to the following set

Dom (Aα) = {ψ ∈ Hϕ(A) : Aαψ ∈ H}.
The element Aαψ belongs to H if and only if the following condition is
satisfied

〈ϕ, ψ̃〉 = −(
1

α
+ c)b(ψ).

The parameter

γ = −(
1

α
+ c) (54)

is real. The operator A0∗ restricted to the domain of functions satisfying the
latter condition is self–adjoint and coincides with the operator Aα restricted
to the same domain. Thus the theorem is proven.

2

The latter theorem describes rank one perturbations using the real parameter
γ appearing in the boundary condition. The unitary parameter v describing
the same self–adjoint extension of the operator A0 is given by

v =
1 + α(c + i)

1 + α(c− i)
.
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Considering different α ∈ R ∪ {∞} we get all self–adjoint extensions of the
operator A0. In general the extension depends on the parameter c which
describes the extension of the functional ϕ.

We have considered only extensions of the functional ϕ determined by the
real parameters c. One can see that unreal values of this parameter lead to the
boundary conditions defining non–self–adjoint operators (the corresponding
parameter γ is not real). Considering different extensions of the functional
(different values of the constant c ∈ R) and one particular α 6= 0 we also
get all except one self–adjoint extensions of the operator A0. The exceptional
extension A∞ coincides with the original operator A (see Section ).

Singular rank one form unbounded perturbations of homoge-
neous operators

This section is devoted to the investigation of form unbounded rank one
perturbations in the case where the original operator and the element ϕ are
homogeneous with respect to a certain group of unitary transformations of
the Hilbert space H. The extension of the functional ϕ in general can be
uniquely defined using the homogeneity properties of the operator and its
perturbation.

Lemma 6 Let the self–adjoint operator A and the vector ϕ ∈ Dom (A)∗ be
homogeneous with respect to a certain unitary group G(t), i.e. there exist real
constants β, θ ∈ R such that

G(t)A = t−βAG(t); (55)

〈G(t)ϕ, ψ〉 = 〈ϕ,G(1/t)ψ〉 = tθ〈ϕ, ψ〉 (56)

for every ψ ∈ Dom (A). Then ϕ can be extended as a homogeneous linear
bounded functional to the domain Hϕ(A) if and only if

f(t) = i
1− tβ

1− t−β−2θ

〈
ϕ,

1

(A− i)(A− tβi)
ϕ

〉
(57)

does not depend on t 6= 1.

Proof Consider an arbitrary linear bounded extension ϕc of the functional
ϕ which is defined by one parameter (see Lemma 5)

c =
〈
ϕc,

A

A2 + 1
ϕ

〉
.
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Suppose that this extension is homogeneous and thus satisfies equation (56).
Then the function f(t) can be calculated

f(t) = i
1− tβ

1− t−β−2θ

〈
ϕ,

1

(A− i)(A− tβi)
ϕ

〉

=
1

1− t−β−2θ

〈
ϕc,

(
1

A− i
− 1

A− tβi

)
ϕ

〉

=
1

1− t−β−2θ

{〈
ϕc,

1

A− i
ϕ

〉
−

〈
ϕc,

1

A− tβi
ϕ

〉}

=
1

1− t−β−2θ

{〈
ϕc,

1

A− i
ϕ

〉
− t−θ

〈
ϕc,

1

A− tβi
G(t)ϕ

〉}

=
1

1− t−β−2θ

{〈
ϕc,

1

A− i
ϕ

〉
− t−β−θ

〈
ϕc, G(t)

1

A− i
ϕ

〉}

=
〈
ϕc,

1

A− i
ϕ

〉

= c + i
〈
ϕ,

1

A2 + 1
ϕ

〉
.

It follows that for any homogeneous extension ϕc the function f(t) is equal
to a certain constant determined by the extension. The imaginary part of
f(t) is always equal to 1 if the parameter c is real.

Suppose conversely that the function f(t) is equal to a given constant.
Let us define the extension of the functional ϕ by the following condition

〈
ϕc,

A

A2 + 1
ϕ

〉
= c = f(t)− i. (58)
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The imaginary part of f(t) is always equal to 1:

=f(t) =
1− tβ

1− t−β−2θ

〈
ϕ,

A2 − tβ

(A2 + 1)(A2 + t2β)
ϕ

〉

=
1

1− t−β−2θ

(〈
ϕ,

1

A2 + 1
ϕ

〉
− tβ

〈
ϕ,

1

A2 + t2β
ϕ

〉)

=
1

1− t−β−2θ
(1− tβt−2β−2θ)

〈
ϕ,

1

A2 + 1
ϕ

〉

=
〈
ϕ, 1

A2+1
ϕ

〉
.

Therefore the constant c determined by (58) is always real. It is necessary
to show that the extension of the functional is homogeneous in this case. In
fact it is enough to prove this property only for the elements (1/(A− i)) ϕ
and (1/(A + i)) ϕ. We have:
〈
G(1/t)ϕc,

1

A− i
ϕ

〉

=
〈
ϕc, G(t)

1

A− i
ϕ

〉

= tθ+β
〈
ϕc,

1
A−tβi

ϕ
〉

= tθ+β

(〈
ϕc,

1

A− i
ϕ

〉
+ (tβi− i)

〈
ϕ,

1

(A− i)(A− tβi)
ϕ

〉)

= tθ+β
(〈

ϕc,
1

A− i
ϕ

〉
− (1− t−β−2θ)

〈
ϕc,

1

A− i
ϕ

〉)

= t−θ
〈
ϕc,

1

A− i
ϕ

〉
.

Similarly one can prove that

〈G(1/t)ϕc,
1

A + i
ϕ〉 = t−θ〈ϕc,

1

A + i
ϕ〉,
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and the lemma is proven.
2

It has been shown during the proof of the latter theorem that every homo-
geneous extension of the functional ϕ is defined by the real parameter c. It
follows that every homogeneous extension necessarily defines a real extension
of the quadratic form Q[ψ, ψ] = 〈ψ, (A/(A2 + 1)) ψ〉.

If the unitary group G consists of only two elements

G = {G(1), G(−1)}

then the homogeneous extension can always be constructed and it is unique.
This condition is true for example for the first derivative operator and Dirac
operators in one dimension with the delta potential. The group of the uni-
tary transformations coincides with the symmetry group with respect to the
origin. These operators are studied at the end of this chapter.

