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Introduction

This volume contains proceedings of the International Conference: Operator The-
ory and its Applications in Mathematical Physics – OTAMP 2002 held at Mathe-
matical Research and Conference Center in Bedlewo near Poznan.

The aim of the conference was to gather researches working in close areas
of operator theory, analysis and mathematical physics, which is reflected by the
titles of scientific sessions

• Random and quasiperiodic Schrödinger operators
(P. Stollmann and G. Stolz);

• Jacobi matrices and orthogonal polynomials
(J.S. Geronimo and W. Van Assche);

• Singular perturbations of self-adjoint operators
(W. Karwowski and P. Kurasov).

The current volume contains in addition to materials of the lectures given at the
conference original research articles, several ones initiated during the conference.
Two main entirely connected themes dominate the volume

• spectral properties of 1-dimensional Schrödinger operators
and infinite Jacobi matrices,

• theory of self-adjoint and dissipative operators.

Contributions devoted to the first theme contain in particular results on the ex-
istence and finiteness of the point spectrum of Jacobi matrices, bounds for the
points of spectral concentration of one-dimensional Schrödinger operators, WKB
and turning points for the second order difference equations. The second theme
is represented by the articles devoted to partial non-stationary perturbation de-
terminants, self-adjointness by domination of commutators, symmetric functional
models etc.

The Organizing Committee of the conference takes this opportunity to thank
all session organizers for helping in putting together the scientific programm and
all participants for coming to Bedlewo and making this conference into a useful
scientific event. Special thanks go to M. Moszynski for helping in organization. We
would like to thank

Stefan Banach International Mathematical Center
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for generous financial support. It is impossible to imagine the conference without
warm hospitality from everybody working at

Mathematical Research and Conference Center in Bedlewo.

The Editors would like to thank all the referees assisting in preparation of this
volume and coming with numerous suggestions helping to keep the high standard
of this volume.

Finally we are indebted to The Editorial Board and in particular to Professor
I. Gohberg for including these Proceedings in the series Operator Theory: Advances
and Applications and to Birkhäuser Verlag for patience and help in preparation of
the volume.

Krakow-Lund-St. Petersburg, March 2004
The Editors
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Partial Non-stationary
Perturbation Determinants

Vadim Adamyan and Heinz Langer

Abstract. A partial non-stationary perturbation determinant ∆1(t) is defined
as follows:

∆1(t) := det
(
eitAP1e

−itH
∣∣
H1

)
, t > 0;

here A is a self-adjoint operator in some Hilbert space H1, H is a self-adjoint
operator in a larger Hilbert space H ⊃ H1, P1 is the orthogonal projection in
H onto H1 and P1(H −A)|H1 is a trace class operator in H1. If the operator
P1H(I − P1) is finite-dimensional, ∆1(t) is expressed by the resolvent kernel
of a system of Fredholm integral equations on (0, t) of second kind. Moreover,
in a particular situation the asymtotic behavior of ∆1(t) for t → ∞ is studied.

Mathematics Subject Classification (2000). 47D06, 47A55, 47B10, 47A99;
45B05, 47A40.

Keywords. Evolution equation, groups of unitary operators, perturbation de-
terminant, block operator matrix, spectral shift function.

1. Introduction

By a non-stationary perturbation determinant we mean a function of the form

∆(t) := det
(
eitH0e−itH

)
, t > 0, (1.1)

where H0 and H are self-adjoint operators in some Hilbert space H such that the
difference H −H0 is a trace class operator. A partial non-stationary perturbation
determinant is defined by the relation

∆1(t) := det
(
eitAP1e

−itH
∣∣
H1

)
, t > 0, (1.2)

where A is a self-adjoint operator in some Hilbert space H1, H is a self-adjoint
operator in a larger Hilbert space H ⊃ H1, P1 is the orthogonal projection in H

V. Adamyan was supported by grant CRDF UM1 2090 of the U.S. Civilian Research and Devel-
opment Foundation. He also thanks the Vienna University of Technology for its hospitality.



2 V. Adamyan and H. Langer

onto H1, and P1(H − A)
∣∣
H1

is a trace class operator in H1. We are interested in
more explicit expressions for ∆(t) and ∆1(t) and, in particular, in the asymptotic
behavior of ∆1(t) for t −→∞.

These studies are motivated by the paper [4] which, in turn, was inspired by
results of P.W. Anderson, cf. [5]. In [4] it was shown that the function I(ω), which
describes the intensity of the spectral lines in the x-ray photoemission spectrum
of metals plotted against the radiation frequency ω, within a certain degree of
approximation can be calculated by the formula

I(ω) = lim
ε↓0
�
∫ ∞

0

eiωte−εt det
(
I + E0

εF

(
eitH0e−itH − I

))
dt. (1.3)

Here H0 and H are the effective self-adjoint one-particle energy operators for
the electron in the metal before and after the photoemission, E0

λ is the spectral
function of H0, and εF is the Fermi energy level.

On the right-hand side of (1.3) there appears a partial non-stationary per-
turbation determinant of the form

∆1(t) = det
(
I + E0

λ

(
eitH0e−itH − I

))
(1.4)

with H1 = ranE0
λ and A = P1H0P1. In this case the operators H and H0 in (1.4)

have the following additional property: if we represent them by block operator
matrices with respect to the decomposition H = H1 ⊕ H⊥

1 , H1 := P1H = E0
λH,

of the space H, then H and H0 have the same diagonal blocks, say A and D and
the spectra of these diagonal blocks are weakly separated. The latter means that
there exists some real α such that

maxσ(A) ≤ α ≤ min σ(D) (1.5)

and that α is not an eigenvalue of A and of D. Therefore the results from [1], [3]
can be applied.

This note is organized as follows. In Section 2 we consider non-stationary
perturbation determinants (1.2), actually in the slightly more general setting with
the unitary groups replaced by families of solutions of two evolution equations.
For the particular case of self-adjoint operators H0 and H , H = H0 + V with a
trace class operator V , it turns out that the well-known formula for the finite-
dimensional case generalizes to

∆(t) ≡ det
(
eitH0e−itH

)
= e−i (trV ) t, t > 0.

In Section 3 we consider partial non-stationary perturbation determinants
under the assumption that the diagonal blocks of H have weakly separated spec-
trum. This allows to apply the angular operator representations from [2], [3] of
the spectral subspaces of H , corresponding to (−∞, α) and (α,+∞) . As the main
result of this note we show in Theorem 3.4 that if the spectrum of the perturbed
operator is absolutely continuous in at least one of the intervals (−∞, α), (α,+∞)
then

∆1(t) = e−b−iat (1 + o(1))
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with non-negative numbers a and b. Moreover, under an additional assumption
these numbers are zero if and only if the off-diagonal blocks of H are zero.

Finally, in Section 4 for the case of a finite-dimensional off-diagonal per-
turbation we express the partial non-stationary perturbation determinant by the
Fredholm kernel of a system of second kind Fredholm integral equations.

2. Non-stationary perturbation determinants

Let H be a Hilbert space. In the sequel we often deal with integrals
∫ t
s S(τ) dτ for

operator-valued functions S(t) which are continuous in the nuclear norm ‖ · ‖1 of
the ideal S1 of trace class operators in H. These integrals are to be understood as
the limits of the corresponding Riemann sums with respect to this norm. Evidently,
they define operators of the trace class S1.

The following theorem is formulated in a more general form than needed
below. We use the notion of an evolution system as defined in [10, Definition 5.3],
which is a two-parameter family of bounded linear operators W (t, s), 0 ≤ s ≤ t <
∞, inH such that the following two conditions are satisfied for 0 ≤ s ≤ r ≤ t <∞:

(i) W (s, s) = I, W (t, s) = W (t, r)W (r, s),

(ii) the mapping (t, s) −→ W (t, s) is strongly continuous.
Sufficient conditions for the fact that the operator functions H0(t) and H(t) gen-
erate evolution systems can be found in [10, Chapter 5].

Theorem 2.1. For t ∈ [0,∞), let H0(t) be self-adjoint and H(t) be densely defined
operators, such that

H(t)−H0(t) =: V (t) ∈ S1,

and that the operator function V (t) is continuous on [0,∞) with respect to the
norm of S1. Suppose further that there exist evolution systems

W0(s, t), W (s, t), 0 ≤ s ≤ t <∞,
and a dense subset D ⊂ H, such that for 0 ≤ s < t, x ∈ D, it holds

i
∂W0(t, s)x

∂t
= H0(t)W0(t, s)x, i

∂W (t, s)x
∂t

= H(t)W (t, s)x,

with the derivatives on the left-hand sides to be understood with respect to the norm
of H. Then

W0(t, s)∗W (t, s) = I − i
∫ t

s

W0(τ, s)∗V (τ)W (τ, s) dτ, (2.1)

where the integral on the right-hand side exists with respect to the norm of S1 and
belongs to S1, and

∆(t, s) := det (W0(t, s)∗W (t, s)) = e
−i
∫ t

s

tr [V (τ)] dτ
. (2.2)
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Proof. For x, y ∈ D and 0 ≤ s < t <∞ we consider the following relation where ′

denotes the derivative with respect to t:

(W (t, s)x,W0(t, s)y)
′ = (W ′(t, s)x,W0(t, s)y) + (W (t, s)x,W ′

0(t, s)y)

= (−iH(t)W (t, s)x,W0(t, s)y) + (W (t, s)x,−iH0(t)W0(t, s)y)

= −i ((H(t)−H0(t))W (t, s)x,W0(t, s)y)

= −i (V (t)W (t, s)x,W0(t, s)y) .

Since the expression on the right-hand side is a continuous function of t for s ≤ t
and the set D is dense in H the relation (2.1) follows. From the special choice
H(t) = H0(t) we find that

W0(t, s)∗W0(t, s) = I, 0 ≤ s ≤ t <∞.
Further,

W0(t+ δ, s)∗W (t+ δ, s) = W0(t, s)∗W0(t+ δ, t)∗W (t+ δ, t)W (t, s)
= [W0(t, s)∗W0(t+ δ, t)∗W (t+ δ, t)W0(t, s)] [W0(t, s)∗W (t, s)]

and hence

det [W0(t+ δ, s)∗W (t+ δ, s)] = det [W0(t+ δ, t)∗W (t+ δ, t)] det [W0(t, s)∗W (t, s)]

or
∆(t+ δ, s) = ∆(t+ δ, t)∆(t, s). (2.3)

It follows that
∆(t+ δ, s)−∆(t, s)

δ
= ∆(t, s)

∆(t+ δ, t)− 1
δ

. (2.4)

We denote S(δ) :=
∫ t+δ
t

W0(τ, t)∗V (τ)W (τ, t) dτ . Then ‖S(δ)‖1 < 1 if |δ| is suffi-
ciently small. The relation (2.1) implies for these values of δ

∆(t+ δ, t) = det (W0(t+ δ, t)∗W (t+ δ, t))
= det (I − iS(δ))
= exp (tr [ln(I − iS(δ)])
= exp

(
−i tr [S(δ)] + O

(
‖S(δ)‖21

))
,

and we find for δ −→ 0:

∆(t+ δ, t)− 1
δ

=
exp
(
−i tr[S(δ)] + O

(
‖S(δ)‖21

))
− 1

δ

=

(
−i tr[S(δ)] + O

(
‖S(δ)‖21

))
δ

= −i tr

[
1
δ

∫ t+δ

t

W0(t; s)∗V (s)W (t; s) ds

]
+

O
(
‖S(δ)‖21

)
δ

−→ −i trV (t),
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and, finally,
d∆(t, s)

dt
= −i tr [V (t))] ∆(t, s).

Observing that ∆(s, s) = 1 the relation (2.2) follows.
�

If, in Theorem 2.1, H0(t) ≡ H0 and H(t) ≡ H are constant self-adjoint
operators, then with the unitary groups generated by H0 and H we have, e.g.,

W0(t, s) = e−i(t− s)H0 , 0 ≤ s ≤ t,

and the relation (2.2) implies the following corollary.

Corollary 2.2. If H0 and H are self-adjoint operators and H −H0 ∈ S1, then

det
(
eitH0e−itH

)
= e−it tr(H −H0). (2.5)

A discrete analog is as follows. Let H0 and H be as in Corollary 2.2. For
z �= z we consider the Cayley transforms

U0(z) := (H0 − z)(H0 − z)−1, U(z) := (H − z)(H − z)−1, (2.6)

which are unitary operators. Since V = H−H0 is a trace class operator the unitary
operator U0(z)−1U(z) has the property

U0(z)−1U(z)− I = U0(z)−1 [U(z)− U0(z)]

= 2i�z U0(z)−1(H − z)−1V (H0 − z)−1 ∈ S1.

Hence for n ∈ N we have

U0(z)−nU(z)n − I =
n−1∑
k=0

U0(z)−k
(
U0(z)−1U(z)− I

)
U(z)k ∈ S1.

By DH/H0(z) we denote the perturbation determinant of the ordered pair H,H0,
cf. [7]:

DH/H0(z) = det
(
I + (H0 − z)−1V

)
= det

(
(H0 − z)−1(H − z)

)
.

Theorem 2.3. If H0 and H are self-adjoint operators, H − H0 ∈ S1 and U0(z),
U(z) are the Caley transforms given by (2.6) then

det
[
U0(z)−nU(z)n

]
= e2ni argDH/H0(z). (2.7)

Proof. The properties of determinants (cf. [7]) imply

d̃n : = det
[
U0(z)−nU(z)n

]
= det

[
U0(z)−(n−1)U(z)n−1U(z)U0(z)−1

]

= d̃n−1 det
[
U(z)U0(z)−1

]
= d̃n−1 det

[
U0(z)−1U(z)

]
= · · ·

=
(
det
[
U0(z)−1U(z)

])n
.
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Further,

det
[
U0(z)−1U(z)

]
= det

[
(H0 − z)(H0 − z)−1(H − z)(H − z)−1

]

= det
[
(H − z)−1(H0 − z)(H0 − z)−1(H − z)

]

= DH0/H(z)DH/H0(z).

Taking into account that for a pair of self-adjoint operatorsH0, H withH−H0 ∈ S1

we have DH0/H(z) =
(
DH/H0(z)

)−1

the claim follows. �

3. Asymptotic behavior of ∆1(t)

Let again A be a self-adjoint operator in the Hilbert space H1, and consider in the
Hilbert space H = H1 ⊕H2 the operator

H =
(
A+ V B
B∗ D

)
(3.1)

which is supposed to be self-adjoint. We assume that V, B ∈ S1 and, additionally,
that the spectra of A+ V and D are weakly separated, that is, for some α ∈ R,

maxσ(A + V ) ≤ α ≤ minσ(D) (3.2)

and α is neither an eigenvalue of A + V nor of D. By L− and L+ we denote
the spectral subspaces of H corresponding to the intervals (−∞, α) and [α,∞),
respectively.

According to the results of [1], [3] there exists a contractionX, ‖X‖ ≤ 1, from
H1 into H2 such that L− and L+ admit graph representations with an angular
operator X :

L− =
{(

x
Xx

)∣∣∣∣x ∈ H1

}
, L+ =

{(
−X∗y
y

)∣∣∣∣ y ∈ H2

}
. (3.3)

Moreover, X is a trace class operator: X ∈ S1, ranX ⊂ domD, ranX∗ ⊂ domA,
and X is the unique contractive solution of the Riccati equation

XBX +X(A+ V )−DX −B∗ = 0. (3.4)

The operator H
∣∣
L−

is isomorphic to the self-adjoint operator A+ V +BX in the

Hilbert space (H1, ((I +X∗X) · , · )), and the operator H
∣∣
L+

is isomorphic to the
self-adjoint operator D − B∗X∗ in the Hilbert space (H2, ((I +XX∗) · , · )). The
operator T in H, given by the matrix

T =
(

I −X∗

X I

)
, (3.5)

is invertible,

T−1 =
(

(I +X∗X)−1 (I +X∗X)−1X∗

−(I +XX∗)−1X (I +XX∗)−1

)
, (3.6)
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and it diagonalizes H :

H = T

(
A+ V +BX 0

0 D −B∗X∗

)
T−1. (3.7)

It follows that also the operator e−itH admits the representation

e−itH = T

(
e−it(A+V+BX) 0

0 e−it(D−B∗X∗)

)
T−1. (3.8)

If P1 denotes again the projection onto H1 in H, then

P1e
−iHt
∣∣
H1

= e−it(A+V+BX)(I+X∗X)−1+X∗e−it(D−B∗X∗)(I+XX∗)−1X. (3.9)

Lemma 3.1. Under the assumptions at the beginning of this section we have

∆1(t) ≡ det e−itAP1e
−itH
∣∣
H1

=
e−it tr(V+BX)

det(I +X∗X)
∆̃(t), (3.10)

where

∆̃(t) := det
(
I + eit(A+V+BX)X∗e−it(D−B∗X∗)X

)
.

Proof. Using the identity

(I +XX∗)−1X = X(I +X∗X)−1,

it follows from (3.9) that

eitAP1e
−itH
∣∣
H1

= eitAe−it(A+V+BX)
(
I + eit(A+V+BX)X∗e−it(D−B∗X∗)X

)
(I +X∗X)−1

and hence

det
(
eitAP1e

−itH
∣∣
H1

)
= det

(
eitAe−it(A+V+BX)

) ∆̃(t)
det(I +X∗X)

By Theorem 2.1

det
(
eitAe−it(A+V+BX)

)
= e−it tr (V+BX), (3.11)

and (3.10) is proved. �

Lemma 3.2. Let (U(t))−∞<t<+∞ be a group of unitary operators in the Hilbert
space H1, let Y be a trace class operator from H1 into the Hilbert space H2, and
let W (t), t > 0, be a function whose values are bounded operators in H2 and which
is bounded in the operator norm: ‖W (t)‖ ≤ c, t > 0. If the infinitesimal generator
of the unitary group U(t) has absolutely continuous spectrum then

lim
t→∞ det (I + U(t)Y ∗W (t)Y ) = 1.
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Proof. First we observe that

det (I + U(t)Y ∗W (t)Y ) = det (I + Y U(t)Y ∗W (t)) .

The trace class operator Y can be represented as

Y =
∑
ν

τν( · , ψν)ϕν , (3.12)

where (ψν) and (ϕν) are orthonormal systems of elements in H1 and H2, respec-
tively, and τν > 0,

∑
ν
τν <∞. It follows that

Y U(t)Y ∗W (t) =
∑
µ,ν

τµτν(U(t)ψν , ψµ)( · ,W (t)∗ϕν)ϕµ

and
‖Y U(t)Y ∗W (t)‖1 ≤

∑
µ,ν

τµτν |(U(t)ψν , ψµ)| ‖( · ,W (t)∗ϕν)ϕµ‖1

≤ c
∑
µ,ν

τµτν |(U(t)ψν , ψµ)| .
(3.13)

Since the spectrum of the infinitesimal generator of the unitary group (U(t)) is
absolutely continuous we have

(U(t)ψν , ψµ) =

∞∫

−∞
eiλtfµν(λ)dλ, −∞ < t < +∞,

where fµν ∈ L1(−∞,∞). The Riemann-Lebesgue lemma yields

(U(t)ψν , ψµ) −→ 0, t→∞.
Observing that ∑

µ,ν

τµτν <∞

we get from (3.13)
lim
t→∞ ‖Y U(t)Y ∗W (t)‖1 = 0,

and hence
lim
t→∞det (I + Y U(t)Y ∗W (t)) = 1, t→∞. �

For the proof of the main theorem of this section we need one more result
which may be of independent interest. Here ξH/H0 (λ) denotes the spectral shift
function of the pair of self-adjoint operators H, H0, cf. [6].

Theorem 3.3. For the pair of self-adjoint operators

H0 :=
(
A 0
0 D

)
, H :=

(
A B
B∗ D

)
(3.14)

with B ∈ S1 the relation

ξH/H0 (λ) = 0 a.e. on R

is equivalent to B = 0.
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Proof. If B = 0 then, evidently, ξH/H0(λ) = 0 a.e.
To prove the converse, recall that by [9] with Q := H −H0 we have

lnDH/H0(z) = ln det
(
I + (H0 − z)−1Q

)

= tr ln
(
I + (H0 − z)−1Q

)

=

∞∫

−∞

ξH/H0 (λ)
λ− z dλ, �z �= 0,

where ln denotes the continuous branch of the logarithm with ln 1 = 0. Therefore
ξH/H0 (λ) = 0 a.e. implies

lnDH/H0(z) = tr ln
(
I + (H0 − z)−1Q

)
= 0, �z �= 0. (3.15)

For the self-adjoint operator H0 and Q ∈ S1 we have
∥∥(H0 − iy)−1Q

∥∥
1
≤ 1
y
‖Q‖1 , y > 0, (3.16)

and
lim

y→+∞−y
2 tr
(
(H0 − iy)−1Q(H0 − iy)−1Q

)
= trQ2, (3.17)

and the special form of the operators H0, H in (3.14) implies for non-real z

tr
(
(H0 − z)−1Q

)
= tr

(
0 (A− z)−1B

(D − z)−1B∗ 0

)
= 0, (3.18)

From (3.15), (3.16), (3.18) we obtain

0 = lnDH/H0(iy) = tr
(
(H0 − iy)−1Q

)

− 1
2
tr
(
(H0 − iy)−1Q(H0 − iy)−1Q

)
+ O
(

1
y3

)

= −1
2
tr
(
(H0 − iy)−1Q(H0 − iy)−1Q

)
+ O
(

1
y3

)
, y ↑ ∞,

and, using (3.17), trQ2 = 0, which because of the self-adjointness of Q implies
Q = 0. �

Note that in general for a pair of self-adjoint operators H, H0 with H−H0 ∈
S1 the relation ξH/H0 (λ) = 0 a.e. does not imply that H = H0. For example, let
H0 be a bounded self-adjoint operator and let I + T with T ∈ S1 be a unitary
operator:

I + T ∗ = (I + T )−1,

such that
H := (I + T ∗)H0(I + T ) �= H0.
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Then for z with �z �= 0

DH/H0(z) = det
(
I + (H0 − z)−1(H −H0)

)

= det
(
(I + T )−1(H0 − z)(I + T )(H0 − z)−1

)
= 1,

and hence ξH/H0 (λ) = 0 a.e.

Theorem 3.4. Suppose that, in addition to the assumptions in the first paragraph
of this section, at least one of the operators H

∣∣
L−
, H
∣∣
L+

has absolutely continuous
spectrum. Then

∆1(t) = e−b−iat(1 + o(1)), t→∞, (3.19)

where
a = tr (V +BX) ≤ 0, b = ln det(I +X∗X) ≥ 0.

The relation b = 0 is equivalent to B = 0; if V ≤ 0 then a ≤ 0, and a = 0 is
equivalent to V = B = 0.

Proof. We consider the case that H
∣∣
L−

has absolutely continuous spectrum. Then
the same is true for the isomorphic self-adjoint operator A+V +BX in the Hilbert
space (H1, ((I +X∗X) · , · )). Because of (3.10) the relation (3.19) will follow if we
show that

∆̃(t) = det
(
I + eit(A+V+BX)X∗e−it(D−B∗X∗)X

)
= 1 + o(1), t→∞. (3.20)

The self-adjointness of the operator A+V +BX in (H1, ((I +X∗X) · , · )) means
that

(I +X∗X)(A+ V +BX) = (A+ V +BX)∗(I +X∗X),

or that the operator

Ã := (I +X∗X)1/2(A+ V +BX)(I +X∗X)−1/2

is self-adjoint in H1. Then

eitÃ = (I +X∗X)1/2eit(A+V+BX)(I +X∗X)−1/2, −∞ < t <∞,

is a group of unitary operators in H1 with generator Ã which has absolutely
continuous spectrum. Properties of determinants allow to represent ∆̃(t) in the
form

∆̃(t) = det
(
I + eitÃ(I +X∗X)1/2X∗e−it(D−B∗X∗)X(I +X∗X)−1/2

)
,

and (3.20) follows from Lemma 3.2 if we observe that X ∈ S1 and that the group
e−it(D−B∗X∗), −∞ < t <∞, is bounded in H1 since also the operator D−B∗X∗

is similar to a self-adjoint operator in H1.
If B = 0 then X = 0, det(I + X∗X) = 1, and b = ln det(I + X∗X) = 0.

Conversely, b = 0 implies X = 0, and the Riccati equation (3.4) yields B = 0.
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In order to prove the last claim of the theorem we introduce the operator

H̃0 :=
(
A+ V 0

0 D

)
.