Lemma 6 implies that if the original operator A and the vector ϕ ∈
H−2(A) \H−1(A) are homogeneous and if the corresponding function f(t) is
constant, then there exists a unique self–adjoint operator corresponding to
the formal rank one perturbation and possessing the same symmetry prop-
erties. Therefore in this case the unique self–adjoint operator can be deter-
mined even if the rank one perturbation is not form bounded, but we have
to use extra assumptions to determine this operator. The function f(t) is
not always constant. For example consider the following operator with rank
one singular perturbation

−∆ + α〈δ, ·〉δ,
where ∆ is the Laplace operator in L2(R

n) and δ is the delta function with
the support at the origin. If n = 1, 3 then f(t) is equal to a constant and the
homogeneous extension can be constructed (see Section ). If n = 2 then the
function f(t) is not constant and no homogeneous extension exists.

Resolvent formulas
The resolvent of the perturbed operator can be calculated explicitly using

the general Krein formula (31) and taking into account (54)

1

Aα − z
=

1

A− z
− 1

1/α + c + 〈ϕ, 1+Az
A−z

1
A2+1

ϕ〉
〈

1

A− z̄
ϕ, ·

〉
1

A− z
ϕ. (59)
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The parameter c which appears in the latter formula can be chosen arbitrary
for H−2(A) \ H−1(A) perturbations. For H−1(A) perturbations instead c is
determined according to

c =
〈
ϕ,

A

A2 + 1
ϕ

〉
.

Let us introduce the following Nevanlinna function

F (z) = c +
〈
ϕ,

1 + Az

A− z

1

A2 + 1
ϕ

〉

= c + Q(z),

(60)

where Q(z) is the Q-function associated with the operator A and the vector
ϕ ∈ H−2(A). Using this notation formula (59) just coincides with the formula
for the resolvent of rank one bounded perturbation (2).

If ϕ ∈ H−1(A) then the function F (z) is given by

F (z) = c + Q(z) =
〈
ϕ,

A

A2 + 1
ϕ

〉
+

〈
ϕ,

1 + Az

A− z

1

A2 + 1
ϕ

〉
=

〈
ϕ,

1

A− z
ϕ

〉

which is again formula (3). For ϕ ∈ H−2(A) \H−1(A) the function F (z) can
be calculated using the extension ϕc of the functional ϕ as follows

F (z) =
〈
ϕc,

1

A− z
ϕ

〉
.

Let us introduce the function

Fα(z) =
〈
ϕc,

1

Aα − z
ϕc

〉

describing the rank one perturbations of the operator Aα.
All five critical formulas for the rank one perturbation [?] can be written

in the same form for bounded, form bounded and form unbounded pertur-
bations

Fα(z) =
F (z)

1 + αF (z)
; (61)

1

Aα − z
ϕ =

1

1− αF (z)

1

A− z
ϕ; (62)
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1

Aα − z
=

1

A− z
− α

1 + αF (z)
(

1

A− z̄
ϕ, ·) 1

A− z
ϕ; (63)

Tr
[

1

A− z
− 1

Aα − z

]
=

d

dz
ln(1 + αF (z)). (64)

∫

R
[dµα(E)]dα = dE, (65)

where µα is the spectral measure corresponding to the operator Aα. The
formulas can be proven following the main lines of Section . We note that
the result does not depend on the parameter c, which can be chosen arbitrary
for form unbounded perturbations.

We are now going to prove that if the operators A and B are two self–
adjoint extensions of one symmetric densely defined operator A0 having defi-
ciency indices (1, 1), then the operator B is a rank one singular perturbation
of A.

Theorem 5 Let A0 be a densely defined symmetric operator with the de-
ficiency indices (1, 1). Let A and B be two self–adjoint extensions of the
operator A0. Then the operator B is a rank one singular perturbation of the
operator A.

Proof Theorem 2 implies that the resolvents of the operators A and B are
related by formula (31), where gi is the deficiency element for A0 at the point
i. Consider the vector ϕ given by

ϕ = (A− i)gi.

Since gi belongs to the Hilbert space, the vector ϕ is an element of the
Hilbert space H−2(A). The closure of the operator A0 then coincides with
the restriction of the operator A to the domain of functions orthogonal to
the vector ϕ. Obviously the vector ϕ does not belong to the Hilbert space,
since the operator A0 is densely defined.

To prove the theorem it is enough to show that there exists a real constant
α such that

B = A + α〈ϕ, ·〉ϕ.

If the parameter γ appearing in Krein’s formula is infinite, then the operators
A and B coincide. It follows that the operator B is a rank one perturbation
of the operator A with the coupling constant α equal to zero.
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If the parameter γ is finite, γ 6= ∞, then we have to distinguish be-
tween form bounded and form unbounded perturbations. Suppose that
ϕ ∈ H−1(A). It follows from Theorem 3 that the operator Aα coincides
with the operator B if

α =
−1

γ + 〈ϕ, A
A2+1

ϕ〉 .

Suppose now that ϕ ∈ H−2(A) \ H−1(A). To define the corresponding
rank one perturbations we fix the real parameter c = 〈ϕc, (A/(A2 + 1)) ϕ〉.
Then the operator Aα = A + α〈ϕc, ·〉ϕ coincides with B if the coupling
constant is chosen equal to

α =
−1

γ + c
.

The theorem is proven.
2

The same result holds in the case when the symmetric operator A0 is not
densely defined. The vector ϕ belongs to the original Hilbert space in this
case and all except one self–adjoint extension of the restricted operator A0 are
defined on the same domain. The exceptional extension is not an operator
but an operator relation. It corresponds to the infinite value of the coupling
constant α (see Section ).

The latter theorem implies that the self–adjoint extensions of any sym-
metric operator with unit deficiency indices can be considered as rank one
perturbations of a self–adjoint operator and can therefore be parametrized
by the additive parameter α instead of the nonadditive parameters γ and v
appearing in the boundary conditions.

Approximations of singular rank one
perturbations

Norm convergence of the approximations
We are going to discuss how to approximate singular rank one perturba-

tions by bounded ones. More precisely we consider operators

Aα = A + α〈ϕ, ·〉ϕ (66)

given by a singular perturbation, i.e. ϕ ∈ H−2(A) \ H. Let ϕn ∈ H be
a sequence of functions from the Hilbert space. Consider the sequence of
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operators with bounded rank one perturbations

An
α = A + α〈ϕn, ·〉ϕn. (67)

The self–adjoint operators Aα and An
α have in general different domains, since

Dom (An
α) = Dom (A). But one can consider linear operators defined by (66)

and (67) in the generalized sense. Two different types of convergence will be
studied.

Considering Aα and An
α only as self–adjoint operators in the Hilbert space

we can study the corresponding resolvent operators, which are bounded op-
erators and therefore have common domain H. We say that the operators An

α

converge to Aα in the strong resolvent sense if and only if

lim
n→∞

∣∣∣
∣∣∣ 1

An
α − z

− 1

Aα − z

∣∣∣
∣∣∣ = 0 (68)

for some z,=z 6= 0.
Considering the linear operators defined by formal expressions (66) and

(67) in the generalized sense suppose that these operators can be defined
as bounded linear operators on a certain normed space D with the range in
perhaps a different normed space D′. We say that the operators An

α converge
to the operator Aα in the sense of linear operators if and only if

D ⊃ Dom (Aα),

D ⊃ Dom (A) = Dom (An
α),

(69)

and the following limit holds

‖ An
α − Aα ‖B(D→D′)→n→∞ 0, (70)

where ‖ · ‖B(D→D′) denotes the norm of the linear operator acting on D with
the range in D′. Note that the operators An

α, Aα defined in the original Hilbert
space are not necessarily bounded, but these operators could be bounded as
operators mapping D to D′.

Consider first the approximations in the sense of linear operators. We
start by investigating the question of how to approximate arbitrary ϕ ∈
H−2(A) \H by vectors from the Hilbert space.
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Lemma 7 Let f be an element from H \ H2(A) and ϕ be an element from
H−2(A); then for any c there exists a sequence ϕn of elements from H con-
verging to ϕ in the H−2(A) norm such that 〈f, ϕn〉 converges to c.

Proof The original Hilbert space H = H0(A) is dense in H−2(A). It follows
that there exists a sequence ϕ̃n of elements from H converging in the H−2

norm to ϕ. If the sequence 〈f, ϕ̃n〉 = an converges to c, then the lemma is
proven. If it does not then let us consider a sequence ψn ∈ H0(A) with unit
H−2 norm ‖ ψn ‖H−2= 1 such that |〈f, ψn〉| diverges to ∞. Such a sequence
exists because f /∈ H2(A). We can then choose a subsequence such that
c− an/〈f, ψn〉 → 0. We keep the same notation for the chosen subsequence.
Consider then the sequence

ϕn = ϕ̃n +
c− an

〈f, ψn〉ψn.

The following estimates are valid

‖ ϕn − ϕ ‖H−2≤‖ ϕ̃n − ϕ ‖H−2 +

∣∣∣∣∣
c− an

〈f, ψn〉

∣∣∣∣∣ .

It follows that ϕn converge to ϕ in the H−2 norm. At the same time the
sequence 〈f, ϕ̃n〉 = an +c−an = c obviously converges to c, hence the lemma
is proven.

2

The convergence in H−2(A) was crucial for the proof of the lemma. For
example the following lemma is valid.

Lemma 8 Let f be an element from H1(A) and ϕ be an element from
H−1(A). Then for every sequence ϕn ∈ H0(A) converging to ϕ in the norm
of H−1(A) the sequence 〈f, ϕn〉 converges to 〈f, ϕ〉.

Proof The statement of the lemma follows from the fact that strong con-
vergence of bounded functionals implies weak convergence.

2
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The operators Aα and An
α are defined on the common domain Hϕ(A) =

Dom (A0∗) :
Dom (A0∗) ⊃ Dom (Aα),

Dom (A0∗) ⊃ Dom (A) = Dom (An
α).

The range of the linear operators An
α, Aα belongs to the space H−2(A) with

the standard norm.

Theorem 6 Let the sequence ϕn ∈ H converge to ϕ inH−2(A) and 〈ϕn, (A/(A2 + 1)) ϕ〉
converge to c. Then the sequence of linear operators An

α = A+α〈ϕn, ·〉ϕn de-
fined on the domain Hϕ(A) converges in the operator norm to the operator
Aα.

Proof Consider an arbitrary element g = g̃ + b(g) (A/(A2 + 1)) ϕ ∈ Hϕ(A).
Then the following estimates are valid

‖ (An
α − Aα)g ‖−2

= |α| ‖ 〈ϕn, g〉ϕn − 〈ϕc, g〉ϕ ‖−2

= |α|
∣∣∣
∣∣∣〈ϕn, g̃〉ϕn + b(g)

〈
ϕn,

A

A2 + 1
ϕ

〉
ϕn

−〈ϕ, g̃〉ϕ− b(g)
〈
ϕc,

A

A2 + 1
ϕ

〉
ϕ

∣∣∣
∣∣∣−2

≤ |α| {|〈ϕn, g̃〉 − 〈ϕ, g̃〉| ‖ ϕn ‖−2 + |〈ϕ, g̃〉| ‖ ϕn − ϕ ‖−2

+|b(g)|
∣∣∣
〈
ϕn,

A

A2 + 1
ϕ

〉
− c

∣∣∣ ‖ ϕn ‖−2 +|b(g)| |c| ‖ ϕn − ϕ ‖−2}
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≤ |α| {‖ ϕn ‖−2‖ ϕn − ϕ ‖−2‖ g̃ ‖2 + ‖ ϕn − ϕ ‖−2‖ ϕ ‖−2‖ g̃ ‖2

+
∣∣∣
〈
ϕn,

A

A2 + 1
ϕ

〉
− c

∣∣∣ ‖ ϕn ‖−2 |b(g)| +|c| ‖ ϕn − ϕ ‖−2 |b(g)|}

≤ |α| {(‖ ϕn ‖−2 + ‖ ϕ ‖−2 +|c|) ‖ ϕn − ϕ ‖−2

+ ‖ ϕn ‖−2

∣∣∣
〈
ϕn,

A

A2 + 1
ϕ

〉
− 2c

∣∣∣
}
‖ g ‖Hϕ(A) .

The sequence ϕn converges to ϕ in the H−2(A) norm, the sequence ‖
ϕn ‖−2 is bounded and the sequence 〈ϕn, (A/(A2 + 1)) ϕ〉 converges to c. It
follows that the linear operators converge in the operator norm.

2

Theorem 7 Let ϕ ∈ H−2(A) \ H. Then there exists a sequence ϕn ∈ H
converging to ϕ in the H−2(A) norm such that the sequence of linear operators
An

α = A+α〈ϕn, ·〉ϕn defined on the domain Hϕ(A) converges in the operator
norm to the operator Aα = A + α〈ϕc, ·〉ϕ.

Proof The element (A/(A2 + 1)) ϕ belongs to the Hilbert space but does
not belong to the domain of the operator. It follows from Lemma 7 that
there exists a sequence ϕn converging to ϕ in the H−2(A) norm and such
that 〈ϕn, (A/(A2 + 1)) ϕ〉 converge to c. It follows from Theorem 6 that the
operators An

α converge to Aα in the operator norm.
2

The approximating sequence ϕn can be constructed using the spectral rep-
resentation of the original operator A. If the element ϕ ∈ H−2(A) then there
exists a certain measure dµ(λ) such that

〈
1

A− i
ϕ,

1 + zA

A− z

1

A− i
ϕ

〉
=

∫ +∞

−∞
1 + zλ

λ− z

1

λ2 + 1
dµ(λ)
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and
∫ +∞
−∞

dµ(λ)
λ2+1

< ∞. Consider the spaces H−1,−2(A) and H−2,−1(A) formed
by the elements from H−2(A) satisfying the following additional conditions

∫ 0

−∞
|λ|dµ(λ)

λ2 + 1
< ∞ and

∫ ∞

0

|λ|dµ(λ)

λ2 + 1
< ∞

respectively. The following lemma can be proven.