Then, because of [1, Theorem 3.3],

a = tr (V +BX) =
∫ α

−∞
ξH/H̃0

(λ) dλ + trV. (3.21)

In [1, Theorem 2.1 ] it was shown that ξH/H̃0
(λ) ≤ 0 a.e. on (−∞, α) and

ξH/H̃0
(λ) ≥ 0 a.e. on (α,∞). In particular, the integral in (3.21) is ≤ 0, and

since V ≤ 0 by assumption, also the expression on the right-hand side of (3.21) is
≤ 0 and hence a ≤ 0.

Suppose now that a = 0. Then (3.21), V ≤ 0 and ξH/H̃0
(λ) ≤ 0 a.e. on

(−∞, α) imply that ∫ α

−∞
ξH/H̃0

(λ) dλ = trV = 0

and hence
V = 0, ξH/H̃0

(λ) = 0 a. e. on (−∞, α).

Since V = 0 we have H0 = H̃0, and also

0 = tr (H −H0) =

∞∫

−∞
ξH/H0(λ)dλ =

∞∫

α

ξH/H0 (λ)dλ,

which, because of ξH/H0(λ) ≥ 0 a.e. on (α,∞), yields ξH/H0 (λ) = 0 a.e. Finally,
Theorem 3.3 implies B = 0. �

In the following for the self-adjoint operator

H =
(

A B
B∗ D

)
(3.22)

in H = H1 ⊕H2 the invertibility of the operator

W (t) := P1e
−itH
∣∣∣
H1

plays some role.

Lemma 3.5. Suppose that the spectra of the self-adjoint operators A and D in
(3.22) are separated:

maxσ(A) ≤ α ≤ min σ(D)

with some α ∈ R which is neither an eigenvalue of A nor of D, and suppose that
B is compact. Then for all t ∈ R the operator P1e

−itH
∣∣
H1

is invertible.
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Proof. We consider the representation (3.3) of the spectral subspaces L− and L+

of H corresponding to the intervals (−∞, α) and [α,∞), respectively. Since α is
not an eigenvalue of A and of D we have ‖Xx‖ < ‖x‖ for all x ∈ H1, x �= 0,
and the compactness of X implies that ‖X‖ < 1. According to (3.9), the operator
W (t) can be written as

W (t) = e−it(A+BX)W̃ (t)(I +X∗X)−1,

where
W̃ (t) := I + eit(A+BX)X∗e−it(D−B∗X∗)X.

The operator A + BX is similar to a self-adjoint operator, therefore the group(
e−it(A+BX)

)
t∈R

is similar to a group of unitary operators and hence invertible.

Now the invertibility of W (t) follows if we show the invertibility of W̃ (t).
If W̃ (t) would not be invertible, because of the compactness of X there would

exist an element x ∈ H1, x �= 0, such that

x = −eit(A+BX)X∗e−it(D−B∗X∗)Xx.

Applying the operator (I +X∗X)1/2, using the identities

(I +X∗X)1/2X∗ = X∗(I +XX∗)1/2, (I +XX∗)1/2X = X(I +X∗X)1/2

and taking into account that the operators (I+X∗X)1/2e−it(A+BX)(I+X∗X)−1/2

and (I +XX∗)1/2eit(D−B∗X∗)(I +XX∗)−1/2 are unitary, we find
∥∥(I +X∗X)1/2x

∥∥

=
∥∥(I +X∗X)1/2eit(A+BX)(I +X∗X)−1/2(I +X∗X)1/2X∗e−it(D−B∗X∗)Xx

∥∥

=
∥∥X∗(I +XX∗)1/2e−it(D−B∗X∗)Xx

∥∥

<
∥∥(I +XX∗)1/2e−it(D−B∗X∗)(I +XX∗)−1/2(I +XX∗)1/2Xx

∥∥

=
∥∥X(I +X∗X)1/2x

∥∥ < ∥∥(I +X∗X)1/2x
∥∥,

a contradiction. �

4. Partial perturbation determinants and Fredholm resolvents

In this section we consider the partial perturbation determinant

∆1(t) = det
(
eitAP1e

−itH
∣∣
H1

)
.

for the operator

H =
(

A B
B∗ D

)
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in the Hilbert space H = H1 ⊕ H2, where A and D are self-adjoint operators in
H1 and H2, respectively, and the operator B is finite-dimensional. We represent
B as

B =
n∑
ν=1

τν( · , ψν)ϕν ,

with orthonormal systems (ϕν)n1 and (ψν)n1 inH1 andH2, respectively, and positive
numbers τν , ν = 1, 2, . . . , n.

First we recall the following formulas which hold for any self-adjoint opera-
tor T :

e−itT−εt =
1

2πi

∞∫

−∞
(T − λ− iε)−1e−iλt dλ, t > 0, ε > 0, (4.1)

(T − λ+ iε)−1 = i

∞∫

0

e−it(T−λ−iε)dt, ε > 0; (4.2)

the integrals are defined in the strong operator topology. It follows that

e−εtP1e
−itH
∣∣∣
H1

=
1

2πi
P1

∞∫

−∞
(H − λ+ iε)−1e−iλtdλ

∣∣∣
H1

=
1

2πi

∞∫

−∞
W (λ+ iε)−1e−iλtdλ, t > 0, ε > 0,

(4.3)

where

W (z) := A− z −B(D − z)−1B∗, �z �= 0.

On the resolvent sets ρ(A) and ρ(D) we introduce the holomorphic n× n-matrix
functions

G1(z) =
((

(A− z)−1ϕν , ϕµ
))n
µ,ν=1

, G2(z) =
(
τµτν
(
(D − z)−1ψν , ψµ

))n
µ,ν=1

.

A straightforward calculation leads to the representation

W (z)−1 = (A− z)−1 +
n∑

µ,ν=1

gµν(z)
(
· , (A− z)−1ϕµ

)
(A− z)−1 ϕν , (4.4)

where the functions gµν(z) are the entries of the n× n-matrix function

G(z) := G2(z) (I −G1(z)G2(z))
−1 = (gµν(z))

n
µ,ν=1 .

Recall that a Nevanlinna function is a function which is analytic in the upper
half-plane and has a non-negative imaginary part there.
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Lemma 4.1. The functions G1(z), G2(z) and G(z) are Nevanlinna functions. More-
over, G(z) admits the representation

G(z) =

∞∫

−∞

1
λ− z dΣ (λ), �z �= 0, (4.5)

with a non-decreasing bounded n × n-matrix function Σ(λ) on R. Consequently,
with the positive definite n× n-matrix function

Q(t) :=

∞∫

−∞
e−iλt dΣ(λ), t ∈ R, (4.6)

the representation

G(z) = i

∞∫

0

eiztQ(t) dt, �z > 0, (4.7)

holds.

Proof. That G1(z) and G2(z) are Nevanlinna functions is clear, for G(z) this fol-
lows from the relation

−G(z)−1 = G1(z) +
(
−G2(z)−1

)

and the fact that both summands on the right-hand side are Nevanlinna functions.
Since

G1(iy), G2(iy) −→ 0, y ↑ ∞,
and

sup
y>0

y‖G2(iy)‖ <∞,

the function G(z) admits the representation (4.5), cf. [8, Theorem 1.4.1]. �

Inserting (4.4) with z = λ+ iε into the right-hand side of (4.3), using (4.1),
(4.2), (4.7) and the convolution theorem, and setting Q(t) =: (qµν(t))

n
µ,ν=1 we find

P1e
−itH
∣∣
H1

= e−itA −
n∑

µ,ν=1

∫ t

0

∫ η

0

qµν(η − s)
(
· , ei(t−η)Aϕν

)
e−isAϕµ ds dη

= e−itA−
n∑

ν,µ=1

∫ t

0

(
· , ei(t−η)Aϕν

)∫ η

0

qµν(η − s)e−isAϕµ ds dη

= e−itA −R(t)e−itA (4.8)

with

R(t) :=
n∑
ν=1

∫ t

0

(
· , e−iηAϕν

) n∑
µ=1

∫ η

0

qµν(η − s)e−isϕµ ds dη, (4.9)
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and hence
eitAP1e

−itH
∣∣
H1

= I − eitAR(t)e−itA, (4.10)

∆1(t) := det
(
eitAP1e

−itH
∣∣
H1

)
= det (I −R(t)). (4.11)

Observe that R(t) and R′(t) =
∑n

µ,ν=1 ( · , ϕν(t))ψν(t) are trace class operators.
For ν = 1, 2, . . . , n we set

ϕν(η) := e−iηAϕν , kµν(η) :=
∫ η

0

qµν(η − ξ)e−iξAϕµ dξ, ψν(η) :=
n∑
µ=1

kµν(η).

Then ϕν(η), ψν(η), µ, ν = 1, 2, . . . , n, are norm-continuousH-valued functions and
R(t) becomes

R(t) =
n∑
ν=1

∫ t

0

( · , ϕν(η))
n∑
µ=1

kµν(η) dη =
n∑
ν=1

∫ t

0

( · , ϕν(η))ψν(η) dη. (4.12)

To find a more explicit expression for ∆1(t) we use the following lemma,
which is a slight extension of [7, (IV.1.14)].

Lemma 4.2. Let R(t) be a function which is defined in a real neighborhood of t0
and with values in S1, which is differentiable in t0 with respect to the nuclear norm
and such that (I − R(t0))−1 exists. Then the function Θ(t) := det (I − R(t)) is
differentiable in t0 and the following relation holds:

Θ′(t0)
Θ(t0)

=
d

dt
ln Θ(t)

∣∣∣
t=t0

= −tr
(
(I −R(t0))−1R′(t0)

)
. (4.13)

Proof. We have for t→ t0

Θ(t) = det (I −R(t0)−R′(t0)(t− t0) + o(t− t0))
= det(I −R(t0)) det

(
I − (I −R(t0))−1R′(t0)(t− t0) + o(t− t0)

)

= Θ(t0)
(
I − tr

(
(I −R(t0))−1R′(t0))(t− t0) + o(t− t0)

))
,

where the symbol o(t− t0) is to be understood with respect to the nuclear norm.
It follows that

Θ(t)−Θ(t0)
(t− t0)Θ(t0)

= −tr
(

(I −R(t0))−1R′(t0) +
o(t− t0)
t− t0

)
, t→ t0,

which implies (4.13). �

In order to calculate the trace on the right-hand side of (4.13) for the operator
R(t) from (4.9), with

ktµν(ξ, η) := (ψν(η), ϕµ(ξ)), µ, ν = 1, 2, . . . , n, 0 ≤ ξ, η ≤ t,

we denote by Kt(ξ, η) the n× n-matrix kernel

Kt(ξ, η) :=
(
ktµν(ξ, η)

)n
µ,ν=1

,
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and by Γt(ξ, η) :=
(
γtµ,ν(ξ, η)

)n
µ,ν=1

the corresponding Fredholm resolvent kernel.
We recall that this means that

Kt(ξ, η) +
∫ t

0

Kt(ξ, τ)Γt(τ, η)dτ = Γt(ξ, η), 0 ≤ ξ, η ≤ t. (4.14)

Lemma 4.3. Let the operator R(t) be given by (4.9) or (4.12). If the inverse (I −
R(t))−1 exists then the relation

tr
(
(I −R(t))−1R′(t)

)
= tr Γt(t, t),

holds, where on the right-hand side tr denotes the matrix trace.

Proof. Consider for f ∈ H the equation

x−R(t)x = f,

that is

x−
n∑
ν=1

∫ t

0

(x, ϕν(η))ψν(η)dη = f. (4.15)

For an element y ∈ H we denote

yν(η) := (y, ϕν(η)), 0 ≤ η ≤ t, ν = 1, 2, . . . , n,

and y(η) := (y1(η), y2(η), · · · , yn(η))
t. Taking the L2(0, t)-inner product of equa-

tion (4.15) with ϕρ(ξ) for ρ = 1, 2, . . . , n we obtain

x(ξ) −
∫ t

0

Kt(ξ, η)x(η)dη = f(ξ), 0 ≤ ξ ≤ t.

Hence

x(η) = f(η) +
∫ t

0

Γt(η, ω)f(ω)dω, 0 ≤ η ≤ t,

and we get from (4.15)

x = (I −R(t))−1f = f +
∫ t

0

〈
f(η) +

∫ t

0

Γt(η, ω)f(ω)dω, ψ(η)
〉

Cn

dη.

We have to apply this formula to an element of the form

f = R′(t)g =
n∑
ν=1

(g, ϕν(t))ψνk(t) =
n∑
ν=1

gν(t)ψν(t).
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It follows that

(I −R(t))−1R′(t)g =
n∑
ν=1

gν(t)

(
ψν(t) +

∫ t

0

( n∑
ρ=1

(ψν(t), ϕρ(η))ψρ(η)

+
n∑
ρ=1

∫ t

0

n∑
µ=1

γtρµ(η, ω)(ψν(t), ϕµ(ω))dωψρ(η)
)
dη

)

=
n∑
ν=1

gν(t)

(
ψν(t) +

n∑
ρ=1

∫ t

0

(
ktρν(η, t)

+
∫ t

0

n∑
µ=1

γtρµ(η, ω)ktµν(ω, t)dω
)
ψρ(η)dη

)

=
n∑
ν=1

(g, ϕν(t))

(
ψν(t) +

n∑
ρ=1

∫ t

0

γtρν(η, t)ψρ(η)dη

)

and hence

tr
(
(I −R(t))−1R′(t)

)
=

n∑
ν=1

(
ψν(t) +

n∑
ρ=1

∫ t

0

γtρν(η, t)ψρ(η)dη, ϕν (t)

)

=
n∑
ν=1

(
ktνν(t, t) +

n∑
ρ=1

∫ t

0

γtρν(η, t)k
t
νρ(t, η)dη

)

=
n∑
ν=1

γtνν(t, t)

= tr
(
Γt(t, t)

)
. �

Combing Lemma 4.2 and Lemma 4.3 we obtain the following result.

Theorem 4.4. Let the self-adjoint operator H in the Hilbert space H = H1 ⊕ H2

be given by the matrix

H =
(

A B
B∗ D

)

with self-adjoint operators A and D in the Hilbert spaces H1 and H2, respectively,
and a finite-dimensional operator B:

B =
n∑
ν=1

τν( · , ψν)ϕν ,

where (ϕν)n1 and (ψν)n1 are orthonormal systems in H1 and H2, respectively, and
τν , ν = 1, 2, . . . , n, are positive numbers. If, for 0 ≤ s ≤ t, the operator I − R(s)
is invertible and Γt(ξ, η), 0 ≤ ξ, η ≤ t, denotes the Fredholm resolvent kernel as
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defined by (4.14) then for the partial perturbation determinant ∆1(t) it holds

∆1(t)≡ det
(
eitAP1e

−itH
∣∣
H1

)
= exp


−

t∫

0

tr (Γs(s, s)) ds


 .

Remark. A sufficient condition for the invertiblity of the operators (I −R(t))−1 is
the separation of the spectra of the diagonal operators A and D, see Lemma 3.5.
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Introduction

Essential self-adjointness of symmetric operators is an important issue both from
the theoretical point of view as well as for applications. There are different methods
of achieving this. One of them is to use an auxiliary operator, already essentially
self-adjoint, which interacts with the operator in question. The way the essentially
self-adjoint operator interacts with the candidate operator is twofold. The first is
a kind of domination, the other splits in two different approaches depending on
if the operators commute in a sense (from the pioneering work of [2] to recent [5]
with some intermediate references like [3]) or not (here [2] again, the treatise [4]
as well as [1] with further references therein). The latter consists in replacing the
zero commutators by those which are controlled somehow. For instance, in [1] the
commutators are relatively bounded. In the present paper we refine the technique
of [1] working under more subtle growth conditions for the first or the second
commutator. Our approach (avoiding the form language of [1]), besides providing
substantially more general results, turns out to be better suited for making the
arguments more precise and simpler. In particular, so simple a case of bounded
perturbation of a self-adjoint operator fits in our results but fails to satisfy the
requirements of [1] (cf. Example 17).

This work was supported by the KBN grant 2 P03A 037 024.
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1. Preparatory facts

Throughout the paper H stands for a complex Hilbert space, B(H) for the C∗-
algebra of all bounded linear operators on H and I for the identity operator on H.
Given a linear operator A in H, we denote by D(A), N (A), A∗, Ā and σ(A) the
domain, the kernel, the adjoint, the closure and the spectrum of A, respectively.
Set D∞(A) =

⋂∞
n=1D(An). The graph norm of A is denoted by ‖ · ‖A, i.e., ‖f‖2A =

‖f‖2 + ‖Af‖2 for f ∈ D(A). Recall that a linear subspace E of D(A) is said to
be a core of A if the graph of A is contained in the closure of the graph of A|E .
We say that a symmetric operator A in H is essentially self-adjoint on E if E is
a dense linear subspace of D(A) and (A|E)∗ = A|E . By maximality of self-adjoint
operators, a symmetric operator A is essentially self-adjoint on E if and only if
Ā is self-adjoint and E is a core of A. If A and B are linear operator in H, then
[A,B] stands for the commutator of A and B, i.e., the operator [A,B] df= AB−BA
with the domain D(AB) ∩ D(BA). For a given integer k � 0, we define the k-th
commutator (adA)k(B) via

(adA)0(B) = B and (adA)k+1(B) = [A, (adA)k(B)] for k � 0.

An induction argument based on
(
k
j−1

)
+
(
k
j

)
=
(
k+1
j

)
shows that1

(adA)k(B) ⊇
k∑
j=0

(
k

j

)
AjB(−A)k−j , k � 0. (1)

We say that B dominates A on E if E is a linear subspace of D(A) ∩ D(B) and
there exits c � 0 such that ‖Af‖ � c(‖f‖ + ‖Bf‖) for all f ∈ E (cf. [5] for more
details).

Suppose that H is a closed densely defined linear operator in H. Throughout
the whole paper R(z) stands for the resolvent of H , i.e., R(z) = (z−H)−1 ∈ B(H)
for z ∈ C \ σ(H). We show by induction on m that

R(z)D(Hm) ⊆ D(Hm+1) for all integers m � 0. (2)

Indeed, if (2) holds for a fixed m � 0 (the case m = 0 is trivial), then

R(z)D(Hm+1) = R(z)D((z −H)m+1) = R(z)(R(z)m+1H)

= R(z)m+2H = D((z −H)m+2) = D(Hm+2).

Condition (2) implies R(z)D∞(H) ⊆ D∞(H). In consequence, if A is a linear
operator in H such that D∞(H) ⊆ D(A), then D∞(H) ⊆ D([A,R(z)k]) and
D∞(H) ⊆ D((adR(z))k(A)) for all integers k � 0. Likewise, if D(Hm) ⊆ D(A),
then D(Hm) ⊆ D([A,R(z)k]) and D(Hm) ⊆ D((adR(z))k(A)) for all integers
k,m � 0.

Proposition 1. Let A be a closed operator in H and H be a self-adjoint operator
in H. Then D∞(H) ⊆ D(A) if and only if there exists an integer m � 0 such that

1 Notice that if D(A) = H, then the inclusion (1) becomes an equality.
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(i) D(Hm) ⊆ D(A).

Suppose that m � 0 is an integer, E is a core2 of Hm and F ⊆ D(AR(z)m) is
a linear subspace such that D(AR(z)m) ⊆ F . Then (i) is equivalent to any of the
following conditions:

(ii) E ⊆ D(A) and there exists c � 0 such that

‖Af‖ � c(‖f‖+ ‖Hmf‖), f ∈ E , (3)

(iii) the operator AR(z)m|F is bounded and densely defined in H for some z ∈
C \ σ(H) (equivalently: for every z ∈ C \ σ(H)).

Furthermore, if (ii) holds, then D(Hm) ⊆ D((adR(z))k(A)) and

‖(adR(z))k(A)f‖ ≤ c 2k‖R(z)‖k(‖f‖+ ‖Hmf‖), f ∈ D(Hm), (4)

for all integers k � 0 and z ∈ C \ σ(H); what is more, A|E = A|D(Hm).
If (iii) holds, then D(Hm) ⊆ D(A) and AR(z)m ∈ B(H) for every z ∈ C \ σ(H).

Proof. First we show that if D∞(H) ⊆ D(A), then there exists an integer m � 0
such that (ii) holds for E = D∞(H). For this, observe that D∞(H) is a Fréchet
space with the topology given by the system of graph norms {‖ · ‖Hj}∞j=0 (because
each operator Hj , j � 0, is closed) and (D(A), ‖ · ‖A) is a Banach space. By the
closed graph theorem the inclusion D∞(H) � f �−→ f ∈ D(A) is a continuous
linear operator, and hence there exist c′ � 0 and an integer m � 0 such that

‖Af‖2 � c′
m∑
j=0

‖Hjf‖2, f ∈ D∞(H).

Since there exists dm � 0 such that 1+x2 + · · ·+x2m � dm(1+x2m) for all x ∈ R,
we get (by the spectral theorem)

‖Af‖2 � c′dm(‖f‖2 + ‖Hmf‖2), f ∈ D∞(H),

which proves our claim.
If (ii) holds, then E being a core of Hm and the closedness of A imply

D(Hm) ⊆ D(A), ‖Af‖ � c(‖f‖+ ‖Hmf‖) for all f ∈ D(Hm) (5)

and A|E = A|D(Hm). Combining (5) with the previous paragraph, we see that
D∞(H) ⊆ D(A) if and only if D(Hm) ⊆ D(A) for some m � 0.

Applying the closed graph theorem, we see that (i) implies (ii) with E =
D(Hm), which by the previous paragraph justifies also the equivalence (i)⇔(ii).

In the next step we show the equivalence (ii)⇔(iii) for a fixed z ∈ C \ σ(H).
(ii)⇒(iii) Fix g ∈ H. Since (ii)⇒(5), we can substitute f df= R(z)mg into (5)

and apply the identityHmR(z)mg = (HR(z))mg = (zR(z)−I)mg. In consequence,
we get AR(z)m ∈ B(H).

2 Recall that D∞(H) is a core of Hm for every integer m � 0.



22 D. Cichoń, J. Stochel and F.H. Szafraniec

(iii)⇒(ii) Since A is closed and R(z)m ∈ B(H), the operator AR(z)m is
closed as well. By (iii), AR(z)m ∈ B(H). This means that D(Hm) ⊆ D(A) and
there exists c′ � 0 such that

‖AR(z)mf‖ � c′‖f‖, f ∈ H. (6)

Take g ∈ D(Hm). Plugging f = (z−H)mg into (6), we have ‖Ag‖ � c′‖(z−H)mg‖.
Since there exists d ′

m � 0 such that |z − x|2m � d ′
m(1 + x2m) for all x ∈ R, the

spectral theorem implies

‖Ag‖2 � (c′)2d ′
m(‖g‖2 + ‖Hmg‖2), g ∈ D(Hm),

which manifestly yields (ii).
Suppose now that (ii) holds. Then, by (5), inequality (4) is valid for k = 0.

Assuming (4) for a fixed k � 0, we can proceed as follows (use (2))

‖(adR(z))k+1(A)f‖ =
∥∥[R(z), (adR(z))k(A)]f

∥∥
� ‖R(z)(adR(z))k(A)f‖+ ‖(adR(z))k(A)R(z)f‖
� c 2k‖R(z)‖k+1(‖f‖+ ‖Hmf‖) + c 2k‖R(z)‖k(‖R(z)f‖+ ‖R(z)Hmf‖)
� c 2k+1‖R(z)‖k+1(‖f‖+ ‖Hmf‖), f ∈ D(Hm).

This completes the proof. �

The set Ωc,d(H) defined below plays a pivotal role in our paper. Given a
closed densely defined operator H in H, we put

Ωc,d(H) = {z ∈ C : dist(z, σ(H)) � c|z| and |z| > d}, c > 0, d � 0,

where dist(z, σ(H)) = inf{|z−w| : w ∈ σ(H)}. It is clear that Ωc,d(H) ⊆ C\σ(H).
Suppose that H is self-adjoint. Then, due to ‖R(z)‖ = dist(z, σ(H))−1, we have

Ωc,d(H) = {z ∈ C \ σ(H) : ‖zR(z)‖ � 1
c

and |z| > d}, c > 0, d � 0. (7)

One can show that if H is self-adjoint, then Ωc,d(H) is unbounded if and only if
c � 1; if this is the case, then {i t : t ∈ R, |t| > d} ⊆ Ωc,d(H). If H is self-adjoint
and bounded below (resp. above), c ∈ (0, 1) and d � 0, then (−∞, a) ⊆ Ωc,d(H)
(resp. (a,∞) ⊆ Ωc,d(H)) for some a ∈ R. Remark 6 contains further properties of
the set Ωc,d(H). The reader should be aware that dist(zn, σ(H)) → ∞ may not
imply the boundedness of {‖znR(zn)‖}∞n=1, e.g., if H is self-adjoint, σ(H) = {n2 :
n = 1, 2, 3, . . .} and zn = 1

2 (n2 + (n + 1)2). This shows that the set Ωc,d(H) is
optimal taking into account uniform boundedness of the function zR(z).