Lemma 9 Let ϕ ∈ H−2(A) \ (H−1,−2(A) ∪ H−2,−1(A)) then there exist two
sequences cn, dn →∞ such that

lim
n→∞

∫ dn

−cn

λ

λ2 + 1
dµ(λ) = c.

Proof Convergence of the integral
∫ +∞
∞ (1/(λ2 + 1)) dµ(λ) implies that the

two sequences

(n + 1)
∫ n+1

n

1

λ2 + 1
dµ(λ),

and

(n + 1)
∫ −n

−n−1

λ

λ2 + 1
dµ(λ),

n = 1, 2, ..., have zero limits when n →∞. The sums of both sequences are
diverging, since

∫ n+1

n

λ

λ2 + 1
dµ(λ) ≤ (n + 1)

∫ n+1

n

1

λ2 + 1
dµ(λ),

∫ −n−1

−n

|λ|
λ2 + 1

dµ(λ) ≤ (n + 1)
∫ −n−1

−n

1

λ2 + 1
dµ(λ).

The sequences have different signs. It follows that the sequence

∫ m

−n

λ

λ2 + 1
dµ(λ)

can converge to any real number when n,m →∞. The lemma is proven.
2

Consider the approximating sequence of the elements from the Hilbert space
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ϕn = E(−cn,dn)(A)ϕ, where E(A) denotes the spectral projector for the oper-
ator A. The following limit holds

lim
n→∞

〈
ϕn,

A

A2 + 1
ϕn

〉
= c.

The sequence ϕn will be used in the following section to construct the ap-
proximations of rank one perturbations in the strong resolvent sense.

Strong resolvent convergence of the
approximations

In this section we study the strong resolvent convergence of the operators.
We have shown in fact that the difference of the resolvents of the original
and perturbed operators has rank one. We prove first that every rank one
H−1 perturbation can be approximated in the strong resolvent sense.

Theorem 8 Let A be a self–adjoint operator in the Hilbert space H and ϕ be
an element from H−1(A). Let the sequence ϕn ∈ H converge to ϕ in the norm
H−1(A). Then the sequence of operators An

α = A+α〈ϕn, ·〉ϕn converges to the
operator Aα = A + α〈ϕ, ·〉ϕ in the strong resolvent sense for all z, =z 6= 0.

Proof Since the {1/(An
α − z)} are uniformly bounded it is enough to prove

the weak convergence of the resolvents. Consider two arbitrary vectors ψ1, ψ2

from the Hilbert space. The convergence in the space H−1(A) implies

lim
n→∞

〈
1

A− z̄
(ϕ− ϕn), ψ1

〉
= 0; (71)

lim
n→∞

〈
ψ2,

1

A− z
(ϕn − ϕ)

〉
= 0. (72)

Moreover the quadratic form of the resolvent converges at the point z = i
and similarly at all other points in the resolvent set of A and we have

∣∣∣∣
〈
ϕn,

1

A− z
ϕn

〉
−

〈
ϕ,

1

A− z
ϕ

〉∣∣∣∣

≤ 2 ‖ ϕn − ϕ ‖−1 (‖ ϕn ‖−1 + ‖ ϕ ‖−1) → 0.

We have for the difference of the resolvents
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〈
ψ2,

1
An

α−z
ψ1

〉
−

〈
ψ2,

1
Aα−z

ψ1

〉

=
α

1 + α〈ϕ, 1
A−z

ϕ〉
〈

1

A− z̄
ϕ, ψ1

〉 〈
ψ2,

1

A− z
ϕ

〉

− α

1 + α〈ϕn, 1
A−z

ϕn〉
〈

1

A− z̄
ϕn, ψ1

〉 〈
ψ2,

1

A− z
ϕn

〉
.

The weak resolvent convergence follows from the formulas (71),(72) and the
convergence of the quadratic form of the resolvent. The denominator in the
first quotient does not vanish because =z 6= 0.

2

Let us study rank one H−2 perturbations.

Theorem 9 Let A be a self–adjoint operator and ϕ be a functional from
H−2(A), ‖ (1/(A− i)) ϕ ‖= 1. Let ϕn be any sequence from the Hilbert space
converging to ϕ in H−2(A) and let limn→∞〈ϕn, (A/(A2 + 1)) ϕn〉 = c. Then
the sequence of self–adjoint operators

An
α = A + α〈ϕn, ·〉ϕn

converges to Aα in the strong resolvent sense. If

lim
n→∞

∣∣∣
〈
ϕn,

A

A2 + 1
ϕn

〉 ∣∣∣ = ∞,

the operators An
α converge to the original operator in the strong resolvent

sense.

Proof The first part of the theorem can be proven using the fact that the
convergence in H−2 implies weak convergence of the resolvents and formulas
(71),(72) hold for every ψ1, ψ2 ∈ H. Calculations similar to thoes carried out
during the proof of Theorem 8 lead to the result which has to be proven.
One has to take into account only that
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lim
n→∞

〈
ϕn,

1

A− z
ϕn

〉

= lim
n→∞

〈
ϕn,

1 + Az

A− z

1

A2 + 1
ϕn

〉
+ lim

n→∞

〈
ϕn,

A

A2 + 1
ϕn

〉

=
〈
ϕ,

1 + Az

A− z

1

A2 + 1
ϕ

〉
+ c

= c + Q(z)

= F (z),

where F (z) appeared in (60). Consider now the case where

lim
n→∞ |(ϕn,

1

A− i
ϕn)| = ∞.

The difference of the resolvents of the original operator and its rank one
perturbation is the rank one operator

1

An
α − z

− 1

A− z
= − α

1 + α〈ϕn, 1
A−z

ϕn〉
〈

1

A− z̄
ϕn, ·

〉
1

A− z
ϕn.

The first term on the right hand side of the last equality converges to
zero. It follows that the difference of the resolvents converges weakly to
zero since (1/(A− z)) ϕn and (1/(A− z̄)) ϕn converge to (1/(A− z)) ϕ and
(1/(A− z̄)) ϕ respectively. Hence the theorem is proven.

2

Let ϕ ∈ H−2(A) \ (H−1,−2(A) ∪H−2,−1(A)). Then it is possible to construct
a sequence of operators converging to Aα in the strong resolvent sense, ac-
cording to the following

Theorem 10 Let ϕ ∈ H−2(A) \ (H−1,−2(A) ∪ H−2,−1(A)). Then there exist
two sequences cn, dn → ∞ such that ϕn = E(−cn,dn)(A)ϕ determines the
sequence of self–adjoint operators An

α = A + α〈ϕn, ·〉ϕn involving bounded
perturbations of A converging to the perturbed operator Aα = A+α〈ϕ, ·〉ϕ in
the strong resolvent sense.
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Proof The statement follows easily from Lemma 9 and Theorem 9.
2

The latter theorem shows how to construct the approximating sequence ϕn

leading to the approximations of the operator Aα in the strong resolvent
sense.

If ϕ ∈ H−1(A) then the sequence ϕn ∈ H converging to ϕ in theH−1 norm
defines a sequence of self–adjoint operators converging to the perturbed oper-
ator Aα in the strong resolvent sense. If ϕ ∈ H−2(A)\(H−1,−2(A)∪H−2,−1(A))
then there exists a sequence ϕn converging to ϕ in the H−2 norm such that
the sequence of the corresponding perturbed operators converges to Aα in the
strong resolvent sense. If ϕ ∈ H−1,−2(A)\H−1(A) or ϕ ∈ H−2,−1(A)\H−1(A)
then every sequence ϕn converging to ϕ in the H−2 norm defines a sequence
of self–adjoint operators converging to the original operator in the strong
resolvent sense. It follows that not every form unbounded rank one per-
turbation can be approximated in the strong resolvent sense by operators
with bounded perturbations. For example if the original operator A is semi-
bounded, then the subspace H−2(A) \ (H−1,−2(A)∪H−2,−1(A)) is trivial and
no form unbounded perturbation of such an operator can be approximated
in the strong resolvent sense without the renormalization of the coupling
constant. See Section , where such an approximation with the renormal-
ized coupling constant is constructed for the Laplace operator with the delta
interaction in R3.

Approximations in the sense of linear operators can be constructed for
every rank one perturbation. If the perturbation is form bounded then ev-
ery sequence ϕn converging to ϕ in the H−1 norm determines a sequence of
operators converging to the perturbed operator in the norm of linear opera-
tors. If ϕ ∈ H−2(A) \ H−1(A) then one can prove only the existence of the
approximating sequence.

Differential operators with rank one
singular perturbations

Point interactions in dimension three
We consider now the Schrödinger operator in dimension three defined by

the heuristic expression:
Lα = −∆ + αδ, (73)

87



where ∆ is the Laplace operator, α is a real coupling constant and δ is a Dirac
delta function in dimension three. This operator was studied for the first time
from the mathematical point of view by F.A.Beresin and L.D.Faddeev [?].
The operator Lα to be defined in L2(R

3) can be considered as a singular rank
one perturbation of the Laplace operator because δϕ = ϕ(0)δ = 〈ϕ, δ〉δ and
the generalized function δ is an element from H−2(−∆) \ H−1(−∆) in three
dimensional space. Consider the group S(t), t > 0, of scaling transformations
of L2(R

3) defined as follows: for every function ψ ∈ D and distribution f

(S(t)ψ)(x) = t3/2ψ(tx);

〈S(t)f, ψ〉 = 〈f, S(1/t)ψ〉.
The Laplace operator and the delta function are homogeneous with respect
to the group S(t) :

S(t)∆ = t2∆S(c);

S(t)δ = t−3/2δ.

The perturbed operator coincides with one of the self–adjoint extensions
of the symmetric Laplace operator −∆0 defined on functions from W 2

2 (R3)
vanishing at the origin. The domain Dom (−∆∗

0) of the adjoint operator −∆∗
0

coincides with the space W 2
2 (R3 \{0}). The distribution δ possesses a unique

extension to the set W 2
2 (R3 \ {0}). To calculate the parameter c defining the

extension of the functional ϕ = δ one has to take into account that the vector
δ does not fulfil the normalization condition ‖ (1/(A− i)) ϕ ‖= 1. Formula
(58) should be modified as follows

〈
ϕc,

A

A2 + 1
ϕ

〉
= c = f(t)− i

∣∣∣
∣∣∣ 1

A− i
ϕ

∣∣∣
∣∣∣
2
.

Therefore the parameter c is equal to

c = i
1− t2

1− t

〈
1

−∆ + i
δ,

1

−∆− t2i
δ
〉
− i

∣∣∣
∣∣∣ 1

−∆− i
δ
∣∣∣
∣∣∣

= i(1 + t)

〈
ei
√−i|x|

4π|x| ,
eit
√

i|x|

4π|x|

〉
− i

〈
ei
√

i|x|

4π|x| ,
ei
√

i|x|

4π|x|

〉

= − 1

4π
√

2
.
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Any function ψ belongs to the domain of the adjoint operator ψ ∈ Dom (−∆∗
0)

if and only if

ψ(x) = ψ̃(x) +
b(ψ)

2


e(−1/

√
2+i/

√
2)|x|

4π|x| +
e(−1/

√
2−i/

√
2)|x|

4π|x|


 ,

where ψ̃ ∈ Dom (−∆) = W 2
2 (R3), b(ψ) ∈ C. Using the homogeneous exten-

sion of the delta functional we define the parameter γ which describes the
self–adjoint extension using (54)

γ = − 1

α
+

1

4π
√

2
.

Therefore the self–adjoint operator corresponding to the formal expression
(73) is the restriction of the adjoint operator to the domain of functions
satisfying the boundary condition

〈δ, ψ̃〉 =

(
− 1

α
+

1

4π
√

2

)
b(ψ). (74)

Let us consider this extension of the linear functional δ in more detail to
underline the main ideas of the calculations. Every function ψ ∈ W 2

2 (R3\{0})
is continuous outside the origin and has the following asymptotics there

ψ(x) =x→0
ψ−

4π|x| + ψ0 + o(1), (75)

where the boundary values ψ−, ψ0 are equal to

{
ψ− = a(ψ),

ψ0 = −a(ψ)/4π
√

2 + ψ̃(0).

The linear operator (73) is not defined on all such functions. The distribution
ϕ = δ should be extended to the set of all functions having the asymptotics
(75). We denote by E the set of all C∞(R3 \ {0}) functions with compact
support having the asymptotic behaviour (75) at the origin. Convergence in
this space is defined using an arbitrary C∞

0 (R3) function χ equal to one in
some neighbourhood of the origin.
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Definition 2 A sequence {ψn} of functions from E is said to converge to a
function ψ ∈ E if and only if:

1. limn→∞ ψn− = ψ−
2. There exists a bounded domain outside which all the functions ψn vanish;

3. The sequence {ψ̃(k)
n } of the regularized derivatives of order k :

ψ̃(k)
n (x) = (ψn(x)− χ(x)ψn−

4π|x| )(k)

converges uniformly to

ψ̃(k)(x) = (ψ(x)− χ(x)ψ−
4π|x| )(k).