The following result collects some properties of resolvents and commutators.

Proposition 2. Let A be a linear operator in H, H be a closed densely defined
linear operator in H and m, k � 0 be integers.
If D(Hm) ⊆ D(A), then

(i) [A,R(z)k]f =
∑k−1

j=0 R(z)j[A,R(z)]R(z)k−1−jf for all f ∈ D(Hm) and z ∈
C \ σ(H),
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(ii) the operator (adR(z))k(A)
∣∣
D(Hm)

is bounded for every z ∈ C\σ(H), provided

(adR(w))k(A)
∣∣
D(Hm)

is bounded for some w ∈ C \ σ(H).

If H is self-adjoint, then for all c ∈ (0, 1] and d � 0,

(iii) limΩc,d(H)�z→∞(zR(z))mf = f for all f ∈ H,
(iv) supz∈Ωc,d(H) ‖zR(z)‖ � 1

c ,
(v) supz∈Ωc,d+ε(H) ‖(adR(z))k(A)|D(Hm)‖ <∞, provided ε > 0, D(Hm) ⊆ D(A)

and (adR(w))k(A)|D(Hm) is bounded for some w ∈ C \ σ(H).

If A is closable, H is self-adjoint and D(Hm) ⊆ D(A), then

(vi) the operator (adR(z))k(A)|D(Hm) is bounded, provided (adR(z))k(A) is
bounded on a core E of Hm, z ∈ C \ σ(H).

If A is symmetric, H is self-adjoint and D(Hm) ⊆ D(A), then

(vii) the operators R(z)mA and AR(z)m are bounded for every z ∈ C \ σ(H),
(viii) the operator (adR(z))k(A) is closable for every z ∈ C \ σ(H),
(ix) ik(adR(x))k(A) is symmetric for every x ∈ R \ σ(H).

Proof. (i) Fixing k � 1 and f ∈ D(Hm), we compute

k−1∑
j=0

R(z)j[A,R(z)]R(z)k−1−jf

=
k−1∑
j=0

R(z)jAR(z)k−jf −
k−1∑
j=0

R(z)j+1AR(z)k−1−jf

=
k−1∑
j=0

R(z)jAR(z)k−jf −
k∑
j=1

R(z)jAR(z)k−jf = [A,R(z)k]f.

(ii) Let z, w ∈ C\σ(H). Set C = (w−H)R(z) = I+(w−z)R(z) ∈ B(H). Then
C−1 = (z −H)R(w) = I + (z − w)R(w). By (2) we have D(Hm) ⊆ D([R(ξ), A])
for every ξ ∈ C \ σ(H), which together with the resolvent identity gives us

[R(w), A]f − [R(z), A]f = (z − w)
(
[R(w), A]R(z) +R(w)[R(z), A]

)
f

for all f ∈ D(Hm). This implies

[R(w), A](I + (w − z)R(z))f = (I + (z − w)R(w))[R(z), A]f, f ∈ D(Hm),

which leads to

[R(z), A]f = C[R(w), A]Cf, f ∈ D(Hm). (8)

We show by induction that for all integers k � 0,

(adR(z))k(A)f = Ck(adR(w))k(A)Ckf, f ∈ D(Hm). (9)

Indeed, suppose (9) holds for a fixed k � 0 (the case k = 0 is trivial).
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Then, applying (8) to the operator (adR(w))k(A) in place of A and (9), we get

(adR(z))k+1(A)f = [R(z), (adR(z))k(A)]f

= [R(z), Ck(adR(w))k(A)Ck]f

= Ck[R(z), (adR(w))k(A)]Ckf

= Ck+1[R(w), (adR(w))k(A)]Ck+1f

= Ck+1(adR(w))k+1(A)Ck+1f, f ∈ D(Hm).

It is clear that (9) implies (ii).
Conditions (iii) and (iv) can be deduced from the spectral theorem (cf. (7)).
(v) By (9), we have

(adR(z))k(A)f = (I + (w − z)R(z))k(adR(w))k(A)(I + (w − z)R(z))kf

for all f ∈ D(Hm). This and (iv) implies (v) (because supz∈Ωc,d+ε(H) ‖R(z)‖ � 1
c ε).

(vi) If f ∈ D(Hm), then there exists a sequence {fn}∞n=0 ⊆ E such that
limn→∞ ‖f − fn‖Hm = 0. By (4), (adR(z))k(A)fn → (adR(z))k(A)f as n → ∞,
which implies the boundedness of (adR(z))k(A)|D(Hm).

(vii) By Proposition 1, AR(z)m = ĀR(z)m ∈ B(H) for every z ∈ C \ σ(H).
Taking adjoints, we get R(z)mA ⊆ R(z)mA∗ ⊆ (AR(z̄)m)∗ for every z ∈ C\σ(H),
which completes the proof of (vii).

(viii) By the von Neumann theorem it suffices to show that D(Hm) is con-
tained in the domain of the adjoint of (adR(z))k(A). The case k = 0 is obvious.
Suppose that our claim is true for a fixed k � 0. Since the operator (adR(z))k+1(A)
is densely defined (because its domain contains D(Hm)), we can calculate

(
(adR(z))k+1(A)

)∗ ⊇ ((adR(z))k(A)
)∗
R(z̄)−R(z̄)

(
(adR(z))k(A)

)∗
,

which together with (2) completes the proof of (viii).
An induction argument similar to that in (viii) enables us to prove (ix). �

2. Symmetric operators dominated by self-adjoint ones

We now formulate one of the main results of the paper, which generalizes Theorem
1 of [1] (see Section 5).

Theorem 3. Let A be a symmetric operator in H, H be a self-adjoint operator in
H and Ω be an unbounded subset of Ωc,d(H), where c ∈ (0, 1] and d � 0.

(i) If D(Hm) ⊆ D(A) for an integer m � 0 and supz∈Ω |z|
∥∥[R(z), A]

∥∥ < ∞,
then A is essentially self-adjoint on any core of Hm.

(ii) If D∞(H) ⊆ D(A), supz∈Ω |z|
∥∥[R(z), A]

∥∥ < ∞ and E is a core 3 of Hm for
every integer m � 0, then A is essentially self-adjoint on E.

3 For instance, E = D∞(H) or E = the set of all bounded vectors of H, cf. [5].
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Remark 4. Since the operator [R(z), A] is closable (cf. Proposition 2 (viii)), it
is bounded if and only if so is its restriction to a dense linear subspace F of
D([R(z), A]); moreover, the following equality holds

∥∥[R(z), A]
∥∥ =
∥∥[R(z), A]

∣∣
F
∥∥.

Proof of Theorem 3. There is no loss of generality in assuming that the operator
A is closed.

(i) By the closed graph theorem, we can assume that m � 1. According to our
assumption α df= supz∈Ω

∥∥[A, zR(z)]
∥∥ <∞. Let E be a core of Hm. It follows from

Proposition 1 that A|E = A|D(Hm). Hence N ((A|E )∗ + z̄) = N ((A|D(Hm))∗ + z̄)
which is equivalent to

(
(A+ z)E

)⊥ =
(
(A+ z)D(Hm)

)⊥
, z ∈ C. (10)

We show that (
(A+ iu)E

)⊥ = {0} for every u > αmc1−m. (11)

To prove (11), take f ∈
(
(A + iu)E

)⊥ and z ∈ Ω, and put4 fz = z̄mR(z̄)mf ∈
D(Hm). Since by (2) R(z)mfz ∈ D(H2m), (10) gives us

〈f, (A+ iu)R(z)mfz〉 = 0,

which can be rewritten as 〈f, (R(z)m(A + iu) + [A,R(z)m])fz〉 = 0. Hence, we
have

iu〈f,R(z)mfz〉 = 〈f, (R(z)mA+ [A,R(z)m])fz〉. (12)
Since z̄m iu〈f,R(z)mfz〉 = iu‖fz‖2 and z̄m〈f,R(z)mAfz〉 = 〈fz, Afz〉, (12) yields

iu‖fz‖2 = 〈fz, Afz〉+ z̄m〈f, [A,R(z)m]fz〉. (13)

Comparing imaginary parts of both sides of (13), using 〈fz, Afz〉 ∈ R and employ-
ing conditions (i) and (iv) of Proposition 2, we get

u‖fz‖2 = Im
(
z̄m〈f, [A,R(z)m]fz〉

)
� |〈f, [A, (zR(z))m]fz〉|

�
m−1∑
j=0

|〈f, (zR(z))j [A, zR(z)](zR(z))m−1−jfz〉|

� m‖f‖ ‖fz‖ ‖zR(z)‖m−1
∥∥[A, zR(z)]

∣∣
D(Hm)

∥∥
≤ αmc1−m‖f‖ ‖fz‖, z ∈ Ω. (14)

Since the set Ω is unbounded, there exists a sequence {zn}∞n=1 ⊆ Ω such that
limn→∞ |zn| = ∞. As z̄n ∈ Ωc,d(H) for all n � 1, we infer from part (iii) of
Proposition 2 that limn→∞ fzn = f . This, when combined with (14), gives us
u‖f‖2 � αmc1−m‖f‖2. Since u > αmc1−m, it must be f = 0, which proves (11).

Applying (11) to −A, we see that
(
(A−i u)E

)⊥ = {0} for every u > αmc1−m,
which means that both deficiency indices of A|E are equal to zero. Hence A is
essentially self-adjoint on E .

4 Notice that z̄ ∈ Ωc,d(H) ⊆ C \ σ(H).
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(ii) By Proposition 1, D(Hm) ⊆ D(A) for some integer m � 0. Applying (i)
completes the proof. �

Theorem 3 (as well as Theorems 8 and 11) can be combined with commuting
domination results of [5]. What follows is a sample application of Corollary 19 of
[5] and Theorem 3.

Corollary 5. Let A be a symmetric operator in H, H be a self-adjoint operator
in H and p be a real polynomial in one variable of degree n � 1. Assume that
D(Hm) ⊆ D(An) for some integer m � 0 and supz∈Ω |z|

∥∥[R(z), p(A)]
∥∥ < ∞,

where Ω is an unbounded subset of Ωc,d(H) for some c ∈ (0, 1] and d ∈ [0,∞).
Then for every real polynomial q in one variable with deg q � n, the operator q(A)
is essentially self-adjoint, D(An) is a core of q(A) and q(A) = q(Ā).

Remark 6. The set Ω appearing in Theorem 3 (as well as in Theorems 8 and 11)
can be specified in many ways not excluding the choice of unbounded sequences
in Ωc,d(H). For example one can always take Ω of the form Ω± = {± i t : t > d} ⊆
Ωc,d(H). In the case when H is semibounded, Ω can be chosen as an unbounded
interval on the real line, which is disjoint from the spectrum of H . Let us discuss
two examples of semibounded self-adjoint operators. Consider first H with σ(H) =
{0, 1, 2, . . .}. Then Ωc,d(H) ∩ (a,∞) is bounded for all c ∈ (0, 1], d � 0 and a ∈ R.
Indeed, otherwise there exists {xn}∞n=1 ⊆ Ωc,d(H)∩(a,∞) such that 0 < xn ↗∞.
Then c xn � dist(xn, σ(H)) � 1

2 for all n � 1, which is impossible. This shows that,
for this particularH , there is no way of choosing a subset Ω of (a,∞) satisfying the
assumptions of Theorem 3 (though for each c ∈ (0, 1) there exists a ∈ R such that
(−∞, a) ⊆ Ωc,d(H)). However, the other example will show the opposite. Let now
{α1, α2, α3, . . .} be the spectrum of H , where α > 1. Set xn = 1

2 (αn + αn+1) for
n � 1. Then Ω

df= {x1, x2, x3, . . .} ⊆ Ωα−1
α+1 ,1

(H) ∩ (0,∞). Finally, the self-adjoint

operator H with σ(H) = {. . . ,−α3,−α2,−α1, α1, α2, α3, . . .} is not semibounded,
whereas the set Ωα−1

α+1 ,1
(H) ∩ R is unbounded.

Remark 7. A careful reader can ensure himself that Theorem 3 is valid if the self-
adjoint operator H is replaced by a normal one. However in this case, contrary to
the self-adjoint one, it may happen that the set Ωc,d(H) is bounded or even empty
regardless of the choice of c, d.

3. Semibounded symmetric operators dominated
by self-adjoint ones

In this section we formulate a criterion for essential self-adjointness of semibounded
operators, which generalizes Theorem 4 of [1] (see Section 5).

Theorem 8. Let A be a semibounded symmetric operator in H, H be a self-adjoint
operator in H and Ω be an unbounded subset of Ωc,d(H) ∩R, where c ∈ (0, 1] and
d � 0.
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(i) If D(Hm) ⊆ D(A) for an integer m � 0 and supx∈Ω x
2‖(adR(x))2(A)‖ <∞,

then A is essentially self-adjoint on any core of Hm.
(ii) If D∞(H) ⊆ D(A), supx∈Ω x2‖(adR(x))2(A)‖ < ∞ and E is a core of Hm

for every integer m � 0, then A is essentially self-adjoint on E.

Remark 9. By Proposition 2 (viii), the operator (adR(x))2(A) is bounded if and
only if so is its restriction to a dense linear subspace F of D((adR(x))2(A)); if this
is the case, then

∥∥(adR(x))2(A)
∥∥ =
∥∥(adR(x))2(A)

∣∣
F
∥∥.

Proof of Theorem 8. Assuming A is closed involves no loss of generality.
(i) The casem = 0 forces A ∈ B(H). Supposem � 1. Without loss of general-

ity we can assume that A � 0. Let E be a core of Hm. As in the proof of Theorem
3, one can show that (10) holds. By our assumption β df= supx∈Ω ‖Cx‖ <∞, where
Cx

df=
(
(ad(xR(x)))2(A)

)− ∈ B(H) (cf. Remark 9). We show that
(
(u−A)E

)⊥ = {0} for every u >
1
2
βm2c2(1−m). (15)

Take f ∈
(
(u − A)E

)⊥ and x ∈ Ω, and put fx = xmR(x)mf ∈ D(Hm). Then by
(2) we have R(x)mfx ∈ D(H2m). This and (10) give us

0 = 〈f, (u −A)R(x)mfx〉 = u〈f,R(x)mfx〉 − 〈f,R(x)mAfx〉 − 〈f, [A,R(x)m]fx〉.

Since xmu〈f,R(x)mfx〉 = u‖fx‖2 and xm〈f,R(x)mAfx〉 = 〈fx, Afx〉 � 0, we get

u‖fx‖2 = 〈fx, Afx〉+ 〈f, [A, (xR(x))m]fx〉.
Comparing real parts of both sides of the above equality, we obtain

u‖fx‖2 = 〈fx, Afx〉+ Re〈f, [A, (xR(x))m ]fx〉
≤ xm Re〈f, [A, (xR(x))m]R(x)mf〉.

(16)

Set Dx = 1
2

∑m−1
j=0

∑m−1
k=0 (xR(x))j+kCx(xR(x))2(m−1)−(j+k) ∈ B(H). Applying

formula (i) of Proposition 2 to [A,R(x)m] and [[A,R(x)], R(x)m], we conclude

xm Re〈g, [A, (xR(x))m]R(x)mg〉

=
1
2
x2m(〈g, [A,R(x)m]R(x)mg〉 − 〈g,R(x)m[A,R(x)m]g〉)

=
1
2
x2m

m−1∑
j=0

〈g,R(x)j [[A,R(x)], R(x)m]R(x)m−1−jg〉

=
1
2

m−1∑
j=0

m−1∑
k=0

〈g, (xR(x))j+k(ad(xR(x)))2(A)(xR(x))2(m−1)−(j+k)g〉

=
1
2

m−1∑
j=0

m−1∑
k=0

〈g, (xR(x))j+kCx(xR(x))2(m−1)−(j+k)g〉

= 〈g,Dxg〉, g ∈ D(Hm). (17)
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However by part (vii) of Proposition 2, [A, (xR(x))m]R(x)m ∈ B(H), which to-
gether with (17) leads to

xm Re〈h, [A, (xR(x))m]R(x)mh〉 = 〈h,Dxh〉, h ∈ H. (18)

Combining (16), (18) and part (iv) of Proposition 2, we have

u‖fx‖2 � xm Re〈f, [A, (xR(x))m]R(x)mf〉 = 〈f,Dxf〉 � ‖f‖2‖Dx‖

� 1
2
m2‖f‖2‖xR(x)‖2(m−1)‖Cx‖ ≤

1
2
βm2c2(1−m)‖f‖2, x ∈ Ω.

(19)

Since, by part (iii) of Proposition 2, fx → f as x ∈ Ω and |x| → ∞, we infer from
(19) that u‖f‖2 � 1

2βm
2c2(1−m)‖f‖2, which implies (15). As the operator A|E is

semibounded, its deficiency indices are both equal to 0, which means that A is
essentially self-adjoint on E .

(ii) is a direct consequence of (i) and Proposition 1. �

The next result is an application of Theorem 25 of [5] and Theorem 8.

Corollary 10. Let A1, . . . , Aκ be formally normal operators in H and let H be a
self-adjoint operator in H such that the domain of Hm is contained in the domain
of A df= A∗

1A1 + · · · + A∗
κAκ for some integer m � 0. Assume that E is a core of

Hm and

(i) E ⊆ D(AiAj) ∩ D(AjAi) and AiAjf = AjAif , f ∈ E, for 1 ≤ i < j ≤ κ,
(ii) 〈A∗

iAif,Ajg〉 = 〈A∗
jf,A

∗
iAig〉, f, g ∈ E, for i, j = 1, . . . , κ,

(iii) supx∈Ω x
2‖(adR(x))2(A)‖ < ∞ for an unbounded subset Ω of Ωc,d(H) ∩ R,

where c ∈ (0, 1] and d � 0.

Then Ā1, . . . , Āκ are spectrally commuting normal operators and E is a joint core
of any subsystem of {Ā1, . . . , Āκ}.

4. More on symmetric operators dominated by self-adjoint ones

Given a densely defined operatorA inH, we set ImA = 1
2 i (A−A∗). If the operator

ImA is densely defined, then it is symmetric and consequently closable.

Theorem 11. Let A be a symmetric operator in H, H be a self-adjoint operator in
H and Ω be an unbounded subset of Ωc,d(H) ∩ R, where c ∈ (0, 1] and d � 0. If
D(Hm) ⊆ D(A) for an integer m � 0 and supx∈Ω

∥∥xm+1 Im
(
[R(x), A]R(x)m

)∥∥ <
∞, then A is essentially self-adjoint on any core of Hm.

Remark 12. By (2) and part (vii) of Proposition 2, [R(x), A]R(x)m ∈ B(H) and
consequently Im([R(x), A]R(x)m) ∈ B(H). Since

−R(x)m[R(x), A] ⊆
(
[R(x), A]R(x)m

)∗
,

we get 1
2 i

(
[R(x), A]R(x)m +R(x)m[R(x), A]

)
⊆ Im([R(x), A]R(x)m).
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Proof of Theorem 11. Let E be a core of Hm. As in the proof of Theorem 3 we
can assume that A is closed, m � 1 and (10) holds. According to Remark 12, for
every x ∈ Ω, Cx

df= xm+1 Im([R(x), A]R(x)m) ∈ B(H) and

xm+1
(
[R(x), A]R(x)m +R(x)m[R(x), A]

)
⊆ 2 iCx.

By our assumption γ df= supx∈Ω ‖Cx‖ <∞. We show that
(
(A+ iu)E

)⊥ = {0} for every u > γmc1−m. (20)

Take f ∈
(
(A+ iu)E

)⊥ and x ∈ Ω, and put fx = xmR(x)mf ∈ D(Hm). Then by
(2) we have R(x)mfx ∈ D(H2m). This and (10) give us

0 = 〈f, (A+ iu)R(x)mfx〉
= − iu〈f,R(x)mfx〉+ 〈f,R(x)mAfx〉+ 〈f, [A,R(x)m]fx〉,

which leads to

iu‖fx‖2 = 〈fx, Afx〉+ 〈f, [A, (xR(x))m ]fx〉.

Comparing imaginary parts of both sides of the above equality, we obtain

u‖fx‖2 = x2m Im〈f, [A,R(x)m]R(x)mf〉. (21)

Set Dx =
∑m−1
j=0 (xR(x))jCx(xR(x))m−1−j ∈ B(H). Applying formula (i) of

Proposition 2, we get

x2m Im〈g, [A,R(x)m]R(x)mg〉

=
1
2 i
x2m(〈g, [A,R(x)m]R(x)mg〉+ 〈g,R(x)m[A,R(x)m]g〉)

=
1
2 i
x2m

m−1∑
j=0

〈g,R(x)j([A,R(x)]R(x)m +R(x)m[A,R(x)])R(x)m−1−jg〉

= 〈g,Dxg〉, g ∈ D(Hm). (22)

However by part (vii) of Proposition 2, [A,R(x)m]R(x)m ∈ B(H), which together
with (22) leads to

x2m Im〈h, [A,R(x)m]R(x)mh〉 = 〈h,Dxh〉, h ∈ H. (23)

Combining (21), (23) and part (iv) of Proposition 2, we have

u‖fx‖2 = 〈f,Dxf〉 � m‖f‖2‖xR(x)‖m−1‖Cx‖ ≤ γ m c1−m‖f‖2, x ∈ Ω. (24)

Since, by part (iii) of Proposition 2, fx → f as x ∈ Ω and |x| → ∞, we infer from
(24) that u‖f‖2 � γ m c1−m‖f‖2, which implies (20). Applying (20) to −A, we
conclude that A is essentially self-adjoint on E . �

Note that Theorem 11 implies the version of Theorem 3 in which the set Ω
is additionally assumed to be contained in R.
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5. Comments and examples

The first two remarks emphasize the role played by domination in our paper.

Remark 13. The inclusion D(Hm) ⊆ D(A) is one of the main assumptions of
Theorems 3, 8 and 11. In virtue of Proposition 1, D(Hm) ⊆ D(A) if and only if A
is dominated by Hm on a core of Hm (provided A is closed). The choice of this
core does not determine in any way that appearing in the respective conclusions.

Remark 14. Conclusions of Theorems 3, 8 and 11 can be supplied with a joint
core assertion. Namely any core E of Hm is always a joint core of (A,Hm), which
means that the joint graph5 G(A,Hm) of the pair (A,Hm) is contained in the
closure of G(A|E , Hm|E). This can be deduced directly from domination (use (5)).

Remark 15. Typical assumption in Theorems 3 and 8 is of the form

sup
z∈Ω
|z|k‖(adR(z))k(A)‖ <∞

with k = 1 or 2. Consequently

lim
Ω�z→∞

‖(adR(z))k(A)‖ = 0

and this carries further information about the behavior of the commutator
(adR(z))k(A) at infinity (compare with part (v) of Proposition 2).

We now concentrate on relating Theorems 1 and 4 of [1] to our Theorems 3
and 8.

Remark 16. We begin with proving that Theorem 1 of [1] follows from Theorem 3.
For this, let us assume that A and H satisfy the assumptions of Theorem 1 in [1],
i.e., A is a closed symmetric operator in H and H is a self-adjoint operator in H
such that for some w ∈ C \ σ(H) , ‖AR(w)m|D∞(H)‖ <∞ for some integer m � 0
(the latter is equivalent to D(Hm) ⊆ D(A), cf. Proposition 1) and the sesquilinear
form ϕ associated with the expression (adH)(A)R(w) is bounded on D∞(H). Set
Cz = I+(w−z)R(z). Then the equalities R(w)Cz = R(z) and HR(ξ) = ξR(ξ)−I,
ξ ∈ C \ σ(H), imply

ϕ(Czf,R(z̄)g) = 〈AR(w)Czf,HR(z̄)g〉 − 〈AHR(w)Czf,R(z̄)g〉
= 〈AR(z)f,HR(z̄)g〉 − 〈AHR(z)f,R(z̄)g〉 (25)

= 〈[R(z), A]f, g〉, f, g ∈ D∞(H).