This definition does not depend on the choice of the function χ. The deriva-
tive of any function from E is defined pointwise everywhere outside the origin.
We denote by E ′ the set of all bounded linear forms on E. The set E contains
the standard set of test functions D = C∞

0 (R3).
The following lemma follows easily from Lemma 6.

Lemma 10 Let the distribution δ̃ ∈ E ′

1. be equal to δ on the test functions from D;

2. be a homogeneous distribution;

then this distribution for every function ψ ∈ E is equal to

δ̃(ψ) = ψ0. (76)

This means that the distribution δ̃ ”does not feel” the singularity of the test
function at the origin.

We are going to use the same notation δ for the delta distribution in D′

and E ′ in what follows. This is justified because of the uniqueness of this
extension under our assumptions.

Definition 3 The delta distribution δ in E ′ with support at the origin is the
linear functional on E defined by the formula (76).
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Following Section we define the linear operator Lα on the whole Sobolev
space W 2

2 (R3 \ {0}) = Dom (−∆∗
0) using the closure. The corresponding

self–adjoint operator, also denoted by Lα, is defined on the following domain

Dom (Lα) = {ψ ∈ W 2
2 (R3 \ {0}) : Lαψ ∈ L2(R3)}.

The latter inclusion has to be understood in the distributional sense with D
as the set of test functions. It follows that every function ψ from the domain
Dom(Lα) should satisfy the following boundary condition

ψ− + αψ0 = 0. (77)

The latter condition implies (74).
Relations with the Schrödinger operator on the half axis
Consider the subsets Er ⊂ E; Dr ⊂ D consisting of functions ψ in E,

respectively D, which depend only on the absolute value of the coordinate,
i.e. such that ψ(x) = ψ(|x|). The corresponding distribution spaces will be
denoted by E ′

r, respectively D′
r. The space of square integrable functions on

R3 depending on |x| will be denoted by L2
r(R

3). The transformation T :
ψ(|x|) → √

4πrψ(r) acting from L2
r(R

3) to L2(R+) preserves the L2 norm.
This transformation transforms the set of test functions Dr into the set D of
C∞(R+) functions with compact support and equal to zero at the origin. The
set of test functions Er is transformed into the set E of C∞(R+) functions
with compact support having the following asymptotics at the origin:

ψ(r) =
ψ−√
4π

+ r
√

4πψ0 + o(r).

The transformed linear operator Lα = TLαT−1 is defined by the following
formula:

〈ϕ,Lαψ〉L2(R+) =
〈
T−1ϕ, LαT−1ψ

〉
L2(R3)

=

〈
ϕ,− d2

dx2
ψ

〉

L2(R+)

+ αϕ̄0ψ0

=

〈
ϕ,

(
− d2

dx2
+

α

4π
δ(1)〈δ(1), ·〉

)
ψ

〉

L2(R+)

.
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Here δ(1) denotes the derivative of the Dirac delta function, i.e. the functional
defined on the functions from E as follows: 〈ψ, δ(1)〉 = −ψ′(0).

Thus the three dimensional delta potential is quite similar to the pseu-
dopotential on the half axis equal to the projector P in L2(R+) into the

derivative of the delta function, i.e. (Pf) =
〈
δ(1), f

〉
δ(1). We remark that

the element δ(1) belongs to H−2(−d2/dx2), where the operator −d2/dx2 is
defined on the functions from W 2

2 (R+) which satisfy the Dirichlet bound-
ary condition at the origin. (See Section ?? where point interactions of the
second derivative operator in L2(R) are studied in more detail.)

Approximations of the delta potential
It follows from the previous consideration (see Section ) that it is possible

to construct an approximation of the operator Lα by rank one perturbations
from H0(L) = L2(R

3). In the case of the Laplace operator in dimension three
such an approximation can be constructed explicitly. The sequence of ap-
proximations can be chosen from the set of infinitely differentiable functions
with compact support. We discuss first the approximation of the operator
Lα. Let ω be a C∞

0 (R+) real function with compact support and vanishing
at the origin, normalized such that

∫∞
0 ω(x)dx = 1. An approximation of

the delta function can be constructed with the help of scaling. We use the
following definition ωε(x) = (1/ε) ω(x/ε), x ∈ R+. The following calculations
show that the sequence vε(x) = dωε(x)/dx converges when ε → 0 to the δ(1)

distribution for any function ψ ∈ E :

〈vε, ψ〉 =
∫ ∞

0
vε(x)ψ(x)dx

=
∫ ∞

0
ω′ε(x)ψ(x)dx

= −
∫ ∞

0
ωε(x)ψ′(x)dx + ωεψ|∞0 .

The integral in the latter formula converges as ε ↘ 0 to the value of the
function ψ′ at the origin. The nonintegral terms are equal to zero because
the function ω has, by assumption, zero limits at the origin and at infinity.
By closure this result can be extended to all ψ ∈ E. It follows that for any
function ψ ∈ E and any test function ϕ ∈ D the following limit holds

lim
ε→0

〈
ϕ, (− d2

dx2
+

α

4π
vε〈vε, ·〉)ψ

〉
= 〈ϕ,Lαψ〉.
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Thus the sequence of operators

Lα,ε = − d2

dx2
+

α

4π
vε〈vε, ·〉

converges to the operator Lα pointwise in the weak operator topology. An
approximation of the operator Lα can be constructed using the same func-
tional sequence vε. We choose a special (but ”standard”) delta functional
sequence equal to

Vε(x) =
−1

4π

vε(|x|)
|x| .

Vε has compact support and it is easily verified that
∫

R3
V1(x)d3x = −

∫ ∞

0
rv1(r)dr = −

∫ ∞

0
rω′(r)dr

= −rω(r)|∞0 +
∫ ∞

0
ω(r)dr = 1.

Moreover Vε has the usual scaling properties:

Vε(x) =
−1

4π

vε(|x|)
|x| =

−1

4πr

∂

∂r
ωε(r)|r=|x|

=
−1

4πr

∂

∂r

1

ε
ω

(
r

ε

)
|r=|x| =

1

ε3
V1

(
x

ε

)
.

Finally, for any test function ψ continuous in a neighbourhood of the origin
the following limit holds

lim
ε→0

Vε(ψ) = lim
ε→0

∫

R3
Vε(x)ψ(x)d3x = ψ(0).

Lemma 11 Let ψ be any test function from E. Then the following limit
holds

lim
ε→0
〈Vε, ψ〉 = ψ0.