By Remark 4 and part (iv) of Proposition 2, we have

sup
z∈Ωc,d(H)

|z|
∥∥[R(z), A]

∥∥ ≤ ‖ϕ‖ sup
z∈Ωc,d(H)

‖zR(z)‖‖I + (w − z)R(z)‖ <∞,

for all c ∈ (0, 1] and d > 0. By Theorem 3, A is essentially self-adjoint on any core
of Hm.

5 Cf. [5].
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Theorem 4 in [1] can be deduced from Theorem 8 by proving that if A is a
closed semibounded symmetric operator in H and H is a semibounded self-adjoint
operator in H such that for some w ∈ C \ σ(H), ‖AR(w)m|D∞(H)‖ < ∞ for
some integer m � 0 and the sesquilinear form ψ associated with the expression
R(w)(adH)2(A)R(w) is bounded on D∞(H), then

sup
z∈Ωc,d(H)

|z|2‖(adR(z))2(A)‖ <∞, c ∈ (0, 1), d > 0.

Reasoning similar to that in (25) enables us to show that

ψ(CzR(z)f, C∗
zR(z̄)g) = 〈(adR(z))2(A)f, g〉, f, g ∈ D∞(H),

which in view of Remark 9 and part (iv) of Proposition 2 gives us

sup
z∈Ωc,d(H)

|z|2‖(adR(z))2(A)‖ � ‖ψ‖ sup
z∈Ωc,d(H)

‖zR(z)‖2‖I + (w − z)R(z)‖2 <∞.

Hence, by Theorem 8, we get the essential self-adjointness of A on any core of Hm.

We conclude this paper with an example of a pair (A,H) which is covered
by our theorems but fails to satisfy assumptions of theorems in [1].

Example 17. Fix an integer m � 1. Let H be an unbounded self-adjoint operator
in H such that H � I. Write E for the spectral measure of H . First we show that
there exists a vector e ∈ H of norm 1 such that

e /∈
⋃

t∈(0,∞)

D(Ht). (26)

Indeed, since the operator logH df=
∫∞
1 log xE(dx) is unbounded (because the

closed support of E is unbounded), we can find a unit vector e which is not in
D(logH). This means that

∫∞
1

(log x)2〈E(dx)e, e〉 = ∞. Noticing that for every
t ∈ (0,∞) there exits c(t) ∈ (0,∞) such that6 log x � c(t)xt for all x ∈ [1,∞), we
see that e /∈

⋃
t∈(0,∞)D(Ht).

Define e⊗ e ∈ B(H) by

(e⊗ e)(f) = 〈f, e〉e, f ∈ H.

It is clear that the operator Ae
df= Hm + e ⊗ e is positive and self-adjoint, and

D(Hm) = D(Ae). Moreover, [R(z), Ae] ⊆ [R(z), e⊗ e] and, in consequence,

(adR(z))k(Ae) ⊆ (adR(z))k(e⊗ e)
for all z ∈ C \ σ(H). Hence, by part (iv) of Proposition 2, supz∈Ω

∥∥z[R(z), Ae]
∥∥ <

∞, supx∈Ω ‖x2(adR(x))2(Ae)‖ <∞ and supx∈Ω
∥∥xm+1 Im

(
[R(x), Ae]R(x)m

)∥∥ <
∞ forΩ = Ωc,d(H), which means that the pair (Ae, H) satisfies all the assumptions
of our Theorems 3, 8 and 11.

It turns out that the pair (Ae, H) does not satisfy the assumption (b) of
Theorem 1 even in a weakened version proposed in the remark following Theorem 1

6E.g., expanding the series defining ecxt
one can calculate c(t) = (n(t)!)1/n(t) , where n(t) is the

least integer greater than or equal to 1/t.
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in [1]. We first show that for all α, β ∈ [0,∞) and z ∈ C\σ(H), the sesquilinear form
ϕ associated with the expression |R(z)|α[H,Ae]|R(z)|β is unbounded on D∞(H)
if and only if either α < 1 or β < 1. For f, g ∈ D∞(H), we compute7

ϕ(f, g) = 〈Ae|R(z)|βf,H |R(z)|αg〉 − 〈AeH |R(z)|βf, |R(z)|αg〉
= 〈(e⊗ e)|R(z)|βf,H |R(z)|αg〉 − 〈(e⊗ e)H |R(z)|βf, |R(z)|αg〉
= 〈|R(z)|βf, e〉〈e,H |R(z)|αg〉 − 〈H |R(z)|βf, e〉〈e, |R(z)|αg〉. (27)

Notice that if t ∈ [0,∞), then H |R(z)|t =
∫∞
1

x
|z−x|tE(dx) and consequently the

operator H |R(z)|t is bounded if and only if t � 1. This implies that if α, β � 1,
then by (27) the form ϕ is bounded. Consider now the case α ∈ [0, 1) and suppose
contrary to our claim that ϕ is bounded. Since |R(z)|β is injective, we may choose
f ∈ D∞(H) such that 〈|R(z)|βf, e〉 �= 0. It follows from (27) that the linear
functional g �−→ 〈H |R(z)|αg, e〉 is bounded on D∞(H). As D∞(H) is a core8

of H |R(z)|α we see that e ∈ D(H |R(z)|α) = D(H1−α), which contradicts (26).
Interchanging the roles of α and β (as well as f and g), we settle the case β ∈ [0, 1).
Similar argument shows that the sesquilinear forms associated with [H,Ae]R(z)k

and R(z)k[H,Ae] are both unbounded on D∞(H) for every integer k � 0. In
particular, the pair (Ae, H) does not satisfy the assumption (c) of Theorem 3
of [1].

Our next aim is to show that the pair (Ae, H) does not satisfy the assump-
tion (b) of Theorems 3 and 4 of [1] (as well as Remarks following them). More
precisely, we prove that for all z ∈ C \ σ(H) and α, β ∈ [0,∞), the sesquilinear
form ψ associated with the expression |R(z)|α(adH)2(Ae)|R(z)|β is unbounded on
D∞(H) if and only if either α < 2 or β < 2. For f, g ∈ D∞(H), we can calculate

ψ(f, g) = 〈Ae|R(z)|βf,H2|R(z)|αg〉 − 2〈AeH |R(z)|βf,H |R(z)|αg〉
+ 〈AeH2|R(z)|βf, |R(z)|αg〉

= 〈(e⊗ e)|R(z)|βf,H2|R(z)|αg〉 − 2〈(e⊗ e)H |R(z)|βf,H |R(z)|αg〉
+ 〈(e⊗ e)H2|R(z)|βf, |R(z)|αg〉

= 〈|R(z)|βf, e〉〈e,H2|R(z)|αg〉 − 2〈H |R(z)|βf, e〉〈e,H |R(z)|αg〉 (28)

+ 〈H2|R(z)|βf, e〉〈e, |R(z)|αg〉.
Since H |R(z)|t, H2|R(z)|t ∈ B(H) for t ∈ [2,∞), we infer from (28) that the
form ψ is bounded for all α, β ∈ [2,∞). Consider now the case α ∈ [0, 2) and
suppose contrary to our claim that ψ is bounded. Fix f ∈ D∞(H) such that
a

df= 〈e, |R(z)|βf〉 �= 0. Putting b = −2〈e,H |R(z)|βf〉, we deduce from (28) that
the linear functional g �−→ 〈(aH2 + bH)|R(z)|αg, e〉 is bounded on D∞(H). Since
D∞(H) is a core of (aH2 + bH)|R(z)|α (cf. footnote 8), we obtain

e ∈ D((aH2 + bH)|R(z)|α) = D(H2−α),

7 Notice that the spectral theorem yields |R(z)|tD∞(H) ⊆ D∞(H) for t ∈ [0,∞).
8 Because for g ∈ D(H|R(z)|α), gn

df
= E([1, n])g ∈ D∞(H) and limn→∞ ‖g − gn‖H|R(z)|α = 0.
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which again contradicts (26). The proof of the remaining case β ∈ [0, 2) goes
through as for α ∈ [0, 2). Likewise, one can verify that the sesquilinear form as-
sociated with the expression R(z)(adH)2(Ae)R(z) is unbounded on D∞(H) for
every z ∈ C \ σ(H).

Summarizing, we have argued that our Theorems 3 and 8 essentially gener-
alize Theorems 1 and 4 in [1] and, consequently, extend their applicability; the
subsequent paper will be devoted to that.
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Abstract. The purpose of this paper is to study the point spectrum for the
case of self-adjoint operators. Based on the direct methods of the perturbation
theory, sufficient conditions for the finiteness of the point spectrum of some
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case of abstract operators and then, as applications, some concrete classes of
operators are investigated. In particular, operators associated to Jacobi type
matrices are also considered.
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1. Introduction

The paper is devoted to the problem of the finiteness of the point spectrum for
the case of self-adjoint operators. Within the framework of abstract operators the
problem can be formulated as follows. Let A and B denote symmetric operators
on a Hilbert space H, and let Λ be an interval of the real axis which is free of
eigenvalues of A. Let us consider the operator B as an additive perturbation of the
operator A. Our purpose is to find conditions under which the set of perturbed
eigenvalues (counted according to their multiplicities) from Λ is at most finite.
This problem as well as any other one connected with the study of the structure
of the spectrum of an operator represents one of the most important problems of
spectral analysis and its applications. Such a problem frequently appears in various
principle situations from such domains as theoretical and mathematical physics
(especially quantum mechanics), theory of differential (and pseudo-differential)
operators, eigenfunction expansions theory and, in the general, spectral operator
theory itself, etc. A good deal of background material on the development and
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perspectives of the problem can be found in [25], [15] (see also the references
quoted there). It should be pointed out the works [21], [22] (see also [23],[26])
dedicated to scattering theory, from which the necessity to study the structure of
the point spectrum in some basic questions becomes clear. The main results of
this paper are obtained from the same point of view based on the perturbation
theory of operators. First, we state an abstract result on the finiteness of the point
spectrum for some perturbations of symmetric operators. This abstract result is
given by Theorem 2.1 (see also Corollary 2.2) from Section 2. Then, combining the
theory of Wiener-Hopf type operators developed as in [18] with the general results
from Section 2, in Section 3 we study the point spectrum of perturbed Wiener-
Hopf abstract operators. It is worth to emphasize the role of the abstract Hardy
type inequalities from [13] used in the proof of the main results of Section 3. The
corresponding results concerned perturbations of Wiener-Hopf discrete operators
are presented in Section 3. Finally, in Section 4 the spectra of operators generated
by band Jacobi matrices are investigated. The main results of this section are
derived from those of Section 3 as direct applications.

2. The abstract results

In this section we cite an abstract result on the finiteness of the point spectrum
(i.e., the set of eigenvalues, including those contained in the continuous spectrum)
for self-adjoint operators. The detailed prove of it together with some applications
can be found in our earlier work [3] (see also [8] for applications to Dirac operators).
On the basis of this abstract approach there are proved the main results considered
in the next sections.

In the sequel, H will denote a complex Hilbert space. We denote by B(H) the
space of all bounded operators onH and by B∞(H) the subspace of B(H)consisting
of all compact operators in H. The domain and the range of an operator A are
denoted by Dom(A) and Ran(A), respectively. The resolvent set of A is denoted
by ρ(A) and the spectrum by σ(A). σp(A) stands for the point spectrum of A. The
resolvent operator (A− zI)−1, z ∈ ρ(A), will be denoted briefly by R(z;A).

Theorem 1. Let A and B be symmetric operators in a space H and let the op-
erator A has no eigenvalues on a closed interval Λ of the real axis. Suppose that
there exists a operator-valued function T (λ) defined on the interval Λ having the
properties that

(i) T (λ) ∈ B∞(H) (λ ∈ Λ),
(ii) T (λ) is continuous on Λ in the uniform norm topology, and
(iii) for each λ ∈ Λ and for each u ∈ Dom(B) such that Bu ∈ Ran(A− λI) there

holds the following inequality

‖ (A− λI)−1Bu ‖≤‖ T (λ)u ‖ . (2.1)

Then the point spectrum of the perturbed operator A+B on the interval Λ consists
only of finite number of eigenvalues of finite multiplicity.
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As we already mentioned this theorem (in a slightly different form) is con-
tained in our work [3] (see also [8]).

In particular, an immediate consequence of Theorem 2.1 is the following result
often useful for concrete applications.

Corollary 1. Let A and B be symmetric operators in H, and let Λ denote a closed
interval of the real axis such that the set σp(A) ∩ Λ is empty. Suppose that the
operator B can be represented as B = ST , where T is a compact operator from H
to another Hilbert space H1 and S is a closed operator from H1 into H, respectively.
In addition, if the following estimate holds

‖ (A− λI)−1Su ‖≤ c ‖ u ‖ (c = const;λ ∈ Λ),

whenever u ∈ Dom(S) and Su ∈ Ran(A − λI), then σp(A+B) ∩ Λ is a finite set
and each possible eigenvalues of the perturbed operator A+B from Λ has a finite
multiplicity.

We will apply Theorem 2.1 just as Corollary 2.2 to the study of the problem
of the finiteness of the perturbed eigenvalues for the concrete classes of operators
considered in the forthcoming sections. We mainly study the eigenvalues contained
in the continuous spectrum of a given operator. However, Theorem 2.1 and Corol-
lary 2.2 can be also applied to the study of the discrete part of the spectrum. For
instance, in view of this remark, Theorem 2.1 (more exactly, Corollary 2.2) implies
the following perturbation theorem.

Theorem 2. Let A be a self-adjoint operator in H, Λ = (a, b) ⊂ ρ(A), a �∈ σp(A)
and B be a symmetric operator with Dom(B) ⊃ Dom(A). If the operator (A −
aI)−1B is densely defined and compact in H, then the perturbed operator H =
A + B with Dom(H) = Dom(A) is self-adjoint in H, the spectrum of H on Λ is
only discrete and a is not an accumulation point for the set σ(H) ∩ Λ.

In order to show how this theorem can be obtained from Corollary 2.2 denote
by T the complete extension (which evidently is unique) of the operator (A −
aI)−1B. Then T ∗ is an extension of B(A− aI)−1, and it is easy to verify that

BR(λ;A) = T ∗ + (λ− a)T ∗R(λ;A)(λ ∈ ρ(A)).

Consequently, since T ∗ is compact, also BR(λ;A) is compact for each λ ∈ ρ(A),
and so a result from [16] can now be applied to conclude that the operator H is
self-adjoint and its spectrum on Λ is only discrete.

Next, let S = A−aI. Then the operator B can be expressed as B = ST and,
since

‖ R(λ;A)Su ‖=‖ R(λ;A)(A − aI)u ‖≤ c ‖ u ‖ (c = const)
holds for each u ∈ Dom(A) and for each λ nearly of a from the right, it follows
that all of hypotheses of Corollary 2.2 are fulfilled.

The above theorem is given in [2]. Among other applications, in [2] it has
been studied the spectrum for an equation of radiation energy transfer. In this
context we note the works [4], [7] (see also [5] and [10]) for further results and
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other applications. We also note the discussion undertaken in [4] (see also [7]) on
the connection with related results from the works [1], [20].

3. Perturbations of Wiener-Hopf abstract operators

In this section we study the point spectrum of the operators obtained by perturba-
tions of Wiener-Hopf abstract operators. The concept of the Wiener-Hopf abstract
operators has been given by I. C. Gohberg and I. A. Feldman [18], see also S. Pröss-
dorf [24]. According to the theory developed in [18], Wiener-Hopf type operators
can be regarded in a certain sense as functions of one-sided invertible operators.
As our case is that of Hilbert’s space, the considered operators will be presented as
functions of an isometric operator. Moreover, these functions (so-called symbols of
the corresponding operators) will be assumed to be continuous on the unit circle
of the complex plane.

In order to specify the notion connected with the foregoing discussion, let H
be an arbitrary Hilbert space and consider on it an isometric operator denoted
by V . In what follows, it will be always assumed that the operator V ∗ has no
eigenvalues on the unit circle T = {z ∈ C/|z| = 1}. Then, it is clear that the point
spectrum of V is empty and, hence, there exist the closed and unbounded operators
(V −zI)−1 and (V ∗−zI)−1 for all z ∈ T. We denote, as in [18], by �(V ) the closed
hull of all operators V n(n = 0,±1, · · · ), where V n = (V ∗)−n(n = −1,−2, . . . )
and the closure is taken with respect to the operator norm of B(H). In line with
approaches from [18], it follows that to each A ∈ �(V ) corresponds a complex-
valued function A(z) continuous on the unit circle T. This function A(z), z ∈ T,
is called the symbol of the operator A. We allow ourselves to write (formally for
the moment at least) A = A(V ). The set of symbols which correspond to all
operators from �(V ) coincide with the set C(T) of all complex-valued functions
continuous on T (see [18], p. 34). If A(·) ∈ C(T) is a real-valued function, then
the corresponding operator A ∈ �(V ) is self-adjoint and the spectrum of A is
the set of all values attained by A(z), z ∈ T. In spite of the fact that the most
results presented below can be adapted effortlessly for the general case, we will be
concerned exclusively with the case of operators with rational symbols. However,
this will be entirely enough for our applications from the next sections.

Thus, in what follows, we consider an operator A ∈ �(V ) of the following
form

A =
n∑

j=−n
ajV

j , (3.1)

where aj(j = 0,±1, · · · ,±n) are fixed complex numbers. As it was already men-
tioned the symbol of A is the polynomial A(z) =

∑n
k=−n akz

k, and if A(z) rep-
resents a real-valued function on T or, equivalently, aj = ā−j(j = 0, 1, . . . , n),
then A is a self-adjoint operator on H. Henceforth this property will be always
assumed. Note that the spectrum of A is a closed interval, namely σ(A) = [a, b],
where a = minA(z) and b = maxA(z) on T.
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Before formulating the main result of this section it will be convenient to
recall some notions and definitions.

Let C be a symmetric operator in H. The operator C is called semi-bounded
from below, if there exists a number γ, γ ∈ R, such that (Cu, u) ≥ γ ‖ u ‖2 for
each u ∈ Dom(C). For the later, we denote by γ(C) the greatest lower bound of
C, i.e.,

γ(C) = inf{(Cu, u)/u ∈ Dom(C), ‖ u ‖= 1}.
The operator C is said to be nonnegative (C ≥ 0) if γ(C) ≥ 0. If γ(C) ≥ 0, but
(Cu, u) > 0 for each u ∈ Dom(C), u �= 0, the operator C is said to be positive.
Finally, C is said to be positive definite (C >> 0) if γ(C) > 0. In a similar manner
can be understood the notion of an operator semi-bounded from above and all the
corresponding notions related with it.

Next, let us consider an operator J on the space H for which the following
properties are assumed.

(i) J is a bounded and positive operator ;
(ii) V ∗(Ran(J)) ⊂ Ran(J) and there is a definite operator C (so that either

C � 0 or C � 0 ) such that C = J−1 − V J−1V ∗ on the set Ran(J).

Remark 1. The existence of an operator J for which the properties (i) and (ii) are
satisfied assures applicability of obtained results in [13] (see also [14]) on abstract
Hardy type inequalities. It turns out that , the following inequality holds

c ‖ Ju ‖≤‖ (V − zI)u ‖ (3.2)

for all u ∈ H and all z ∈ C, | z |≥ 1 , where c = 1
2 | z | γ(C). In addition, we

note that from the inequality (3.2) it can be extracted some useful information.
For instance, it follows that the operator V has no eigenvalue on the unit circle T.
Indeed, if V u = zu for some z ∈ T, then (3.2) implies Ju = 0 and, since J > 0,
we get u = 0. Moreover, the unbounded operator (V − zI)−1, where z ∈ T,becomes
to be a bounded one by multiplying it with J from left. More precisely, for every
z ∈ T the operator J(V − zI)−1, which is densely defined, has a bound extension
on H. This fact will be systematically used in the proof of the main results given
below (see Theorems 3.2 and 3.3).

Now, let us consider an operator A ∈ �(V ) of the form (3.1), and denote
by A(z), z ∈ T, its symbol, and let, as before, a = minA(z) and b = maxA(z)
on T. It was also noted that σ(A) = [a, b]. It is well known, but this fact will be
also clear from the proof of Theorem 3.2 given below, that the operator A has no
eigenvalues.

Next, let n(λ) be the number of all zeros of the polynomial A(z)−λ(a ≤ λ ≤
b), which belong to the unit circle T (and counted according to their multiplicities),
and letm(λ) be the maximal multiplicity of them. It is clear that n(λ) is a piecewise
constant function on the interval [a, b], and the set N of its discontinuous points
is finite.

Let B be another self-adjoint operator on H and let us consider it as a
perturbation of the operator A. Let Λ be an interval contained in the continuous
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spectrum of A. Our purpose is to find conditions under which the set of perturbed
eigenvalues (counted according to their multiplicities) from Λ is only finite. We
start by considering the situation in which m(λ) = 1 on Λ.

Theorem 3. Let A be an operator of the form (3.1), let λ0 ∈ (a, b)\N and m(λ0) =
1. In addition, let J be an operator on H for which the above properties (i) and
(ii) are satisfied. If the operator B ∈ B(H) is self-adjoint and the operator J−1B
is compact in H, then λ0 is not an accumulation point for the set of eigenvalues of
the perturbed operator A+B. Each possible eigenvalue of A+B in a neighborhood
of λ0 has a finite multiplicity.

Proof. It is clear that, since m(λo) = 1, also m(λ) = 1 and n(λ) = n(λ0) for λ
belonging to a closed neighborhood Λ of λ0. Then the symbol A(z) − λ can be
represented as follows

A(z)− λ =
n0∑
j=1

(z−1 − αj(λ))Aλ(z)(λ ∈ Λ), (3.3)

where n0 = n(λ0), αj(λ)(|αj(λ)| = 1; j = 1, . . . , n0) are continuous functions on
Λ, αj(λ) �= αk(λ)(λ ∈ Λ; j �= k, j, k = 1, . . . , n0), Aλ(z) is a polynomial in z and
depending continuously on λ, and such that Aλ(z) �= 0 for | z |= 1 and λ ∈ Λ.
Clearly, for each fixed λ ∈ Λ, Aλ(z) can be regarded as a symbol of an operator, let
it be denoted by Aλ(V ), from �(V ). From the above factorization (3.3) of A(z)−λ
it follows that

A− λI =
n0∏
j=1

(V ∗ − αj(λ)I)Aλ(V )(λ ∈ Λ). (3.4)

According to the restrictions V , the operators V ∗−αj(λ)I (j = 1, . . . , n0) are one-
to-one, and their corresponding inverses Rj(λ) = (V ∗ − αj(λ)I)−1 (j = 1, . . . , n0)
are closed and unbounded operators in the space H. Henceforth, for convenience,
we let R(λ) =

∏n0
j=1 Rj(λ) (λ ∈ Λ). Also, it is easy to see that the operator

Aλ = Aλ(V ) is invertible on the left, and let A(−1)
λ (∈ B(H)) denote its left inverse.

Since in addition the operators V ∗ − αj(λ)I (j = 1, . . . , n0) are commutative it
follows from (3.4) that

(A− λI)−1u = A
(−1)
λ R(λ)u(λ ∈ Λ) (3.5)

for every u ∈ Ran(A− λI).
Next, it will be shown that all of hypotheses of Theorem 2.1 are satisfied. To

this end, note that since the values αj(λ) (j = 1, . . . , no) are pairwise distinct for
every λ ∈ Λ, there exist some functions aj(λ) (j = 1, . . . , n0), which evidently can
be supposed to be continuous, such that

n0∏
j=1

(z − αj(λ))−1 =
n0∑
j=1

aj(λ)(z − αj(λ))−1(λ ∈ Λ). (3.6)
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It turns out that the relation (3.6) implies that

Dom(R(λ)) =
n0⋂
j=1

Dom(Rj(λ))(λ ∈ Λ), (3.7)

and, respectively,

R(λ)u =
n0∑
j=1

aj(λ)Rj(λ)u(λ ∈ Λ) (3.8)

for every u ∈ Dom(R(λ)).
In order to show that , we rewrite the relation (3.6) as follows

n0∑
j=1

aj(λ)
∏
k 	=j

(z − αk(λ)) = 1(λ ∈ Λ)

from which, we readily get
n0∑
j=1

aj(λ)
∏
k 	=j

(V ∗ − αk(λ)I) = I(λ ∈ Λ). (3.9)

Now,let u ∈
⋂n0
j=1 Dom(Rj(λ)), i.e., for each j = 1, . . . , n0 there exists uj ∈ H

such that u = (V ∗ − αj(λ)I)uj . Then, by (3.9),the element u can be expressed in
the form

u =
n0∏
j=1

(V ∗ − αj(λ)I)v,

where v =
∑n0
j=1 aj(λ)uj . Hence u ∈ Dom(R(λ)), and so

⋂n0
j=1 Dom(Rj(λ)) ⊂

Dom(R(λ)). The opposite inclusion is evident, and thus the relation (3.7) is estab-
lished. Now, it is clear that the relation (3.8) is a simple consequence of (3.9).

As has been mentioned above (see Remark 3.1), the operator J is related to
V in such way that for arbitrary z ∈ T the densely defined operator J(V − zI)−1

has a bound extension on H. Moreover, the norm of each such extension is less
then 2γ−1, where γ = γ(C) (cf. the property (ii) for J). It then follows by duality
that the operator (V ∗ − zI)−1J , for each fixed z ∈ T, is bounded on its domain.
Namely, there holds the following estimate

‖ (V ∗ − zI)−1Ju ‖≤ 2γ−1 ‖ u ‖ (z ∈ T), (3.10)

for all u ∈ H such that Ju ∈ Ran(V ∗ − zI).
Next, let u be an arbitrary element in H such that Ju ∈ Ran(A−λI). Then,

as is clear from (3.4), also Ju ∈ Dom(R(λ)), and further from (3.8), by virtue of
(3.10), one obtains

‖ R(λ)Ju ‖≤ 2γ−1(
n0∑
j=1

| aj(λ) |) ‖ u ‖ (λ ∈ Λ). (3.11)

But aj(λ) (j = 1, . . . , n0), as continuous functions on a closed interval Λ, are
uniformly bounded on Λ. The uniformly boundedness of operators A(−1)

λ as λ
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ranges over Λ is also clear. Consequently, by (3.5) and (3.11), we find that there
exists a finite positive constant c independent of λ and u such that

‖ (A− λI)−1Ju ‖≤ c ‖ u ‖ (λ ∈ Λ).

Thus, taking S = J and T = J−1B, all hypotheses of Theorem 2.1 (or Corollary
2.2) are satisfied, and therefore, the proof of our theorem is complete. �

Let us now consider the case m(λ0) > 1, where λ0 ∈ (a, b)\N as above. Let
αk (k = 1, . . . , p) be all distinct roots of the polynomial A(z)−λ0 contained on the
unit circle T, and let mk (k = 1, . . . , p) designate their corresponding multiplicities.
For simplicity, we let p = 2. The arguments for the general case are similar. In
this case a representation as was given by (3.3) also occurred. Obviously, it can
meaningfully asserted that for any λ, λ �= λ0, from a certain closed neighborhood Λ
of λ0 the roots αj(λ) (j = 1, . . . , n0) in that representation are simple. Moreover,
αj(λ) (j = 1, . . . , n0) can be enumerated in such way that the first m1 of them to
converge to α1as λ→ λ0 and, respectively, the others m2(= n0 −m1) to α2.

Next, it will be shown that the abstract results from the previous section can
also be applied. To this end, it will be sufficient for the perturbation operator B to
indicate a factorization of the form B = ST , in which S ∈ B(H), T ∈ B∞(H) and,
in addition, the operator S to be chosen in such way that the following estimate

‖ R(λ)Su ‖≤ c ‖ u ‖ (λ ∈ Λ) (3.12)

holds for each u ∈ H such that Su ∈ Dom(R(λ)). Here c is a constant independent
of λ and u, and it is used the notation R(λ) =

∏n0
j=1 Rj(λ) and Rj(λ) = (V ∗ −

αj(λ)I)−1 (j = 1, . . . , n0) as before. It turns out that an operator S suitable for
our purposes can be useful S = Jmo , where mo = m(λ0), and the operatorJ is
chosen that the following estimates hold

cτ ‖ Jτu ‖≤‖ Jτ−1(V − zI)u ‖ (τ = 1, . . . ,m0) (3.13)

for all u ∈ H and z ∈ T, where cτ are some positive constants. In order to see this,
we choose polynomials pj(z, λ)(j = 1, 2) in z and depending continuously on λ for
λ ∈ Λ such that (cf. the decomposition (3.6) )
n0∏
j=1

(z−αj(λ))−1 = p1(z, λ)
m1∏
j=1

(z−αj(λ))−1+p2(z, λ)
n0∏

j=m1+1

(z−αj(λ))−1(λ ∈ Λ).

An argument like that leading to (3.8) now implies that

R(λ)u = p1(V ∗, λ)
m1∏
j=1

Rj(λ)u + p2(V ∗, λ)
n0∏

j=m1

Rj(λ)u, (λ ∈ Λ), (3.14)

whenever u ∈ Dom(R(λ)).
Further, by means of (3.13), it is easily verified that

‖ (V − z1I) · · · · · (V − zmI)u ‖≥ c1 · · · · · cm ‖ Jmu ‖ (3.15)

for u ∈ H, z1, . . . , zm ∈ T, m ≤ m0 and c1, . . . , cm determined as in (3.13).
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Using this fact, it can be obtained by some simple manipulations estimates
for the operator-valued functions

F1(λ) =
m1∏
j=1

Rj(λ) and F2(λ) =
n0∏

j=m1+1

Rj(λ)S for λ ∈ Λ.

Namely, for every u ∈ H such that Su ∈ Dom(R(λ)), one can be obtained

‖ Fj(λ)u ‖≤ Kj ‖ u ‖ (j = 1, 2;λ ∈ Λ)

with constantsKj(j = 1, 2) independent of λ and u. Taking this into account and
the fact that the operator-functions pj(V ∗, λ) (j = 1, 2) are uniformly bound on
Λ, it follows from (3.14) the desired estimate (3.12).

Now, assuming that the operator J is one-to-one and the operator T =
J−m0B is compact in the space H, we get a factorization B = ST , where all
hypotheses of Corollary 2.2 are fulfilled.

The above discussion it is summarized by Theorem 3.4 from below. Before
formulating this theorem we make the following remark.

Remark 2. If an operator J has the following properties

(i) J is a bounded and positive operator in H,
(ii)τ V ∗(Ran(J2τ−1)) ⊂ Ran(J2τ−1)(τ = 1, . . . ,m0),

and

(iii)τ for each τ = 1, . . . ,m0 there is a definite operator Sτ,τ−1 (let Sτ,τ−1 � 0,
for instance) such that

Sτ,τ−1 = J−1 − Jτ−1V J−2τ+1V ∗Jτ−1

on the set Ran(Jτ ),
then the estimates (3.13) hold for all u ∈ H and for all z ∈ C such that | z |≥ 1,
where cτ = 2−1 | z | γ(Sτ,τ−1) [13].

Theorem 4. Let A be an operator of the form (3.1), let λ0 ∈ (a, b) \ N and m0 =
m(λ0) > 1. In addition, let J be an operator on H satisfying either (3.13) or (i),
(ii)τ , (iii)τ from Remark 3.3. If the operator B ∈ B(H) is self-adjoint and the
operator J−m0B is compact in H, then λ0 is not an accumulation point for the set
of eigenvalues of the perturbed operator A+B. Each possible eigenvalues of A+B
in a neighborhood of λ0 has a finite multiplicity.

Remark 3. An argument similar to that used in proving Theorem 3.4 can be applied
to prove that if λ0 ∈ N and n(λ) = n(λ0) for λ ∈ [λ0−ε, λ0] (λ ∈ [λ0, λ0+ε]),where
ε > 0, and the operator A and B satisfy the conditions of Theorem 3.4, then
the point spectrum of the perturbed operator A + B on the interval [λ0 − ε, λ0]
([λ0, λ0 + ε]) consists only of finite set of eigenvalues of finite multiplicities.

As a consequence of Theorems 3.2 and 3.4 there holds the following result.
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Corollary 2. Let A be a self-adjoint operator of the form (3.1) and let J be defined
as in Theorem 3.1. If the operator B ∈ B(H) is self-adjoint and the operator J−1B
is compact in H, then the set of all eigenvalues of the perturbed operator A + B
has at most a finite number of accumulation points. Each eigenvalue of A+B can
be only of a finite multiplicity.

The assertion follows at once from the fact that the function m(λ) has at
most a finite number of discontinuous points.

The following result can be also regarded as an immediate consequence of
Theorems 3.2 and 3.4 which however is important for the relevant results about
Jacobi matrices (cf. Section 5 below).

Corollary 3. Let A = V + V ∗, let B be a bounded self-adjoint operator on H, and
let J denote an operator defined as in Theorem 3.1.

(i) If operator J−1B is compact in H, then the set of all eigenvalues of the
perturbed operator A+B has only the end points of the essential spectrum of
A+B, i.e., ±2, as accumulation points.

(ii) If however the operator J−2B is compact in H, then the point spectrum of
A+B from the essential spectrum [−2, 2] is only finite.

In both cases each eigenvalue of the perturbed operator A + B has a finite multi-
plicity.

Proof. The point is that the polynomial A(z) = z + z−1, z ∈ T, is the symbol of
the unperturbed operator A. Therefore σ(A) = [−2, 2], n(λ) = 2 (−2 ≤ λ ≤ 2),
m(λ) = 1 (−2 < λ < 2), N = {−2, 2}, m(±2) = 2. There remains then to use
Theorem 3.2 for proving (i) and Theorem 3.4 or, more convenient, the assertions
made in remark 3.5 for (ii). �

4. Perturbations of Wiener-Hopf discrete operators

In this section the results obtained in the previous section are adapted to study
the discrete case of perturbed Wiener-Hopf operators.

1. In the sequel, it is considered instead of H the Hilbert space l2(N) of all square
summable sequence ξ = (ξn), ξn ∈ C (n = 1, 2, . . . ), and V denote the elementary
shift in l2(N), i.e., (V ξ)n = ξn−1 (n = 1, 2, . . . ; ξ0 = 0). V is an isometric operator
on the space l2(N), i.e., V ∗V = I, and we recall that the operator V ∗ (and V as
well) has no eigenvalue on unit circle T. The operators of �(V ) set up the class of
discrete Wiener-Hopf operators (see [18], for instance). We remark that an operator
A from the class �(V ) is generated in the space l2(N) by a matrix [aj−k]∞1 , where
aj(j = 0,±1, · · · ) stand for the Fourier coefficients of the symbol A(z) of A. In
what follows, as in previous section, it is assumed only the case in which a finite
number of Fourier coefficients aj are different of zero. In other terms this means
that the symbol A(z) of A represents a polynomialA(z) =

∑n
j=−n ajz

j, z ∈ T.
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Thus, as in Sections 3, we consider an operator A ∈ �(V ) of the form (3.1), where
aj (j = 0,±1, · · · ,±n) are complex number such that aj = a−j (j = 0, 1, . . . , n).

Let B denote a bounded self-adjoint operator on l2(N) defined by B = [bjk]∞1
and let us consider it as a perturbation of the operator A. We will preserve the
notations introduced in Section 3.

Theorem 5. Let A and B be defined as above, let λ0 ∈ (a, b) \N and m0 = m(λ0).
If B0 = [jmobjk]∞1 ∈ B∞(l2(N)), then λ0 is not an accumulation point for the set
of eigenvalues of the perturbed operator A+B. Each possible eigenvalue of A+B
in a neighborhood of λ0 has a finite multiplicity.

Proof. Consider the operator J defined on l2(N) by

(Jξ)n = n−1ξn, (n = 1, 2, . . . ; ξ = (ξn) ∈ l2(N)).

In view of the Hardy inequality ([19], Theorem 326; also, for more general results,
see [13]), one gets

‖ Jτ (V − zI)−τξ ‖≤ 2τ ‖ ξ ‖, (ξ ∈ Ran(V − zI)τ ; z ∈ T, τ > 0).

Therefore, the operators Jτ (V − zI)−τ (z ∈ T, τ > 0) have bounded extensions
on l2(N), hence the operators (V ∗ − zI)−τJτ (z ∈ T, τ > 0) are also bounded on
l2(N), and so, taking into account that J−m0B = B0, for the case of elementary
shift V in l2(N) the operator J together with B = [bjk]∞1 ∈ B(l2(N)) satisfy all the
conditions of Theorem 3.4. �

The next theorem stands out as an alternate version of Corollary 3.6 for the
considered discrete case of operators.

Theorem 6. Let A be a self-adjoint discrete Wiener-Hopf operator of the form (3.1)
and let B denote a bounded self-adjoint operator on l2(N) defined by B = [bjk]∞1 .
If B1 = [jbjk]∞1 ∈ B∞(l2(N)), then the point spectrum of the perturbed operator
A + B has at most a finite number of accumulation points. Each eigenvalue of
A+B can be only of a finite multiplicity.

It is also clear the reformulation of the results given by Corollary 3.7 concern-
ing the concrete case in which the unperturbed operator A has the special form
A = V + V ∗. Unconditionally, the correspond results can be derived straightly
from above Theorems 4.1 and 4.2.

Corollary 4. Let B denote a bounded self-adjoint operator on l2(N) defined by
B = [bjk]∞1 .

(i) If B1 = [jbjk]∞1 ∈ B∞(l2(N)), then the point spectrum of the perturbed oper-
ator A1 = V + V ∗ +B has only the points ±2 as accumulation points.

(ii) If however B2 = [j2bjk]∞1 ∈ B∞(l2(N)), then the set σp(A1)
⋂

[−2, 2] is only
finite.

In both cases each eigenvalue of the perturbed operator A1 has a finite multiplicity.
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Remark 4. In our earlier work [12], we proved results on the absence of eigenval-
ues for perturbed Wiener-Hopf discrete operators (see also [11] for related results
concerning operators generated by Jacobi matrices). We note that the conditions
on the perturbation are in a sense close to the ones stated above (see Theorems
4.1 and 4.2). However, it should be noted that they depend not only on maximal
multiplicity of the zeros of the symbol, but also on their number, the position of
roots of the symbol in the complex plane, etc.

2. The methods of Section 3 can be applied to obtain similar results by considering
other type of isometries. The next consideration can be regarded as typical in this
respect. Let us consider the case when H is the space L2(R+) and the operator
V is the translation operator in L2(R+) defined by (V u)(x) = u(x− h) for x > h
(h > 0) (taking u(x− h) = 0 for x < h).

It is easy to see that an operator A ∈ �(V ) of the form (3.1) is given in
L2(R+) by

(Au)(x) =
n∑

j=−n
aju(x− jh),

where aj(j = 0,±1, · · · ,±n) are complex numbers. As above, the conditions for
self-adjointness of A, i.e., aj = ā−j(j = 0, 1, . . . , n) are always assumed. So, let A
be a self-adjoint operator defined as above and let us consider a perturbation of
A given by an integral operator

(Bu)(x) =
∫ ∞

0

b(x, y)u(y)dy,

where b(x, y) is a measurable function with respect to both variables x, y ∈ R+.
Suppose that the operator B is also self-adjoint and bounded on L2(R+).

Let us represent only a version of Theorem 3.4 in which the following situation
λ0 �∈ N , m0 = m(λ0) > 1 is considered.

Theorem 7. If the integral operator with a kernel (1+x)m0b(x, y) is compact in the
space L2(R+), then λ0 is not an accumulation point for the set of eigenvalues of
the perturbed operator A+B. Each possible eigenvalue of A+B in a neighborhood
of λ0 has a finite multiplicity.

We note that the operator J1 defined in L2(R+) by

(J1)(x) = (1 + x)−1u(x)(u ∈ L2(R+))

plays the role of J in the arguments of Section 3.

Remark 5. It is worth to note that the methods developed in Section 3 can be also
applied to study the point spectrum for perturbation Wiener-Hopf integral opera-
tors. This is the case in which the operator V defining the unperturbed operator
is nothing but the canonical shift with respect to the system of Laguerre functions
(see [18], p. 69). We cite our earlier work [6] in which results on the finiteness of
the point spectrum for perturbed Wiener-Hopf integral operators are presented.
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5. Jacobi matrices

In this section we study the point spectrum of the operators generated by Jacobi
matrices. The main results are obtained by applying directly the results from the
previous section concerning the perturbations of Wiener-Hopf discrete operators.

1. We first focus our attention on the problem of the finiteness of the point spec-
trum for so-called band Jacobi matrices (or, in other terms, for generalized Jacobi
matrices). We recall that a matrix A = [ajk]∞1 with ajk ∈ C (j, k = 1, 2, . . . ) is
said to be a band Jacobi matrix of order 2n if ajk = 0 for | j − k |> n, where n
is a positive integer number. In the following, it is as ever considered the case of
self-adjoint operator A on the space l2(N), that is, ajk = ākj (j, k = 1, 2, . . . ).

Furthermore, we assume that

aj+r,j → ar(j →∞; r = 0,±1, · · · ,±n).

Then the operator A can be written as a sum A = A0 +B, where

A0 =
n∑

j=−n
ajV

j(aj = ā−j , j = 0, 1, . . . , n) (5.1)

and B = [bjk]∞1 with bjk = ajk − aj−k for | j− k |≤ n and bjk = 0 for | j− k |> n.
It is clear from (5.1) that A0 is a Wiener-Hopf discrete operator with a

rational symbol A0(z) =
∑n

j=−n ajz
j (z ∈ T). Thus, the spectrum of the operator

A0 is the interval σ(A) = [a, b], where a = minA0(z) and b = maxA0(z) on T.
In the next theorem there are used the notations similar those introduced

in Section 3 before Theorem 3.2. n(λ) designates for the number of all zeros of
A0(z) − λ(a ≤ λ ≤ b) belonging to T (counted according to their multiplicities),
m(λ) stands for the maximal multiplicity of them, and N designates for the set of
discontinuous points of the function n(λ) on [a, b].

Theorem 8. Let λ0 ∈ (a, b)\N and m0 = m(λ0). If

lim
j→∞

j2m0bj+r,j = 0, (j = 0,±1, · · · ,±n),

then λ0 is not an accumulation point for the set of eigenvalues of the operator A.
Each possible eigenvalue of A in a neighborhood of λ0 has a finite multiplicity.

The assertion is an immediate consequence of Theorem 4.1.
For a band Jacobi matrix A of order 2n there holds the following result.

Corollary 5. If λ0 �∈ N and if

lim
j→∞

j2nbj+r,j = 0, (r = 0,±1, · · · ,±n),

then the point spectrum of A in a neighborhood of λ0 is only a finite set.

Theorem 4.2 in turn implies the following result.
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Theorem 9. If
lim
j→∞

jbj+r,j = 0, (r = 0,±1, · · · ,±n),

then the point spectrum of A has at most a finite set of accumulation points.
Moreover, each eigenvalue of A can be only of a finite multiplicity.

2. In the case of an ordinary Jacobi matrix, i.e., when n = 1, the results given by
Theorem 5.1 and Corollaries 5.2 and 5.3 can be refined. There will be no loss of
generality in supposing that the operator A is defined in the space l2(N) by the
following Jacobi matrix

A =




0 a1 0 · · ·
a1 0 a2 · · ·
0 a2 0 · · ·
· · · · · ·


 ,

where aj ∈ R (j = 1, 2, . . . ), aj → 1 (j →∞).
In what follows we denote

bj = aj − 1, cj =| bj | + | bj+1 | (j = 1, 2, . . . ).

Clearly A = A0 + B, where A0 = V + V ∗ and B = A − A0 ∈ B∞(l2(N)). Thus,
in accord with our notations, A0(z) = z + z−1, z ∈ T, σ(A0) = [−2, 2], n(λ) =
2(−2 ≤ λ ≤ 2), m(λ) = 1 (−2 < λ < 2), m(±2) = 2 and N = {−2, 2}.

Theorem 10. If the operator defined by

C =




c1 c2 c3 · · ·
0 2c2 2c3 · · ·
0 0 3c3 · · ·
· · · · · ·


 ,

is compact in the space l2(N), then on the continuous spectrum [−2, 2] is contained
at most a finite set of eigenvalues of the operator A. Moreover, each possible eigen-
value of A has a finite multiplicity.

The proof of Theorem 5.4 is given in our work [9]. Also, in this work it is
proved the following result.

Theorem 11. If the operator defined by

C1 =




c1 c2 c3 · · ·
0 c2 c3 · · ·
0 0 c3 · · ·
· · · · · ·


 ,

is compact in the space l2(N), then the accumulation points for the set of all eigen-
values of A can be only the end points of the continuous spectrum of A, i.e., λ = −2
or λ = 2.
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Remark 6. The methods developed in the present paper can be applied to more
general operators involving matrix Wiener-Hopf operators (in this respect we note
the work [17] where the theory of Wiener-Hopf equations for the matrix case is
developed). By this approach, it is possible to study from the same point of view
the point spectrum for operators generated by periodic Jacobi matrices. We note the
work [4] for some results on the problem of the finiteness of the discrete spectrum
for perturbed matrix Wiener-Hopf operators and applications to periodic Jacobi
matrices.
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Singular Perturbations as Range Perturbations
in a Pontryagin Space
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Abstract. When the singular finite rank perturbations of an unbounded self-
adjoint operator A0 in a Hilbert space H0, formally defined by A(α) = A0 +
GαG∗, are lifted to an exit Pontryagin space H by means of an operator
model, they become ordinary range perturbations of a self-adjoint operator
H∞ in H ⊃ H0: Hτ = H∞−Ωτ−1Ω∗. Here G is a mapping from C

d into some
scale space H−k(A0), k ∈ N, of generalized elements associated with A0, while
Ω is a mapping from C

d into the extended space H, where Hτ is defined. The
connection between these two perturbation formulas is studied.
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Keywords. Singular finite rank perturbation, extension theory, Krĕın’s for-
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erator model.

1. Introduction

Let A0 be an unbounded self-adjoint operator in a Hilbert space H0 and let
H−k(A0), k ∈ N, be the dual space of generalized elements corresponding to the
space H+k(A0) = dom |A0|k/2 equipped with the graph norm, cf. [6]. Singular finite
rank perturbations of an unbounded self-adjoint operator A0 in a Hilbert space
H0 are defined formally as

A(α) = A0 +GαG∗, (1.1)

where G is a linear mapping from H = C
d into H−k(A0) and α is a self-adjoint

operator in H. In [15], [23] an operator model for one-dimensional singular per-
turbations of the form (1.1) was constructed by extending the space H0 with a
finite-dimensional exit space HQ; see also [2], [3] for the case of finite rank H−2-
perturbations. Several further references on this topic can be found in [3]. The
model given in [9], [11] uses a coupling method for identifying the singular finite
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rank perturbations A(α) in (1.1) with the self-adjoint extensions Hτ of a symmet-
ric operator in H = H0 ⊕HQ with some natural additional assumptions on G (see
Theorem 3.1 below). It turns out that the extensions Hτ are in fact ordinary range
perturbations of one of the extensions, namely of the self-adjoint operator H∞ in
H ⊃ H0:

Hτ = H∞ − Ωτ−1Ω∗, (1.2)

where Ω is a mapping from H into H and τ is a self-adjoint parameter in H. The
perturbations Hτ in (1.2) induce a symmetric restriction S of H∞ in H via

domS = {F ∈ domH∞ : Ω∗F = 0 },

which, due to the assumption ranΩ ⊂ H, is maximally nondensely defined in
H. Therefore, among the self-adjoint extensions of S there are linear relations
which are not operators. In particular, the generalized Friedrichs extension (see
[17], [18]) of S is not an operator. A classification of the perturbations Hτ by
decomposing the self-adjoint parameter τ into its operator and multi-valued parts
leads to intermediate symmetric extensions of S and their generalized Friedrichs
extensions. These extensions of S turn out to be precisely those which are given by
the so-called extremal boundary conditions and whose compressed resolvents to
the original space H0 are canonical, i.e., coincide with a resolvent of a self-adjoint
relation in H0.

The contents of this paper are now briefly described. Section 2 contains the
necessary facts concerning boundary triplets and Weyl functions in a Pontryagin
space. A concise introduction to finite rank singular perturbations of a self-adjoint
operator in a Hilbert space is given in Section 3. Such finite rank singular pertur-
bations are identified with self-adjoint relations in a larger Pontryagin space. They
are interpreted as range perturbations in Section 4. A connection with so-called
extremal boundary conditions can be found in Section 5.