Proof Every function ψ ∈ E possesses the following representation

ψ(x) =

(
ψ−

4π|x| + ψ0

)
χ(x) + ψ̃(x),

where χ has compact support and is equal to one in a neighbourhood of the
origin and satisfies

ψ̃(x) = o(1), x → 0.
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Then the following limits exist:

lim
ε→0

∫

R3
d3xVε(x)ψ̃(x) = 0;

lim
ε→0

∫

R3
d3xVε(x)χ(x)ψ0 = ψ0;

lim
ε→0

∫

R3
d3xVε(x)

χ(x)

4π|x|ψ− = 0.

The last limit follows from the orthogonality of the functions Vε(x) and 1/|x|
in L2(R3). The lemma is proven.

2

Consider now the sequence of linear operators defined in the generalized sense

Lα,ε = −∆ + αVε(x) 〈Vε(x), ·〉 .

This sequence of linear operators Lα,ε converges as ε ↘ 0 to the operator
Lα in the weak operator topology. We prove now that the sequence of linear
operators Lα,ε converges to the operator Lα in the operator norm. All these
operators are defined on the domain Dom (∆∗

0) and their ranges belong to
H−2(−∆). The norms are defined by equations (43) and (16) respectively.

Lemma 12 Let ω be an infinitely differentiable function with compact sup-
port on the positive half axis and assume ω(0) = 0 and

∫∞
0 ω(r)dr = 1. Then

Vε(x) =

( −1

4πr

∂

∂r

1

ε
ω

(
r

ε

)) ∣∣∣
r=|x|, x ∈ R3

converges to δ in H−2(−∆) when ε ↘ 0.

Proof We have to prove that

lim
ε→0

∣∣∣
∣∣∣ 1

−∆ + 1
(δ − Vε)

∣∣∣
∣∣∣
L2(R3)

= 0, (78)

94



since the operator −∆ is positive. The Fourier transform V̂ε of the function
Vε can be calculated at any p ∈ R3 :

V̂ε(p) =
∫ ∞

0
drr2

∫ π

0
dθ sin θeirp cos θ−2π

4πr

∂

∂r

1

ε
ω

(
r

ε

)

=
∫ ∞

0
cos rp

1

ε
ω

(
r

ε

)
dr.

The function

V̂ε(p)− 1 =
∫ ∞

0
(cos rp− 1)

1

ε
ω(

r

ε
)dr

is uniformly bounded and tends to zero uniformly on every compact domain
D ⊂ R3. It follows that, with gε(p) ≡ (1/(p2 + 1)) (V̂ε(p)− 1),

‖ gε ‖L2(R3)→ε→0 0

and the limit (78) holds.
2

Theorem 11 The sequence of linear operators Lα,ε converges in the operator
norm to the linear operator Lα on W 2

2 (R3 \ {0}).

Proof This follows easily from Lemma 12 and Theorem 6.
Approximations with the renormalized coupling constant
The operator −∆ is positive and the functional δ belongs to H−2(−∆) \

H−1(−∆). Therefore a point interaction in dimension three can be approxi-
mated in the strong resolvent sense or even norm resolvent sense only using
a suitable renormalization of the coupling constant. Two approaches have
been developed. In the first approach the operator with the point interaction
is approximated by the sequence of operators

Lα,ε = −∆ + α(ε)Vε(x).

The functions Vε(x) are obtained from a certain function V1(x) by unitary
scaling. In this approach the interaction term α〈δ, ·〉δ = αδ is considered as
a singular potential, not as a rank one operator. To get the norm resolvent
convergence the coupling constant α should be chosen with a suitable depen-
dence on the scaling parameter ε. This approach is described in detail in the
book by S.Albeverio, F.Gesztesy, R.Hoegh-Krohn, and H.Holden [?].
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We are going to describe here in more detail the second approach where
the approximating sequence of operators is constructed using the spectral
representation of the Laplace operator. This approach was first developed by
F.A.Beresin and L.D.Faddeev [?]. Consider the sequence of functions un(x)
converging to the δ(x). The sequence can be constructed using the Fourier
transformation which is just the spectral representation for the Laplace op-
erator

ûn(p) =

{
1

(2π)3/2 , p2 < n2,

0, p2 > n2,

where ûn denotes the Fourier transform of the function un.
Obviously if ψ ∈ C∞

0 (R3) then

〈ψ, un〉 =
∫

R3
ψ(x)un(x)d3x → ψ(0) = 〈ψ, δ〉.

Consider the operator

Lnψ = −∆ψ + αnun(x)
∫

R3
un(y)ψ(y)d3y.

Let us calculate the resolvent of the operators in terms of the Fourier trans-
form for some z,=z 6= 0

(Ln − z)ψ = f

⇒ (p2 − z)ψ̂(p) + αnûn(p)
∫

ûn(q)ψ̂(q)d3q = f̂(p).

It follows that

ψ̂(p) =
f̂(p)

p2 − z
− αn

ûn(p)

p2 − z

∫
ûn(q)ψ̂(q)dq. (79)

We multiply the latter equality by ûn(p) and integrate with respect to p to
get the following equation

∫

R3
ûn(p)ψ̂(p)d3p =

∫
R3

f̂(p)
p2−z

ûn(p)d3p

1 + αn

∫
R3

(ûn(p))2

p2−z
d3p

.

Finally we get the following formula for the resolvent

ψ̂(p) =
f̂(p)

p2 − z
− αn

1 + αn

∫
R3

ûn(q)2

q2−z
d3q

(∫

R3

f̂(q)

q2 − z
ûn(q)d3q

)
ûn(p)

p2 − z
.
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The resolvents of the operators Ln have a nontrivial limit if and only if the
fractions

αn

1 + αn

∫
R3

ûn(q)2

q2−z
d3q

converge to a nontrivial limit. The asymptotic of the integral can be com-
puted explicitly using the spherical coordinates

∫

R3

ûn(q)2

q2 − z
d3q =

4π

8π3

∫ n

0

r2

r2 − z
dr =

1

2π2
n + o(n), n →∞.

One can choose for example

αn

1 + αnn/2π2
= α ⇒ αn =

α

1− αn/2π2
.

For this choice of the coupling constant the sequence of the self–adjoint op-
erators Ln converges to the operator Lα in the strong resolvent sense. We
note that the sequence of coupling constants αn is infinitesimal (in the sense
that αn → 0 as n → 0). If the coupling constant does not depend on n then
Theorem 9 implies that the resolvents of the operators Ln converge to the
resolvent of the original operator.

Perturbations of the first derivative operator
Consider rank one perturbations defined by the formal expression

Aα =
1

i

d

dx
+ αδ =

1

i

d

dx
+ α〈δ, ·〉δ. (80)

The operator Aα can be considered as a rank one perturbation of the self–
adjoint non–semibounded operator A = 1/id/dx with domain Dom (A) =
W 1

2 (R). The δ measure defines a bounded linear functional on W 1
2 (R) due

to the embedding theorem. But the element (1/(A− i)) δ = ie−xΘ(x) does
not belong to the domain of the operator A. (Θ(x) denotes here the Heav-
iside step function.) The restriction A0 of the operator A to the domain of
functions Dom (A0) = {ψ ∈ W 1

2 (R) : ψ(0) = 0} has deficiency indices (1, 1).
The deficiency elements are given by

gi =
1

A− i
δ = ie−xΘ(x),

g−i =
1

A + i
δ = −iexΘ(−x).
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Every function ψ from the domain of the adjoint operator possesses the
standard representation

ψ(x) = ψ̃ +
b(ψ)

2
i signx e−|x|,

where ψ̂ ∈ W 1
2 (R). Consider the group of the central symmetries of the real

line:
G(1) = I,G(−1) = J,

G(−1)2 = G(1),

where I and J are the identity and inversion operators respectively defined
by the following formulas in the generalized sense

(If)(x) = f(x);

(Jf)(x) = f(−x).

The original operator and the functional δ are homogeneous with respect to
this group

AG(t) = tG(t)A,

G(t)δ = δ.

The parameters β and θ for this problem are equal to 1 and 0 respectively.
The group consists of only two elements and the extension of the functional
δ can be defined using the parameter f(−1). The parameter c defining the
extension of the functional δ is given by

c = f(−1)− i
∣∣∣
∣∣∣ 1

A− i
δ
∣∣∣
∣∣∣
2

= i

〈
δ,

1

(A− i)(A + i)
δ

〉
− i

〈
1

A− i
δ,

1

A− i
δ
〉

= 0.

The latter equality implies that the extension of the delta function, which is
an even distribution, vanishes on every odd test function.

It follows from Theorem 4 that the self–adjoint operator Aα corresponding
to the formal expression (80) is defined on the domain of functions satisfying
the following conditions

ψ̃(0) = − 1

α
b(ψ).
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Thus the operator Aα is the self–adjoint operator 1/id/dx defined on the
following domain

Dom (Aα) =

{
ψ ∈ W 1

2 (R \ {0}) : ψ(−0) =
1 + iα

2

1− iα
2

ψ(+0)

}
.

The spectral analysis of the operator Aα can be easily carried out.
Dirac operator with a pseudopotential
A similar analysis to that made in the previous section can be carried out

for the one dimensional Dirac operator with the delta potential

Hα =

(
m −i d

dx

−i d
dx

−m

)
+ V ~δ (81)

V = V ∗ =

(
v11 v12

v21 v22

)
,

where v11, v22 ∈ R, v12 = v21 ∈ C. This family of Dirac operators with
pseudopotentials is described by four real parameters. The original operator

H =

(
m −i d

dx

−i d
dx

−m

)

is defined on the two component functions f = (f1, f2) ∈ L2(R) ⊕ L2(R)
from the domain Dom (H) = W 1

2 (R) ⊕ W 1
2 (R). Two delta functions δ1, δ2

defined as follows 〈δi, f〉 = fi(0), i = 1, 2, are bounded linear functionals on

the domain of the original operator. The delta function ~δ is the linear map

~δ : W 1
2 (R)⊕W 1

2 (R) → C2,

〈~δ, f〉 =

(
f1(0)
f2(0)

)
.

The product of the delta function and an arbitrary continuous function f is
equal to

〈f~δ, ψ〉 =

〈
~δ,

(
f1ψ1

f2ψ2

)〉

=

(
f1(0)ψ(0)
f2(0)ψ(0)

)

=

(
f1(0) 0

0 f2(0)

)
〈~δ, ϕ〉,
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where ψ is an arbitrary test function from C∞
0 (R) ⊕ C∞

0 (R). The heuristic
expression (81) can be written as

Hα =

(
m −i d

dx

−i d
dx

−m

)
+ V diag{〈δi, ·〉}~δ. (82)

This operator can be considered as a rank two perturbation of the self–adjoint
non–semibounded original operator H. In accordance with this approach we
restrict the original operator H to the domain of functions Dom (H0) =

{ψ ∈ Dom (H) : 〈~δ, ψ〉 = 0}. The restricted operator H0 has deficiency
indices (2, 2). The adjoint operator H0∗ is defined on the domain W 1

2 (R \
{0}) ⊕W 1

2 (R \ {0}). To determine the perturbed operator, bounded linear
functionals δi have to be extended to a set of functions which are discontinu-
ous at the origin and continuous outside the origin. The delta functions are
homogeneous with respect to the group of central symmetries of the real line
and the extension is unique:

〈δi, f〉 =
fi(+0) + fi(−0)

2
, i = 1, 2.

This extension allows one to define the perturbed linear operator on the
domain W 1

2 (R\{0})⊕W 1
2 (R\{0}) since the boundary values at the origin of

the functions from this domain are well defined. The domain of the perturbed
self–adjoint operator coincides with the set of all function ψ ∈ L2(R)⊕L2(R),
such that (

m −i d
dx

−i d
dx

−m

)
ψ + V ~δ(x)ψ ∈ L2(R)⊕ L2(R).

Let us calculate the distribution

f =

(
m −i d

dx

−i d
dx

−m

)
ψ + V ~δ(x)ψ

for any function ψ from the domain of the adjoint operator H∗
0 . Every such

distribution can be presented in the following form

f = f̃ − i

(
0 1
1 0

)
diag{ψ1(+0)− ψ1(−0), ψ2(+0)− ψ2(−0)}~δ

+
1

2
V diag{ψ1(+0) + ψ1(−0), ψ2(+0) + ψ2(−0)}~δ,
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where f̃ ∈ L2(R)⊕ L2(R). The vector f belongs to the Hilbert space if and

only if the coefficient in front of the delta function ~δ is equal to zero. We get
the following boundary conditions for the function ψ at the origin:

(
1

2
V − i

(
0 1
1 0

))
ψ(+0) = −

(
1

2
V + i

(
0 1
1 0

))
ψ(−0).

These boundary conditions can be written in the form:

ψ(+0) = Λψ(−0); (83)

Λ = −
(

1

2
V − i

(
0 1
1 0

)) (
1

2
V + i

(
0 1
1 0

))
.

One can show that

Λ

(
0 1
1 0

)
Λ∗ =

(
0 1
1 0

)
,

and it follows that the operator H0∗ restricted to the domain of functions
satisfying the boundary conditions (83) is self–adjoint ([?, ?]).
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