2. Boundary triplets and abstract Weyl functions

Let H be a Pontryagin space with negative index κ, cf. [5]. The set of all bounded
everywhere defined linear operators acting on H is denoted by [H]. If T is a linear
relation in H, then domT , kerT , ranT , and mulT indicate the domain, kernel,
range, and multi-valued part of T , respectively; moreover, ρ(T ) denotes the set of
regular points of the linear relation T . Let S be a not necessarily densely defined
closed symmetric relation in H with equal defect numbers d+(S) = d−(S) < ∞
and let S∗ be the adjoint linear relation of S, so that S ⊂ S∗. Recall (see [16], [7])
that a triplet Π = {H,Γ0,Γ1} of a Hilbert space H with dimH = n±(S) and two
linear mappings Γj , j = 0, 1, from S∗ to H is called a boundary triplet for S∗, if the
mapping Γ = (Γ0,Γ1)
 : f̂ → ( Γ0f̂ ,Γ1f̂ )
 from S∗ intoH⊕H is surjective and the
following abstract Green’s identity holds for every f̂ = {f, f ′}, ĝ = {g, g′} ∈ S∗:

(f ′, g)− (f, g′) = (Γ1f̂ ,Γ0ĝ)H − (Γ0f̂ ,Γ1ĝ)H = i(Γĝ)∗J(Γf̂);
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here J stands for the block operator

J =
(

0 −iIH
iIH 0

)
.

The adjoint S∗ of every closed symmetric relation S with equal defect numbers has
a boundary triplet Π = {H,Γ0,Γ1}. All other boundary triplets Π̃ = {H, Γ̃0, Γ̃1}
are related to Π via a J-unitary transformation W : Γ̃ = WΓ. In particular, the
transposed boundary triplet Π
 = {H,Γ


0 ,Γ

1 }, is defined by Γ
 = iJΓ. When S

is densely defined, S∗ can be identified with its domain domS∗ and the boundary
mappings can be interpreted as mappings from domS∗ onto H.

Let Π = {H,Γ0,Γ1} be a boundary triplet for S∗. The mapping Γ
 : f̂ →
{Γ1f̂ ,−Γ0f̂ } from S∗ ontoH⊕H establishes a one-to-one correspondence between
the set of all self-adjoint extensions of S and the set of all self-adjoint linear
relations τ in H via

Aτ := ker (Γ0 + τΓ1) = { f̂ ∈ S∗ : {Γ1f̂ ,−Γ0f̂} ∈ τ} = { f̂ ∈ S∗ : Γ
f̂ ∈ τ }.
(2.1)

When the parameter τ is an operator in H the equation (2.1) takes the form

Γ0f̂ + τΓ1f̂ = 0, f̂ ∈ S∗. (2.2)

The identity τ = ∞ is to be interpreted as τ−1 = 0 or, more precisely, by using
graph notation as τ = {0, IH}; in this case the equation in (2.2) takes the form
Γ1f̂ = 0. More generally, there is a similar interpretation, when τ is decomposed
orthogonally in terms of its operator part and multi-valued part. To each boundary
triplet Π one may naturally associate two self-adjoint extensions of S by A0 =
kerΓ0, A1 (= A∞) = ker Γ1, corresponding to the linear relations τ = 0 and
τ =∞ via (2.1).

Let Nλ(S∗) = ker (S∗ − λ), λ ∈ ρ̂(S), be the defect subspace of S and let
N̂λ(S∗) := { {fλ, λfλ} : fλ ∈ Nλ(S∗) }; here the notations Nλ and N̂λ are used
when the context is clear. Every boundary triplet Π gives rise to two operator
functions defined for λ ∈ ρ(A0) (�= ∅) by the formulas

γ(λ) = p1(Γ0� N̂λ)−1(∈ [H,Nλ]), M(λ) = Γ1(Γ0� N̂λ)−1 (∈ [H]). (2.3)

Here p1 denotes the orthogonal projection onto the first component of H⊕H. The
functions γ andM in (2.3) are holomorphic on ρ(A0) and they are called the γ-field
and the Weyl function of S corresponding to the boundary triplet Π, respectively;
cf. [7], [13]. The function M is also the Q-function of the pair (S,A0) in the sense
of [21]). The γ-field γ
 and the abstract Weyl function M
 corresponding to the
transposed boundary triplet Π
 are related to γ and M via

γ
(λ) = γ(λ)M(λ)−1, M(λ)
 = −M(λ)−1, λ ∈ ρ(A1) (�= ∅).
When H is a Hilbert space, a Weyl function M of S belongs to the class

of Nevanlinna functions, that is, M is holomorphic in the upper half-plane C+,
ImM(λ) ≥ 0 for all λ ∈ C+, and M satisfies the symmetry condition M(λ)∗ =
M(λ̄) for λ ∈ C+ ∪ C−. In the case where H is a Pontryagin space of negative
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index κ, the Weyl function M of S belongs to the class Nk, k ≤ κ, of generalized
Nevanlinna functions which are meromorphic on C+∪C−, satisfy M(λ)∗ = M(λ̄),
and for which the kernel

NM (λ, µ) =
M(λ)−M(µ̄)

λ− µ̄ , NM (λ, λ̄) =
d

dλ
M(λ), λ, µ ∈ C+,

has k negative squares [21]. If S is simple, that is,

H = span {Nλ(S∗) : λ ∈ ρ(A0) (�= ∅) },
then S is an operator without eigenvalues. In this case the Weyl functionM belongs
to the class Nκ, i.e., k = κ, and the domain of holomorphy ρ(M) of M coincides
with the resolvent set ρ(A0).

The resolvent of the extension Aτ and its spectrum σ(Aτ ) can be expressed
in terms of τ and the Weyl function M via Krĕın’s formula. In the terminology of
boundary triplets the result can be formulated as follows, see [12], [13], [7].

Proposition 2.1. Let S be a closed symmetric relation in the Pontryagin space H
with equal defect numbers (d, d), d <∞, let Π = {H,Γ0,Γ1} be a boundary triplet
for S∗ with the Weyl function M , let τ be a linear relation in H connected with
Aτ via (2.1). Then the resolvent of Aτ is given by

(Aτ − λ)−1 = (A0 − λ)−1 − γ(λ)(τ−1 +M(λ))−1γ(λ̄)∗, λ ∈ ρ(Aτ ) ∩ ρ(A0).

Moreover, for every λ ∈ ρ(A0) the following equivalences hold:
(i) λ ∈ ρ(Aτ ) if and only if τ−1 +M(λ) is invertible;
(ii) λ ∈ σp(Aτ ) if and only if ker (τ−1 +M(λ)) is nontrivial.

Similarly, for a (generalized) Nevanlinna family τ̃ (λ) the function

(A0 − λ)−1 − γ(λ)(τ̃ (λ) +M(λ))−1γ(λ̄)∗,

is the compressed resolvent of an exit space extension of S in a Hilbert (or a
Pontryagin) space, cf. [21], [24], [12], [7].

3. A model for singular perturbations

In a number of papers singular rank one perturbations of A0 generated by ω ∈
H−2n−2 have been studied by means of exit space extensions of a symmetric op-
erator S connected with A0, see [23], [14], [15], [22]. In this section the main
ingredients for constructing a model for finite rank singular perturbations of A0

generated by G with ranG ⊂ H−2n−j , n > 0, j = 1, 2, are given. This model
was established in [9] and further used in [11], see also [10] for a special case. The
model uses an orthogonal coupling of two symmetric operators and it is motivated
by a perturbation result concerning the extending inner product space H ⊃ H0:
the resolvents associated with the perturbations of A0 should be finite rank per-
turbations of the resolvent generated in H by (A0−λ)−1 (see Theorem 3.1 below).
In a more general setting a similar model to give realizations for arbitrary scalar
Nκ-functions has been established recently in [8].
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3.1. Some operators associated with matrix polynomials

Let q be a monic d× d matrix polynomial of the form

q(λ) = IHλn + qn−1λ
n−1 + · · ·+ q1λ+ q0, (3.1)

and let r be a self-adjoint d× d matrix polynomial of the form

r(λ) = r2n−1λ
2n−1 + r2n−2λ

2n−2 + · · ·+ r1λ+ r0, rj = r∗j , j = 0, . . . , 2n− 1.
(3.2)

Observe, that the function Q in

Q(λ) =
(

0 q(λ)
q�(λ) r(λ)

)
, (3.3)

is a 2d×2dmatrix polynomial whose leading coefficient is, in general, noninvertible.
In fact, Q is a strict generalized matrix Nevanlinna function whose Nevanlinna
kernel has dn negative (and dn positive) squares.

Associated with the matrix polynomial q there are n× n block matrices Bq
and Cq defined by

Bq =




q1 q2 . . . qn−1 IH
q2 . . . qn−1 IH 0
... . . . . . . 0 0

qn−1 IH . . . . . .

...
IH 0 0 . . . 0




and

Cq =




0 IH 0 . . . 0

0 0 IH
. . .

...
...

...
. . . . . . 0

0 0 . . . 0 IH
−q0 −q1 . . . −qn−2 −qn−1



.

Moreover, the following block matrices are needed

B =
(

0 Bq
Bq� Br

)
, C =

(
Cq� C12
0 Cq

)
, Br = (rj+k+1)n−1

j,k=0, C12 = B−1
q� D,

(3.4)
where

D =




rn
rn+1

...
r2n−1


 (q0, q1, . . . , qn−1)−




IH
0
...
0


 (r0, r1, . . . , rn−1).

In addition, the following vectors depending on λ ∈ C are used:

Λ = (IH, λIH, . . . , λn−1IH),
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Λ1 = λnΛB̃(r)B−1
q , B̃(r) =




rn+1 . . . r2n−1 0
... . . . 0 0

r2n−1 . . . . . .

...
0 0 . . . 0



.

The main objective here is the matrix polynomial Q defined in (3.3). It determines
the structure of the exit space HQ = Hn ⊕Hn (= C

2dn) used for constructing the
model for singular perturbations. The inner product in HQ is defined by the block
matrix B via 〈·, ·〉HQ = (B ·, ·) in which case the companion type operator C in (3.4)
becomes self-adjoint in HQ. The restriction of C to the subspace

domSQ =
{
F =
(
f

f̃

)
∈ HQ : f1 = f̃1 = 0

}
(3.5)

defines a closed simple symmetric operator SQ in HQ with defect numbers (2d, 2d).
It is maximally nondensely defined and a straightforward calculation shows that
its adjoint S∗

Q (a linear relation in HQ) is given by

SQ
∗ =
{
F̂ =
{
F, CF + B−1

(
ϕ⊗ e1
ϕ̃⊗ e1

)}
: F ∈ HQ, ϕ, ϕ̃ ∈ H

}
.

It is possible to associate a boundary triplet ΠQ = {H ⊕H,ΓQ0 ,Γ
Q
1 } with SQ∗ by

defining the boundary mappings on S∗
Q via

ΓQ0 F̂ =
(
f1
f̃1

)
, ΓQ1 F̂ =

(
ϕ
ϕ̃

)
, F̂ ∈ SQ∗.

In this case the Weyl function of SQ associated with the boundary triplet ΠQ

coincides with the matrix polynomial Q, cf. [9].

3.2. A perturbation result for the resolvents

Let G be an injective linear mapping from H = C
d into the scale space H−2n−1

generated by the self-adjoint operator A0 and let Ã0 be the [H−2n+1,H−2n−1]-
continuation of A0. The adjoint operator G∗ maps H2n+1 into H. The case where
G is a mapping into H−2n is similar to the present case; it can be found in [11].
Observe, that if ranG ∩ H−2 = {0}, then the restriction of A0 to

domS0 = domA0 ∩ kerG∗

gives rise to an essentially self-adjoint operator S0 whose closure coincides with
A0. In this case the vector R̃λGh = (Ã0 − λ)−1Gh, h ∈ H\{0}, λ ∈ ρ(A0), does
not belong to the space H0, since G is injective. However, one can give a sense to
the vector R̃λGh by extending the space H0 suitably. For instance, if 0 ∈ ρ(A0),
then the vector

γ(λ)h := R̃λGh = Ã−1
0 Gh+ · · ·+ λn−1Ã−n

0 Gh+ λnR̃λÃ
−n
0 Gh
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can be considered as a vector from an extended inner product space H satisfying
the condition

H ⊃ span {H0, Ã
−j
0 ranG : j = 1, . . . , n }. (3.6)

In this space the continuation Ã0 of A0 generates an operator, say H0, for which
the operator function γ(λ), λ ∈ ρ(A0), can be interpreted to form its γ-field in the
sense that

γ(λ) − γ(µ)
λ− µ = (H0 − λ)−1γ(µ), λ, µ ∈ ρ(A0).

This identity implies that
d

dλ
γ(λ) = (H0 − λ)−1γ(λ), λ ∈ ρ(A0).

The inner product 〈u, ϕ〉H in H should coincide with the form (u, ϕ) generated
by the inner product in H0 if the vectors u, ϕ are in duality, say, u ∈ H2(n−j)+1,
ϕ ∈ Ã−j

0 ranG. Now, for the other vectors in (3.6) it will be supposed that the
conditions〈

Ã−j
0 Gh, Ã−k

0 Gf
〉

H
= (tj+k−1h, f)H, j, k = 1, . . . , n; h, f ∈ H, (3.7)

are satisfied for some operators tj = t∗j ∈ [H], j = 1, . . . , 2n − 1. The next result
shows that under such mild conditions on the extending space the structure of
perturbed resolvents becomes completely fixed under some basic assumptions on
H0. This fact gives rise to the model presented in [9] for singular finite rank
perturbations of A0.

Theorem 3.1. ([11, Theorem 4.8]) Let 0 ∈ ρ(A0), let ranG\{0} ⊂ H−2n−1\H−2n

with kerG = {0}, and let G0 = Ã−n
0 G. Moreover, assume that H ⊃ H0 is (an

isometric image of) an inner product space satisfying (3.6), (3.7), and let H and
H0 be self-adjoint linear relations in H such that

(i) ρ(H0) = ρ(A0);
(ii) γ(λ)′ = (H0−λ)−1γ(λ) holds for (an isometric image of) the function γ(λ) =

(Ã0 − λ)−1G, λ ∈ ρ(A0);
(iii) (H − λ)−1 − (H0 − λ)−1 = −γ(λ)σ(λ)γ(λ̄)∗, λ ∈ ρ(H) ∩ ρ(H0);
for some matrix function σ(λ) holomorphic and invertible for λ ∈ ρ(H0) ∩ ρ(H).
Then σ(λ)−1 can be represented in the form

σ−1(λ) = β + t(λ) + λ2nM0(λ), (3.8)

where β = β∗ ∈ [H], t(λ) = t1λ + · · · + t2n−1λ
2n−1, and M0(λ) = G∗

0R̃λG0 is a
Nevanlinna function in H.

In Theorem 3.1 the function σ−1 can be seen as a Weyl function (or a Q-
function) of an underlying symmetric operator S. The formula for σ−1 in (3.8)
shows that it is a generalized Nevanlinna function and therefore in general the
operator S cannot be symmetric in some Hilbert space. The model constructed
in [9] for S uses a coupling method resulting in a Pontryagin space H such that
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S becomes symmetric in H. The construction of the model space via the coupling
method is briefly recalled in the next subsection.

Note that the condition 0 ∈ ρ(A0), which was assumed for simplicity, leads
to the particular form of σ(λ)−1 in (3.8). Other invertibility conditions on A0 lead
to the more general form of σ(λ)−1 in (3.9).

3.3. The model

Let S0 be a closed symmetric operator in a Hilbert space H0 with defect num-
bers (d, d) and the Weyl function M0. Let SQ be the symmetric operator in the
Pontryagin space HQ = C

dn ⊕ C
dn defined as the restriction of C to (3.5). The

next theorem (cf. [9]) gives a symmetric linear relation S in the Pontryagin space
H = H0 ⊕ HQ = H⊕ (Cdn ⊕ C

dn) as a coupling of the operators S0 and SQ, such
that the following function is a Weyl function for S:

M(λ) = r(λ) + q�(λ)M0(λ)q(λ). (3.9)

Here the matrix polynomials q and r are as in (3.1) and (3.2).

Theorem 3.2. ([9, Theorem 4.2]) Let S0 be a closed symmetric operator in the
Hilbert space H0 and let Π0 = {H,Γ0

0,Γ0
1} be a boundary triplet for S∗

0 with the
Weyl function M0 and the γ-field γ0. Let q, r, and Q be as in (3.1), (3.2), and
(3.3), respectively. Then:

(i) The linear relation

S =











f0
f

f̃


 ,



f ′
0

C
(
f

f̃

)
+ B−1

(
Γ0

0f̂0 ⊗ e1
0

)




 :

f̂0 = {f0, f ′
0} ∈ S∗

0

f, f̃ ∈ C
dn

f1 = Γ0
1f̂0, f̃1 = 0





is closed and symmetric in H0 ⊕ HQ and has defect numbers (d, d).
(ii) The adjoint S∗ is given by

S∗ =











f0
f

f̃


 ,



f ′
0

C
(
f

f̃

)
+ B−1

(
Γ0

0f̂0 ⊗ e1
ϕ̃⊗ e1

)




 :

f̂0 = {f0, f ′
0} ∈ S∗

0

f, f̃ ∈ C
dn, ϕ̃ ∈ C

d

f1 = Γ0
1f̂0




.

(iii) A boundary triplet Π = {H,Γ0,Γ1} for S∗ is determined by

Γ0(f̂0 ⊕ F̂ ) = f̃1, Γ1(f̂0 ⊕ F̂ ) = ϕ̃, f̂0 ⊕ F̂ ∈ S∗.

(iv) The corresponding Weyl function M is of the form (3.9) and the γ-field γ is
given by

γ(λ)h = γ0(λ)q(λ)h ⊕ ((Λ
M0(λ)q(λ) + Λ

1 )h� Λ
h), h ∈ H. (3.10)

If the operator S0 is densely defined in H0, then S is an operator. When r = 0
the formulas for S and S∗ in Theorem 3.2 can be simplified and the Weyl function
takes the factorized form

M(λ) = q�(λ)M0(λ)q(λ).
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3.4. Self-adjoint extensions of the model operator

The self-adjoint extensions of the model operator S can be parametrized by the
self-adjoint relations τ in the parameter space H via Hτ = ker (Γ0 + τΓ1). From
Theorem 3.2 one obtains the following explicit expressions for Hτ , cf. [11].

Proposition 3.3. Let the assumptions be as in Theorem 3.2, and let γ and M be
given by (3.10) and (3.9), respectively. Then:

(i) The self-adjoint extensions Hτ of S in H = H0 ⊕ HQ are in a one-to-one
correspondence with the self-adjoint relations τ in H via

Hτ =











f0
f

f̃


 ,



f ′
0

C
(
f

f̃

)
+ B−1

(
Γ0

0f̂0 ⊗ e1
ϕ̃⊗ e1

)




 :

f̂0 = {f0, f ′
0} ∈ S∗

0

f, f̃ ∈ C
dn

f1 = Γ0
1f̂0, f̃1 + τϕ̃ = 0




.

(ii) For every λ ∈ ρ(Hτ ) ∩ ρ(H0) the resolvent (Hτ − λ)−1 satisfies the relation

(Hτ − λ)−1 = (H0 − λ)−1 − γ(λ)(τ−1 +M(λ))−1γ(λ̄)∗. (3.11)

(iii) For every λ ∈ ρ(H0) the following equivalences hold:

λ ∈ σp(Hτ )⇔ 0 ∈ σp(τ−1 +M(λ)),

λ ∈ ρ(Hτ )⇔ 0 ∈ ρ(τ−1 +M(λ)).

Proof. (i) The condition f̂0 ⊕ F̂ ∈ ker (Γ0 + τΓ1) means that {ϕ̃, f̃1} ∈ −τ , or
equivalently, that f̃1 + τϕ̃ = 0, see (iii) of Theorem 3.2. The representation of Hτ

is now obtained from the formula for S∗ in Theorem 3.2.
(ii) The form of the resolvent of Hτ is obtained by applying Proposition 2.1

to the data in Theorem 3.2.
(iii) This statement is immediate from Proposition 2.1. �

The operator S0 in Theorem 3.2 is allowed to be nondensely defined in the
original Hilbert space H0. If S0 is densely defined in H0 then S is an operator in the
model Pontryagin space H0 ⊕ HQ. However, even in this case the model operator
S is not densely defined in H0 ⊕HQ. Therefore, among the self-adjoint extensions
of S there are linear relations which are not operators. In fact, the following result
holds.

Proposition 3.4. The multi-valued parts of S and Hτ are given by

mulS =








f ′
0

B−1

(
Γ0

0f̂0 ⊗ e1
0

)

 : f̂0 = {0, f ′

0} ∈ A1



 , (3.12)

mulHτ =








f ′
0

B−1

(
Γ0

0f̂0 ⊗ e1
ϕ̃⊗ e1

)

 : f̂0 = {0, f ′

0} ∈ A1, ϕ̃ ∈ ker τ



 . (3.13)
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and the equalities

dim mulS = dim mulA1, dim mulHτ = dim mulA1 + dim ker τ (3.14)

hold. In particular, Hτ is an operator in H if and only if A1 = kerΓ0
1 is an operator

in H0 and ker τ = {0}. Moreover, H0 is the unique self-adjoint extension Hτ of S
for which the equality mulHτ = mulS∗ holds, and it has the representation

H0 = S +̂ ({0} ⊕mulS∗), (3.15)

where +̂ stands for the componentwise sum of the graphs.

Proof. The form of mulHτ is straightforward to check by using the formulas for
the self-adjoint extensions Hτ in Proposition 3.3. By letting ϕ̃ = 0 in (3.13) one
obtains the description (3.12) for mulS. The equalities (3.14) follow from (3.12)
and (3.13).

Moreover, by comparing mulHτ with the multi-valued part of the adjoint
relation S∗ (see [9]) one concludes that the condition mulHτ = mulS∗ is equivalent
to dim ker τ = d. This means that τ = 0, i.e., the only self-adjoint extension with
the maximal multi-valued part mulS∗ is H0.

The representation (3.15) of H0 is now obvious. �

If the self-adjoint extension A1 = kerΓ0
1 of S0 is an operator in H0, then

mulS = {0} and Hτ is an operator in H if and only if ker τ = {0}. In view of (3.15)
the extension H0 is always multi-valued, since S is nondensely defined in H. In
fact, H0 has a natural interpretation as a generalized Friedrichs extension of S, see
[17], [18]. The representation (3.15) shows that, together with S, H0 is maximally
nondensely defined in H. In fact, H0 has a nontrivial root subspace L at ∞ and,
moreover, the following results shows that the finite spectrum of H0 coincides with
the spectrum of the self-adjoint extension A0 of S0 in the original Hilbert space
H0. Hence, in particular the assumption (i) in Theorem 3.1 is satisfied.

Proposition 3.5. ([11, Proposition 3.4]) Let the assumptions be as in Theorem 3.2
and let H0 = kerΓ0 be as in Proposition 3.3 (with τ = 0). Then:

(i) ρ(H0) = ρ(A0);
(ii) the compression of the resolvent of H0 to the subspace H0 is given by

PH0(H0 − λ)−1�H0 = (A0 − λ)−1, λ ∈ ρ(H0);

(iii) the subspace L = {0} ⊕ Hn ⊕ {0} of H = H0 ⊕ HQ is maximal neutral and
invariant under the resolvent (H0 − λ)−1. It satisfies (H0 − λ)−nL = {0},
λ ∈ ρ(H0).

This result will be extended in Section 5 to a certain subclass of self-adjoint
extensions of the model operator S in H (i.e., for certain singular perturbations
of A0).
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4. Singular perturbations as range perturbations

Let H∞ = kerΓ1 be the self-adjoint extension of S corresponding to τ−1 = 0 in
Proposition 3.3. The self-adjoint extensions Hτ of S in Proposition 3.3 can be seen
as “range perturbations” of H∞ in the Pontryagin space H = H0 ⊕ HQ, cf. [19],
[20] for the Hilbert space case. For simplicity the results in this section are stated
when A1 = kerΓ0

1 is an operator in H0, which is always the case when S0 is densely
defined in H0. In this case H∞ is also an operator by Proposition 3.4. Introduce
Ω : H → mulS∗ ⊂ H0 ⊕ HQ by

Ωh =




0
h⊗ en

0


 , h ∈ H. (4.1)

In the rest of this paper the following notations will be used

F =



f0
f

f̃


 , G =



g0
g
g̃


 ∈ H0 ⊕ HQ.

Proposition 4.1. Let the assumptions be as in Theorem 3.2 and assume that A1 =
kerΓ0

1 is an operator. Then S is a domain restriction of H∞ given by

domS = {F ∈ domH∞ : Ω∗F = 0 }, (4.2)

and the self-adjoint extensions Hτ and H∞ of S in Proposition 3.3 are connected by

Hτ = H∞ − Ωτ−1Ω∗, (4.3)

where the difference is understood in the sense of relations.

Proof. Since A1 is assumed to be an operator, Proposition 3.4 shows that H∞ is
an operator. The adjoint Ω∗ : H0 ⊕ HQ → H of Ω in (4.1) is given by

Ω∗F = f̃1. (4.4)

The equality (4.2) is now clear from the formulas for H∞ in Proposition 3.3 and
for S in Theorem 3.2.

Let F = (f0, f, f̃)
,G = (g0, g, g̃)
 ∈ H. By definition, {F,G} ∈ Ωτ−1Ω∗ if
and only if {Ω∗F, ϕ̃} = {f̃1, ϕ̃} ∈ τ−1 and G = Ωϕ̃ for some ϕ̃ ∈ H. Consequently,
{F,G} ∈ H∞ − Ωτ−1Ω∗ if and only if

{F,G} = {F, H∞F + Ωϕ̃}, F ∈ domH∞, {ϕ̃, f̃1} ∈ −τ. (4.5)

Now using (4.1) and comparing (4.5) with the expression for Hτ in Proposition
3.3 the equality (4.3) follows. �

The above result depends on the fact that the model operator S in Theorem
3.2 is maximally nondensely defined in H = H0⊕HQ. In the case of defect numbers
(1, 1) the extension H0 is the only self-adjoint extension of S which is not an
operator and the other extensions Hτ , τ �= 0, are given by (4.3), cf. [10]. In the
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special case of defect numbers (1, 1) a result similar to Proposition 4.1 has been
obtained in [20, Theorem 3.2] for the model concerning perturbations in H−2.

The perturbation formula (4.3) in Proposition 4.1 gives an explicit expression
for the self-adjoint extensions Hτ of S. Moreover, the resolvent formula (3.11) can
be obtained by a straightforward calculation from (4.3), cf., e.g., [17]. It is also
clear from (4.3) that Hτ is an operator if and only if the inverse τ−1 is an operator
in H, in which case Hτ , ker τ = {0}, is an ordinary range perturbation of the
operator H∞ in the Pontryagin space H. An opposite extreme case is τ = 0. Then
the condition {ϕ̃, f̃1} ∈ −τ in (4.5) is equivalent to F ∈ kerΩ∗ which together
with F ∈ domH∞ implies that F ∈ domS, while mul Ωτ−1Ω∗ = ranΩ. Hence,
the perturbation (4.3) for τ = 0 coincides with the form of H0 given in (3.15), i.e.,
with the generalized Friedrichs extension of S in H. A more specific classification
associated with the perturbation formula (4.3) is obtained by decomposing the
self-adjoint parameter τ into its operator and multi-valued parts,

τ = τs ⊕ τ∞, τs = { {h, k} ∈ τ : k ⊥ mul τ }, τ∞ = {0} ⊕mul τ. (4.6)

Here τs is a self-adjoint operator in Hs = dom τ , τ∞ is a self-adjoint relation in
H∞ = mul τ , and H = Hs ⊕H∞.

Proposition 4.2. Let the assumptions be as in Theorem 3.2 and assume that A1 =
kerΓ0

1 is an operator. Let P be an orthogonal projection in H and define ΩP =
Ω� ranP , where Ω is given by (4.1). Then:

(i) The domain restriction SP of H∞, given by

domSP = {F ∈ domH∞ : Ω∗
PF = 0 },

is a closed symmetric operator in H with defect numbers are given by (s, s),
s = dim ranP .

(ii) The adjoint of SP is given by

S∗
P = { {F,G} ∈ S∗ : (I − P )ϕ̃ = 0 }.

(iii) The self-adjoint extensions Hτ of S with the property Hτ ∩ H∞ = SP are
in one-to-one correspondence with the parameters τ for which mul τ = kerP
and they are given by

Hτ = H∞ − ΩP τ−1
s Ω∗

P , (4.7)

where τ = τs⊕ τ∞ is decomposed as in (4.6) and the difference is understood
in the sense of relations.

(iv) The generalized Friedrichs extension of SP corresponds to τs = 0 in (4.7)
and is given by

SP +̂ ({0} ⊕mulS∗
P ) = { {F,G} ∈ S∗ : Ω∗

PF (= P f̃1) = 0, (I − P )ϕ̃ = 0 }.

Proof. Let F = (f0, f, f̃)
, G = (g0, g, g̃)
 ∈ H. In view of (4.4), Ω∗
PF = PΩ∗F =

P f̃1. Hence, SP = { {F,G} ∈ S∗ : Ω∗
PF = P f̃1 = 0, ϕ̃ = 0 } from which the

statements (i) and (ii) easily follow.
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(iii) Clearly, {F,G} ∈ H∞∩Hτ if and only if {F,G} ∈ S∗, and the conditions
ϕ̃ = 0 and {ϕ̃, f̃1} ∈ −τ are satisfied. Equivalently, F ∈ domH∞ and f̃1 ∈ mul τ .
Comparing this with the condition Ω∗

PF = P f̃1 = 0 for SP in (i), one concludes
that mul τ = kerP . It is easy to check that for such τ , the equality Ωτ−1Ω∗ =
ΩP τ−1

s Ω∗
P holds (cf. the proof of Proposition 4.1). Hence, (4.7) follows from (4.3).

(iv) The discussion concerningH0 above shows that the generalized Friedrichs
extensions of SP corresponds to τs = 0 in (4.7), in which case {ϕ̃, f̃1} ∈ −τ is
equivalent to (I − P )ϕ̃ = 0 and P f̃1 = 0. �

Proposition 4.2 shows that SP is maximally nondensely defined: dim mulS∗
P =

s. Clearly, the perturbation formula (4.7) is an analog of (4.3). The characterization
of operator extensions in (4.7) agrees with the one in (4.3), since ker τs = ker τ .

5. The class of self-adjoint extensions with extremal boundary
conditions

According to Proposition 3.5 the compressed resolvent of H0 from H to the Hilbert
space H0 ⊂ H coincides with the resolvent of the (unperturbed) operator A0 in H0.
In this section the corresponding property will be proved for a certain subclass of
self-adjoint extensions Hτ of the model operator S. A compressed resolvent of S
in H0 is said to be canonical if it coincides with the resolvent of some self-adjoint
extension Ã of S0 in the Hilbert space H0.

Proposition 4.2 shows that the generalized Friedrichs extension of the inter-
mediate symmetric extension SP ⊂ H∞ is determined by the (abstract) boundary
conditions

PΓ0F̂ = (I − P )Γ1F̂ = 0, F̂ ∈ S∗, P = P ∗ = P 2, (5.1)

where {H,Γ0,Γ1} is the boundary triplet associated with S∗ in Theorem 3.2. In
what follows boundary conditions of the form (5.1) are called extremal boundary
conditions associated with S∗, since they have an interpretation as extreme points
in the parameter space, see, e.g., [4]. When in the model of Theorem 3.2 the matrix
polynomial r = 0 and the matrix polynomial q is of the form q = IH ⊗ q̃, where q̃
is a monic scalar polynomial, a different description for this class of extensions of
S can be obtained by means of the compressed resolvents in H0. In fact, for these
extensions of S the following analog of Proposition 3.5 can be proved.

Theorem 5.1. Let the assumptions be as in Theorem 3.2. Let r = 0 in (3.2), let
q = IH⊗ q̃, where q̃ is a monic scalar polynomial, and let C be given by (3.4). Then
the compressed resolvent of Hτ to H0 is canonical if and only if Hτ is given by the
extremal boundary conditions of the form (5.1). In this case τ = {{Ph, (I−P )h} :
h ∈ H} and for the corresponding Hτ the following assertions hold:

(i) ρ(Hτ ) = ρ(Aτ ) ∩ ρ(C) (= ρ(Aτ )\σ(q�q)), where Aτ = ker (Γ0
0 + τΓ0

1) and
τ �= 0.

(ii) PH0(Hτ − λ)−1�H0 = (Aτ − λ)−1, λ ∈ ρ(Hτ ).
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(iii) The subspace Lτ = L1 � L2 with

L1 = {0} ⊕ (ranP )n ⊕ {0}, L2 = {0} ⊕ {0} ⊕ (kerP )n

is maximal neutral and invariant under the resolvent (Hτ − λ)−1. Moreover,

(Hτ − λ)−nL1 = {0}, (Hτ − λ)−1(0, 0, g̃)
 = (0, 0, (Cq − λ)−1g̃)
, (5.2)

where (0, 0, g̃)
 ∈ L2 and λ ∈ ρ(Hτ ).
(iv) The Weyl functions M̃τ of (S,Hτ ) and M̃0,τ of (S0, Aτ ) are given by

M̃τ =
(
q̃�1 0
0 q̃−1

2

)
M̃0,τ

(
q̃1 0
0 q̃−�2

)

and

M̃0,τ =
(
M11 −M12M

−1
22 M21 −M12M

−1
22

−M−1
22 M21 −M−1

22

)
,

where q̃1 = IHs⊗ q̃, q̃2 = IH∞⊗ q̃, and the decomposition of the Weyl function
M0 = (Mij)2i,j=1 of (S0, A0) is according to H = Hs ⊕H∞ = ranP ⊕ kerP .

Proof. It follows from Proposition 3.3 that the compressed resolvent of Hτ is given
by

PH0(Hτ − λ)−1� H0 = (A0 − λ)−1 − γ0(λ)(τ̃ (λ)−1 +M0(λ))−1γ0(λ̄)∗, (5.3)

where τ̃ (λ) = q(λ)τq�(λ) due to assumption r = 0. The formula (5.3) coincides
with a canonical resolvent of S0 if and only if the function τ̃ does not depend on
λ. Clearly, this condition is satisfied if and only if τs = 0 in (4.6), i.e., Hτ is given
by the extremal boundary conditions (5.1) for some P = P ∗ = P 2.

To prove (i)–(iv) introduce the following boundary mappings
{

Γ̃0 = PΓ0 − (I − P )Γ1,

Γ̃1 = (I − P )Γ0 + PΓ1,

{
Γ̃0

0 = PΓ0
0 − (I − P )Γ0

1,

Γ̃0
1 = (I − P )Γ0

0 + PΓ0
1,

(5.4)

so that Hτ = ker Γ̃0 and Aτ = ker Γ̃0
0.

(i) Let G = (g0, g, g̃)
 ∈ H, f̂0 = {f0, f ′
0} ∈ S∗

0 , and let λ ∈ ρ(Aτ ) ∩ ρ(C).
Then by Proposition 3.3 the relation G ∈ ran (Hτ − λ) can be rewritten as a
system of equalities




f ′
0 − λf0 = g0,

(Cq� − λ)f + ϕ̃⊗ en = g,

(Cq − λ)f̃ + Γ0
0f̂0 ⊗ en = g̃, f1 = Γ0

1f̂0, P f̃1 = 0, (I − P )ϕ̃ = 0.

(5.5)

As in the proof of Proposition 3.5 Now, one can solve PΓ0
0f̂0 from the third equality

in (5.5) by means of the companion operator Cq (cf. [11]). Since λ ∈ ρ(Cq�) the
second equality in (5.5) gives (I −P )⊗ f = (Cq� − λ)−1(I − P )⊗ g. In particular,
(I − P )Γ0

1f̂0 = (I − P )f1 and consequently Γ̃0
0f̂0 has been solved. Let γ̃τ be the
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γ-field for (S0, Aτ ) associated with the boundary triplet {H, Γ̃0
0, Γ̃

0
1} in (5.4). Then

one can write f0 and f ′
0 in the form

f0 = (Aτ − λ)−1g0 + γ̃τ (λ)Γ̃0
0f̂0, f ′

0 = λf0 + g0.

Now f̃ can be solved from the third equation in (5.5) and, since f1 = Γ0
1f̂0, the

vectors (f2, . . . , fn) and ϕ̃ can be solved from the second equality in (5.5). This
proves ρ(Aτ ) ∩ ρ(C) ⊂ ρ(Hτ ).

To prove the reverse inclusion it is first shown that σ(C) ⊂ σp(Hτ ) holds for
every τ �= 0. In view of

(Cq − λ)Λ
h = (0, . . . , 0,−q(λ)h)
, λ ∈ C, h ∈ H,

the eigenspace of Cq at λ is given by

ker (Cq − λ) = {Λ
h : h ∈ ker q(λ) }. (5.6)

Assume that λ ∈ σ(Cq). Since τ �= 0, one has P �= I and hence in view of (5.6) and
the assumption q = IH⊗ q̃ one can find f̃ �= 0 such that P f̃1 = 0 and (Cq−λ)f̃ = 0.
It is easy to check that (0, 0, f̃)
 ∈ ker (Hτ − λ). Hence, σ(Cq) ⊂ σp(Hτ ) and by
the symmetry of spectra σ(Cq�) ⊂ σp(Hτ ), so that σ(C) ⊂ σp(Hτ ).

Now, let λ ∈ ρ(Hτ ) and let g = g̃ = 0. Then λ ∈ ρ(C) and it follows from the
second and the third equalities in (5.5) that

PΓ0
0f̂0 = (I − P )Γ0

1f̂0 = 0.

Therefore, f̂0 ∈ Aτ and the first equality in (5.5) means that

{f0, g0} ∈ Aτ − λ.

By assumption λ ∈ ρ(Hτ ) and since g0 ∈ H0 is arbitrary it follows that λ ∈ ρ(Aτ ).
Therefore, ρ(Hτ ) ⊂ ρ(Aτ ) ∩ ρ(C).

(ii) The statement follows from the identity (with λ ∈ ρ(Hτ ))

(Hτ − λ)−1(g0, 0, 0)
 =
(
(Aτ − λ)−1g0,Λ
Γ0

1f̂0,−(Cq − λ)−1(Γ0
0f̂0 ⊗ en)

)

.

(iii) Clearly, L is a neutral subspace of H0 ⊕ HQ with dimension dn, so that
it is maximal neutral, cf. [5]. Moreover,

(Hτ − λ)−1(0, P g, (I − P )g̃)
 = (0, XnPg, (Cq − λ)−1(I − P )g̃),

where Xn stands for

Xn =




0 0 . . . 0

I 0
. . .

...
...

. . . . . . 0
λn−2 · · · I 0



.

This implies (5.2).
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(iv) The transform of the boundary mappings in (5.4) corresponds to the
following transform of the Weyl function M = q�M0q (cf. [13]):

M̃τ = [(I − P ) + PM ][P − (I − P )M ]−1

=
(
q̃�M11q̃ q̃�M12q̃

0 I

)(
I 0

−q̃−1M−1
22 M21q̃ −q̃−1M−1

22 q̃
−�

)

=
(
q̃�(M11 −M12M

−1
22 M21)q̃ −q̃�M12M

−1
22 q̃

−�

−q̃−1M−1
22 M21q̃ −q̃−1M−1

22 q̃
−�

)
,

from which the statement follows. �

Recall that ρ(Aτ ) ⊂ ρ(M̃0,τ ) and ρ(Hτ ) ⊂ ρ(M̃τ ), and that the inclusions
are equalities if S0 and S are simple. These properties are also reflected in (i) and
(iv) of Theorem 5.1.

The proof of Theorem 5.1 gives also the following result, which shows the
difference between the cases τ = 0 and τ �= 0, cf. Proposition 3.5.

Corollary 5.2. Let the assumptions be as in Theorem 5.1 and let τ be given by
τ = {{Ph, (I − P )h} : h ∈ H} for some orthogonal projection P in H. If τ �= 0
(i.e., P �= I) then σ(q�q) ⊂ σp(Hτ ) and σ(Hτ ) = σ(Aτ ) ∪ σ(q�q).
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[4] Yu.M. Arlinskĭı, S. Hassi, Z. Sebestyén, and H.S.V. de Snoo, “On the class of extremal
extensions of a nonnegative operator”, Béla Szökefalvi-Nagy memorial volume, Oper.
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Minimal Realizations of
Scalar Generalized Nevanlinna Functions
Related to Their Basic Factorization

Aad Dijksma, Heinz Langer, Annemarie Luger and Yuri Shondin

Abstract. In this paper we present a minimal realization of a scalar general-
ized Nevanlinna function q which corresponds to the basic factorization of q
as a product of a Nevanlinna function q0 and of a rational function r#r, which
collects the generalized poles and generalized zeros of q that are not of positive
type. The key tool are reproducing kernel Pontryagin spaces.

Mathematics Subject Classification (2000). Primary 47A06, 47A50, 47B32,
47B50 .

Keywords. Generalized Nevanlinna function, generalized pole, generalized
zero, reproducing kernel Pontryagin space, symmetric operator, self-adjoint
extension.

1. Introduction

In [DLLSh] (see also [DeHS1]) it was shown that a generalized Nevanlinna function
q ∈ Nκ admits a unique basic factorization

q(z) = r#(z)q0(z)r(z) (1.1)

with a Nevanlinna function q0 ∈ N0 and a rational function r, whose zeros (poles,
respectively) are the generalized zeros (poles, respectively) of q in C

+∪R (C−∪R,
respectively) which are not of positive type. Here and in the following, for a vector
function f , by f# we denote the function f#(z) := f(z∗)∗; for the definition of r
and of generalized poles and zeros we refer to Section 3.

The research for this paper was supported by the Netherlands Organization for Scientific Research
NWO (grant 047-008-008), the Russian Foundation for Basic Research RFBR (grant N 0001-
00544), the Research Training Network HPRN-CT-2000-00116 of the European Union, and the

“Fond zur Förderung der wissenschaftlichen Forschung” (FWF, Austria) grant number P15540-
N05.
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It is well known that every generalized Nevanlinna function q ∈ Nκ admits a
minimal realization in some Pontryagin space of negative index κ. In the present
paper we construct a minimal realization of q ∈ Nκ, κ > 0, which corresponds to
the basic factorization (1.1) of q. This means, we construct a realization of q in
terms of realizations of the function q0 and of the matrix generalized Nevanlinna
function

Mr(z) =
(

0 r#(z)
r(z) 0

)
.

Recall that a realization (A,Γz) for an n× n matrix generalized Nevanlinna
function Q is given by a self-adjoint relation A in some Pontryagin space P and
a corresponding Γ-field, that is, a family of mappings Γz ∈ L(Cn,P), z ∈ ρ(A),
which satisfy

Γw = (I + (w − z)(A− w)−1)Γz , z, w ∈ ρ(A), (1.2)

and
Q(z)−Q(w)∗

z − w∗ = Γ∗
wΓz, z, w ∈ ρ(A), z �= w∗. (1.3)

If a point z0 ∈ ρ(A) is fixed this implies the following representation of Q:

Q(z) = Q(z0)∗ + (z − z∗0)Γ∗
z0

(
I + (z − z0)(A− z)−1

)
Γz0 , z ∈ D(Q).

Here D(Q) denotes the domain of holomorphy of the function Q. Note that the
function Q is determined by A and the Γ-field Γz up to an additive constant
self-adjoint n × n matrix. The space P is called the state space of the realization
(A,Γz). The realization (A,Γz) can always be chosen minimal which means that

P = span {Γzc | z ∈ �(A), c ∈ C
n}.

In this case two minimal realizations of Q are unitarily equivalent and, moreover,
D(Q) = ρ(A); see [DLS2, Theorem 1.1]. In a minimal realization of Q the negative
index of the state space P is equal to the number of negative squares of the kernel

KQ(z, w) :=
Q(z)−Q(w)∗

z − w∗ , z, w ∈ D(Q),

where the expression on the right-hand side for w = z∗ is to be understood as
Q′(z).

For κ = 0 and n = 1 (and under some additional growth condition on Q) the
self-adjoint operator of a realization of Q is given by the operator of multiplication
in the space L2

σ, where σ is the measure in an integral representation of Q, see,
for example, [LLu].

With a realization (A,Γz) often a symmetric restriction S of the relation A
is defined by

S := {{f, g} ∈ A
∣∣Γ∗

z0(g − z
∗
0f) = 0}.

This definition is independent of z0 ∈ D(Q) and Γz maps C
n onto the defect

subspace (ran (S − z∗))⊥ of S. The triplet (A,Γz, S) is sometimes called a model
for the realization of Q or, for short, a model for the function Q.
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In Section 2, Theorem 2.1, we construct the canonical model for a realization
of a generalized Nevanlinna function Q ∈ Nn×n

κ . Here by canonical we mean that
the model acts in the reproducing kernel Pontryagin space L(Q). To emphasize
the dependence of the canonical model on the function Q we sometimes write
AQ, SQ etc. instead of A, S, etc. As a byproduct of this construction, in L(Q) a
simple characterization of the Jordan chains of the operator AQ is given. Finally,
in Theorem 2.4 we describe all self-adjoint extensions in L(Q) of the symmetric
operator SQ.

In Section 3 with the factorization (1.1) the matrix function

Q(z) =



q0(z) 0 0

0 0 r#(z)
0 r(z) 0


 ,

is defined and it is shown that a realization of q can be derived from a realiza-
tion of Q. The latter is evidently the orthogonal sum of realizations of q0 ∈ N0

and of Mr(z) =
(

0 r#(z)
r(z) 0

)
. Then the self-adjoint relation A of a minimal

realization of q can, for example, be obtained as the compression of a certain
self-adjoint extension of SQ to the orthogonal complement of a finite-dimensional
Hilbert subspace H0 of L(Q) = L(q0) ⊕ L(Mr). Moreover, in Theorem 3.4 the
finite-dimensional space L(Mr) is described explicitly.

In Section 4 the Hilbert subspace H0 of L(q0) ⊕ L(Mr) is characterized in
terms of eigenfunctions of Aq0 corresponding to those generalized zeros of q which
belong to the point spectrum σp(Aq0 ) of Aq0 and of eigenfunctions of A−1/q0

corre-
sponding to those generalized poles of q which belong to σp(A−1/q0

). In particular,
the dimension of the Hilbert space H0 is determined.

Recently, V. Derkach and S. Hassi in [DeH] constructed a model for q by a
certain coupling of the self-adjoint relations Aq0 and AMr in terms of boundary
triples. Earlier, jointly with H. de Snoo in [DeHS2, DeHS3] they also used the
coupling method to construct models for matrix-valued generalized Nevanlinna
functions q with a matrix polynomial r. In all three papers necessary and sufficient
conditions for minimality are formulated. As is well known minimal models are
unitarily equivalent, which implies that the models are essentially the same. In
the present paper we obtain a minimal model in a more direct way. Minimality
is described analytically in Theorem 4.4. The fact that we use canonical models
for the factors q0 and r makes the model in this paper rather explicit and in fact
unique from the point of view of reproducing kernel Pontryagin spaces.

We assume that the reader is familiar with operator theory in spaces with
an indefinite metric such as in [AzI] and [IKL] and with the theory of reproducing
kernel spaces such as in [ADy] and [ADRS]. For linear relations in Krĕın spaces
we refer to, for example, [DS] and for canonical models to [dB], [ADRS], [DLS2],
and [DeHS1].
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2. The canonical model for a matrix generalized
Nevanlinna function

1. The generalized Nevanlinna class Nn×n
κ (Nκ := N 1×1

κ ) consists of all n × n
matrix functions Q which are meromorphic in C \ R, satisfy Q(z∗)∗ = Q(z) for
z ∈ D(Q), and for which the kernel

KQ(z, w) =
Q(z)−Q(w)∗

z − w∗ , z, w ∈ D(Q), z �= w∗,

has κ negative squares. We denote by L(Q) the corresponding reproducing kernel
Pontryagin space: This is the completion of the linear span of all functions of the
form KQ( · , w)c, c ∈ C

n, w ∈ D(Q), with respect to the norm generated by the
inner product

〈KQ( · , w)c,KQ( · , z)d〉L(Q) := d∗KQ(z, w)c,

which has κ negative squares. The elements of L(Q) are holomorphic n-vector
functions f on D(Q). Sometimes the function f is also denoted by f(ζ). The
reproducing property of the kernel KQ(z, w) is expressed by the inner product
formula

〈f( · ),KQ( · , w)c〉L(Q) = (f(w), c)
Cn = c∗f(w).

The following theorem describes a realization of the function Q in the space L(Q).
The origins of this theorem go back to M.G. Krĕın for the case κ = 0 and to
[KL1, KL2, KL3] for the general case, see also [DLS1]. In these papers the so-
called ε-method or formal sum method was used to obtain a realization of Q.
Alpay showed in [A] that the space L(Q) is invariant under the difference-quotient
operator

Rw(f)(z) =
f(z)− f(w)

z − w (2.1)

and that this operator satisfies the resolvent identity, see also [dB]. In turn this
result was used in [DLS2, Section 3], see also [ABDS], to obtain the realization
below. Here we make use of reproducing kernel space methods only. To keep this
paper reasonably self-contained and for the convenience of the reader, we prove
most of the statements.

The definition of a matrix generalized Nevanlinna function can easily be
extended to functions whose values are bounded linear operators in a Hilbert space.
As can be seen from its proof, the following theorem (except for the formula for
the defect indices in statement) also holds in that case. In the sequel we use the
theorem for the cases n = 1, 2, and 3 only.

Theorem 2.1. Let Q ∈ Nn×n
κ be given. Then:

(i) A :=
{
{f, g} ∈ L(Q)2 | ∃ c ∈ C

n : g(ζ) − ζf(ζ) ≡ c
}

is a self-adjoint linear
relation in L(Q) with ρ(A) �= ∅, and

(
Γzc
)
(ζ) = KQ(ζ, z∗)c =

Q(ζ)−Q(z)
ζ − z c, c ∈ C

n,

is a corresponding Γ-field. The pair (A,Γz) is a minimal realization of Q.
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(ii) The resolvent of A is the difference-quotient operator in L(Q):

(A− w)−1 = Rw, w ∈ ρ(A).

(iii) S :=
{
{f, g} ∈ L(Q)2 | g(ζ) − ζf(ζ) ≡ 0

}
is a symmetric operator in L(Q)

with equal defect indices n − d, where d = dim ker Γz. Moreover, σp(S) = ∅
and the adjoint of S is given by

S∗ = span
{
{Γzh, zΓzh} | h ∈ C

n, z ∈ D(Q)
}

=
{
{f, g} ∈ L(Q)2 | ∃ c,d ∈ C

n : g(ζ)− ζf(ζ) ≡ c−Q(ζ)d
}
.

Recall that a nonself-adjoint symmetric operator is called simple if it has no
non-real eigenvalues and the defect elements to the nonreal spectral points form a
total subset of the whole space. Hence the symmetric operator S in the theorem
is simple. If n = 1 the function

ϕ( · , z) := Γz1 = (I + (z − w)(A − z)−1)ϕ( · , w),

called a defect function for S and A, spans the defect subspace of S at z and the
representation of Q takes the form

Q(z) = Q(w)∗ + (z − w∗)〈ϕ( · , z), ϕ( · , w)〉L(Q).

Proof of Theorem 2.1. Consider the linear relations A0 and U0 in L(Q) defined by

A0 :=
{{∑

w

KQ( · , w)cw ,
∑
w

w∗KQ( · , w)cw
} ∣∣∣ cw ∈ C

n,
∑
w

cw = 0
}

and

U0 :=
{{∑

w

(w∗−µ)KQ( · , w)cw ,
∑
w

(w∗−µ∗)KQ( · , w)cw
}∣∣∣cw ∈ C

n,
∑
w

cw = 0
}
.

Here
∑

w stands for sums over finite sets of points w ∈ D(Q) and µ is a fixed
non-real point in D(Q). Then A0 ⊂ A∗

0 and U0 is isometric. The equalities

domU0 = span
{
KQ( · , w)c

∣∣w �= µ∗, c ∈ C
n
}
,

ranU0 = span
{
KQ( · , w)c

∣∣w �= µ, c ∈ C
n
}

imply that the domain and the range of U0 are dense in L(Q). Hence (see [ADRS,
Theorem 1.4.2]) the closure U of U0 is a (bounded) unitary operator on L(Q) and
the closure A of A0 is a self-adjoint relation in L(Q). Moreover, we have

A =
{
{(U − 1)u, (µU − µ∗)u}

∣∣ u ∈ L(Q)
}
.

From the relation

(A− µ∗)−1 =
1

µ∗ − µ (U − 1)

it follows that µ∗ ∈ ρ(A), that is, D(Q) ∩ (C \ R) ⊂ ρ(A). Note that for arbitrary
c ∈ C

n and λ,w ∈ D(Q)

{KQ( · , λ)c −KQ( · , w)c, λ∗KQ( · , λ)c − w∗KQ( · , w)c} ∈ A0 ⊂ A
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and hence

(A− w∗)−1KQ(ζ, λ)c =
KQ(ζ, λ) −KQ(ζ, w)

λ∗ − w∗ c.

Taking the L(Q) inner product of f ∈ L(Q) with the elements on both sides of
this equality we find

(A− w)−1f(λ) =
f(λ)− f(w)

λ− w = Rwf(λ), (2.2)

or, in words, the difference-quotient operator is a bounded operator on L(Q) and
coincides with the resolvent operator of A. This implies that

A =
{
{Rwh, h+ wRwh}

∣∣h ∈ L(Q)
}

=
{
{f, g} ∈ L(Q)2

∣∣∃ c ∈ C
n : g(ζ)− ζf(ζ) ≡ c

}
.

From formula (2.2) it follows that the family Γz given in (i) is a Γ-field for A.
We find that Γ∗

w =: Ew∗ is the operator of point evaluation at w∗ and hence the
representation for Q holds. This realization is minimal, since L(Q), by definition a
reproducing kernel space, is generated by the functions KQ( · , w). This completes
the proofs of (i) and (ii).

From S ⊂ A = A∗ it follows that S is a symmetric operator with equal defect
indices. The point spectrum σp(S) of S is empty and by the reproducing property
of the kernel KQ(z, w) the first equality for S∗ in (iii) holds true. Now we use that
S can be written in the form

S =
{
{f, g} ∈ A | Γ∗

µ(g − µ∗f) = 0
}
,

where the right-hand side does not depend on the choice of the non-real point
µ ∈ D(Q). On the one hand this implies

S∗ = A+
{
{Γµd, µΓµd}

∣∣d ∈ C
n
}

=
{
{f, g} ∈ L(Q)2

∣∣ ∃ c,d ∈ C
n : g(ζ)− ζf(ζ) ≡ c−Q(ζ)d

}
.

On the other hand it also implies that ran (S − µ∗) = kerΓ∗
µ = (ran Γµ)⊥ and

hence

dim ker (S∗ − µ) = dim (ran (S − µ∗))⊥ = dim ran Γµ = n− dim ker Γµ,

that is, the defect indices of S are n− d with d as in the theorem. �

We call the realization of Q in Theorem 2.1 the canonical realization for the
function Q and the corresponding model (A,Γz, S) the canonical model. As men-
tioned in the introduction, if need be, to denote the dependence of the canonical
model on Q we write AQ, ΓQz , and SQ.

Recall that a point α ∈ C ∪ {∞} is called a generalized pole of Q ∈ Nκ if
it is an eigenvalue of the relation AQ. A generalized zero of Q is by definition a
generalized pole of the function −Q(z)−1. As a direct consequence of Theorem 2.1
we find the following description of the algebraic eigenspaces of the relation AQ.
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Corollary 2.2. Let Q ∈ Nn×n
κ be given. Then:

(i) The point α ∈ C is a generalized pole of Q if and only if for some non-zero
vector c1 ∈ C

n

c1

ζ − α ∈ L(Q).

In this case, the Jordan chains of length k at the eigenvalue α of AQ are the
sequences in L(Q) of the form

c1

ζ − α ,
c1

(ζ − α)2
+

c2

ζ − α , . . . ,
c1

(ζ − α)k
+

c2

(ζ − α)k−1
+ · · ·+ ck

ζ − α
with some vectors ci ∈ C

n, i = 1, 2, . . . , k.
(ii) The point ∞ is a generalized pole of Q if and only if for some non-zero vector

c1 ∈ C
n the constant function c1 belongs to L(Q). In this case, the Jordan

chains of length k at the eigenvalue ∞ of AQ are the sequences in L(Q) of
the form

c1 , ζc1 + c2 , . . . , ζ
k−1c1 + ζk−2c2 + · · ·+ ck

with some vectors ci ∈ C
n, i = 1, 2, . . . , k.

The following corollary gives a connection between the spaces L(Q) and
L
(
−Q−1

)
and a description of the generalized zeros of Q.

Corollary 2.3. Let Q ∈ Nn×n
κ and assume that Q(µ) is invertible for some non-real

point µ ∈ D(Q). Then:

(i) The mapping f(ζ) �−→ Q(ζ)f(ζ) from L
(
−Q−1

)
onto L(Q) is unitary, and

under this mapping the self-adjoint relation A−Q−1 in L
(
−Q−1

)
is isomor-

phic to the self-adjoint relation

ÂQ :=
{
{f, g} ∈ L(Q)2

∣∣ ∃d ∈ C
n : g(ζ)− ζf(ζ) ≡ Q(ζ)d

}

in L(Q). In particular, ρ(ÂQ) �= ∅.
(ii) The point β ∈ C is a generalized zero of Q if and only if for some non-zero

vector d1 ∈ C
n,

Q(ζ)d1

ζ − β ∈ L(Q).

In this case, the Jordan chains of length k at the eigenvalue β of ÂQ are the
sequences in L(Q) of the form

Q(ζ)d1

ζ − β ,
Q(ζ)d1

(ζ − β)2
+
Q(ζ)d2

ζ − β , . . . ,
Q(ζ)d1

(ζ − β)k
+

Q(ζ)d2

(ζ − β)k−1
+ · · ·+Q(ζ)dk

ζ − β
with some vectors di ∈ C

n, i = 1, 2, . . . , k.

(iii) The point∞ is a generalized zero of Q if and only if for some non-zero vector
d1 ∈ C

n the function Q(ζ)d1 belongs to the space ∈ L(Q). In this case, the
Jordan chains of length k at the eigenvalue ∞ of ÂQ are the sequences in
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L(Q) of the form

Q(ζ)d1, ζQ(ζ)d1 +Q(ζ)d2, . . . , ζ
k−1Q(ζ)d1+ζk−2Q(ζ)d2+ · · ·+Q(ζ)dk

with some vectors di ∈ C
n, i = 1, 2, . . . , k.

Proof. The first statement is implied by the following relation for the kernels:

K−Q−1(ζ, z) = Q(ζ)−1KQ(ζ, z)Q(z∗)−1

and [ADRS, Theorem 1.5.7]. The rest is an immediate consequence of the previous
corollary. �

2. A function Q ∈ Nn×n
κ is called strict if for some non-real point µ ∈ D(Q) it

holds ⋂
z∈D(Q)

kerKQ(z, µ) = {0}.

For a minimal realization (A,Γz) this means that the mappings Γz are for some and
hence for every z ∈ ρ(AQ) injective. In this case the following theorem describes
all canonical self-adjoint extensions of S. This theorem can be derived from [De,
Corollary 2.4], but we give a direct proof using the tools developed so far. The
formula (2.3) can be seen as Krĕın’s resolvent formula.

Theorem 2.4. Suppose that the generalized Nevanlinna function Q ∈ Nn×n
κ is strict

and let (A, Γz, S) be the canonical model for Q. Then:

(i) A linear relation is a canonical self-adjoint extension of S if and only if it is
of the form

AA,B :=
{
{f, g} ∈ L(Q)2

∣∣∃h ∈ C
n : g(ζ)− ζf(ζ) ≡ (A+Q(ζ)B)h

}

with n× n matrices A and B satisfying the relations

rank
(
A
B

)
= n, A∗B − B∗A = 0.

If AA,B and AA′,B′ are two such canonical self-adjoint extensions of S then
AA′,B′ = AA,B if and only if A′ = AC and B′ = B C for some invertible n×n
matrix C.

(ii) ρ (AA,B) �= ∅ if and only if for some non-real point w ∈ D(Q) the matrices
A+Q(w)B and A+Q(w∗)B are invertible. In this case for z ∈ ρ (AA,B)∩ρ(A):

(AA,B − z)−1=(A−z)−1−ΓzB (A+Q(z)B)−1 Γ∗
z∗ . (2.3)

Proof. (i) With µ ∈ D(Q) ∩ C
+ we have the direct decomposition

S∗ = A�
{
{Γµx, µΓµx}

∣∣x ∈ C
n
}
.

Hence each element {f, g} ∈ S∗ can be written as

{f, g} = {fA + Γµx, gA + µΓµx}
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with {fA, gA} ∈ A and a vector x ∈ C
n, which is uniquely determined since Γµ is

by assumption injective. Define the mapping b : S∗ → C
2n by

b({f, g}) :=
(
B0({f, g})
B1({f, g})

)
:=
(

Γ∗
µ (gA − µ∗fA) +Q(µ)x

x

)
.

Since A is self-adjoint and µ ∈ D(Q) the elements gA − µ∗fA run through L(Q)
when {fA, gA} runs through A. From the injectivity of Γµ it follows that Γ∗

µ and
hence also b are surjective. Also, evidently, S ⊂ kerb. Moreover, Greens identity
holds: If {f, g} = {fA + Γµx, gA + µΓµx} and {h, k} = {hA + Γµy, kA + µΓµy}
are arbitrary elements of S∗, then

〈k, f〉L(Q) − 〈h, g〉L(Q)

= 〈kA − µ∗hA,Γµx〉L(Q) − 〈Γµy, gA − µ
∗fA〉L(Q) + (µ− µ∗) 〈Γµy,Γµx〉L(Q)

= 〈B0{h, k}, B1{f, g}〉Cn − 〈B1{h, k}, B0{f, g}〉Cn .

Hence b is a boundary mapping as in [M] and [De], where boundary triples are
considered, and as in [DLS1, Section 3] and [AzCD].

From Greens formula it follows that the self-adjoint extensions of S can be
parametrized as restrictions of S∗:

Aτ =
{
{f, g} ∈ S∗∣∣ {B1({f, g}), B0({f, g})} ∈ τ

}
,

where the relation

τ =
{
{B1 ({f, g}) , B0 ({f, g})}

∣∣ {f, g} ∈ Aτ
}
⊂ (Cn)2

is self-adjoint. Choose z0 ∈ C
+ and define A and B as the matrix representations

of the operators −(I + z0(τ − z0)−1) and (τ − z0)−1, respectively. They satisfy the
relations in (i) and we have

τ =
{
{−Bh,Ah}

∣∣h ∈ C
n
}
.

Since S∗ in L(Q) is given by

S∗ = A�
{
{Γµd, µΓµd}

∣∣d ∈ C
n
}

=
{
{f, g} ∈ L(Q)2

∣∣∃ c,d ∈ C
n : g(ζ)− ζf(ζ) ≡ c−Q(ζ)d

}
,

the boundary mapping b =
(
B0

B1

)
can be written as

B0 ({f, g}) = c, B1 ({f, g}) = d.

Hence the relation Aτ =: AA,B is described by the formula

AA,B =
{
{f, g} ∈ L(Q)2

∣∣ ∃h ∈ C
n : g(ζ)− ζf(ζ) ≡ (A+Q(ζ)B)h

}
.

With the above descriptions of Aτ and AA,B Krĕın’s formula reads as

(Aτ − z)−1 = (A− z)−1 − Γz(Q(z)− τ)−1Γ∗
z∗ , z ∈ ρ(Aτ ) ∩ ρ(A),
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or, equivalently,

(AA,B − z)−1 = (A− z)−1 − ΓzB(Q(z)B +A)−1Γ∗
z∗ , z ∈ ρ(AA,B) ∩ ρ(A).

The proofs of the other statements in (i) are left to the reader.
(ii) We first assume that ρ (AA,B) �= ∅. Then, since AA,B is self-adjoint and Γ∗

w∗ =
Ew is surjective, we find

{
Ew(g − wf)

∣∣ {f, g} ∈ AA,B
}

= C
n, w ∈ ρ(AA,B).

Therefore, by the definition of AA,B, the matrix A+Q(w)B is invertible.
To prove the converse denote the operator on the right-hand side of (2.3) by

K(z). Using

Γz − Γw = (z − w)(A − z)−1Γw, (A− w)−1Γz = (A− z)−1Γw,

and
B(A+Q(z)B)−1 = (A∗ + B∗Q(z))−1B∗

we find that K(z) has all the properties of a resolvent operator of a canonical
self-adjoint extension of S with a nonempty resolvent set: D(K), the domain of
holomorphy of K, is symmetric with respect to the real axis and

K(z∗)∗ = K(z), K(z)−K(w) = (z − w)K(z)K(w), K(z)(S − z) ⊂ I.

If we denote this self-adjoint extension by AK , then

AK =
{
{K(z)h, h+ zK(z)h}

∣∣h ∈ L(Q)
}
.

Using again Γ∗
z∗ = Ez we see that for h ∈ L(Q),

h(ζ) + (z − ζ)K(z)h(ζ) ≡ (A+Q(ζ)B)c, c = (A+Q(z)B)−1h(z).

Hence AK ⊂ AA,B. Since both relations are self-adjoint, equality prevails. �

Remark 2.5. Note that according to (2.3) the resolvent of ÂQ in Corollary 2.3 is
an at most n-dimensional perturbation of the resolvent of AQ.

3. A minimal model related to the basic factorization

1. Recall that a generalized pole α of q ∈ Nκ is by definition an eigenvalue of the
relation Aq. A generalized pole α is called of positive type if the corresponding
eigenspace of Aq is positive. If the generalized pole α is not of positive type, its
degree of non-positivity is by definition the dimension of a maximal non-positive
invariant subspace of the algebraic eigenspace of Aq at α. A generalized zero β of
q, which is by definition a generalized pole of −q(z)−1, is called of positive type if
it is a pole of positive type of −q(z)−1, and if β is not of positive type its degree of
non-positivity is the degree of non-positivity of β as a generalized pole of −q(z)−1.
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If q ∈ Nκ, its basic factorization (1.1) is defined as follows. Let the points
αi, i = 1, 2, . . . , �, (βj , j = 1, 2, . . . , k, respectively) be the generalized poles (ze-
ros, respectively) of q in C

+ ∪ R that are not of positive type, denote by νi (κj ,
respectively) the degrees of non-positivity of αi (βj , respectively), and define

r(z) :=
(z − β1)κ1 . . . (z − βk)κk

(z − α∗
1)ν1 . . . (z − α∗

� )ν�
. (3.1)

Then there exists a function q0 ∈ N0 such that

q(z) = r#(z)q0(z)r(z), (3.2)

see [DLLSh], [DeHS1]. Note that, if

τ := κ1 + · · ·+ κk − (ν1 + · · ·+ ν�) (3.3)

is positive (negative, respectively), then∞ is a generalized pole (zero, respectively)
of q which is not of positive type and with degree of non-positivity |τ |. Since ∞
cannot be a generalized zero and a generalized pole at the same time, we have

κ = max {κ1 + · · ·+ κk, ν1 + · · ·+ ν�}.
ByMr(z) and Q(z) we denote the following matrix functions:

Mr(z) =
(

0 r#(z)
r(z) 0

)
, Q(z) =



q0(z) 0 0

0 0 r#(z)
0 r(z) 0


 ,

which belong to the classes N 2×2
κ and N 3×3

κ , respectively (see Theorem 3.4 below).
Note that the elements of L(q0) are scalar functions, the elements of L(Mr) are 2-
vector functions, and the elements of L(Q) = L(q0)⊕L(Mr) are 3-vector functions.
By v(ζ) we denote the vector function

v(ζ) :=




r(ζ)
1

r(ζ)q0(ζ)


 ,

which is not necessarily an element of L(Q). The first result concerns the state
space L(q), which will be described in terms of a unitary mapping from a subspace
of L(Q) to L(q).

Lemma 3.1.

(i) The bounded linear operator T : L(Q) �−→ L(q) defined by

(Tf̃)(ζ) := v#(ζ)f̃ (ζ)

is a partial isometry with ranT = L(q).
(ii) The linear manifold

H0 := kerT =
{
f̃ ∈ L(Q)

∣∣v#(ζ)f̃ (ζ) ≡ 0
}

is a finite-dimensional Hilbert subspace of L(Q).
(iii) With P := H⊥

0 the restriction T := T |P is a unitary mapping from P
onto L(q).
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Below in Corollary 4.3 we give a formula for the dimension of the space H0.

Proof of Lemma 3.1. A straightforward calculation shows that the two kernels
Kq(z, w) and KQ(z, w) are related by the formula

Kq(ζ, z) = v#(ζ)KQ(ζ, z)v(z∗).

Since the numbers of negative squares of these kernels coincide, according to
[ADRS, Theorem 1.5.7.] the mapping T is a surjective partial isometry and its
kernel H0 is a Hilbert space. Write

T =
(
0 T

)
:
(
H0

P

)
→ L(q).

Then T : P → L(q) satisfies (iii) of the theorem. From the defining equation for
H0 we find dimH0 ≤ dimL(Mr). It is well known (or follows from Theorem 3.4
below) that dimL(Mr) = 2κ. �

Theorem 3.2. Let q ∈ Nκ be given. Then:
(i) The self-adjoint relation

A :=
{{
f̃ , g̃
}
∈ P2

∣∣∃ c ∈ C : v#(ζ)(g̃(ζ)− ζf̃(ζ)) ≡ c
}

and the corresponding Γ-field Γz1 with

Γz1(ζ) := ϕ(ζ, z) := KQ(ζ, z∗)v(z)

=
Q(ζ)−Q(z)

ζ − z v(z) = (ΓQzv(z))(ζ), z ∈ D(q),

form a minimal realization of q in the state space P.
(ii) Under the mapping T this realization is unitarily equivalent to the canonical

model for q.
(iii) The corresponding symmetric operator S is given by

S :=
{{
f̃ , g̃
}
∈ P2

∣∣∣v#(ζ)(g̃(ζ)− ζf̃(ζ)) ≡ 0
}

and its adjoint by

S∗ =
{{
f̃ , g̃
}
∈ P2

∣∣∣∃ c, d ∈ C : v#(ζ)(g̃(ζ)− ζf̃(ζ)) ≡ c− q(ζ)d
}
.

Proof. Theorem 2.1 and the relation

A =
{{
f̃ , g̃
} ∣∣∣ {T f̃, T g̃} ∈ Aq

}

imply that A is self-adjoint. Likewise, with S = T−1SqT and

S∗ =
{{
f̃ , g̃
} ∣∣∣ {T f̃, T g̃} ∈ S∗

q

}

the statement (iii) follows. The reproducing property of KQ(ζ, z) implies for f̃ ∈
H0 and z ∈ D(q)〈

f̃( · ),KQ( · , z∗)v(z)
〉
L(Q)

= v(z)∗f̃(z∗) = v#(z∗)f̃(z∗) = 0,
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and hence ϕ( · , z) ∈ P . From the relation

Tϕ( · , z) = v#( · )KQ( · , z∗)v(z) = Kq( · , z∗) = ϕq( · , z)
we see that ϕ( · , z) is a Γ-field corresponding to A and, moreover, since T is unitary,
we have the representation

q(z)− q(z∗0)
z − z∗0

= 〈ϕq( · , z), ϕq( · , z0)〉L(q) = 〈ϕ( · , z), ϕ( · , z0)〉P .

The equality〈
f̃( · ),KQ( · , z)v(z∗)

〉
L(Q)

= v#(z)f̃(z) = (Tf̃)(z), f̃ ∈ L(Q), z ∈ D(q),

where T is the partial isometry defined in Lemma 3.1, and the fact thatH0 = kerT
imply

P = span{ϕ( · , z) | z ∈ D(q)},
that is, the realization is minimal. �

2. In the following we give another description of the self-adjoint relation A in P .
The symmetric operator SQ in the canonical model for Q can be decomposed as
SQ = Sq0 ⊕ SMr and it has defect indices (3, 3). The self-adjoint linear relation
AQ = Aq0 ⊕ AMr is a canonical self-adjoint extension of SQ. By Theorem 2.4,
another canonical self-adjoint extension of SQ is given by

Ã :=
{{
f̃ , g̃
}
∈ (L(Q))2

∣∣∃h ∈ C
3 : g̃(ζ) − ζf̃(ζ) ≡ (I +Q(ζ)B)h

}
,

where I is the 3× 3 unit matrix and

B = −




0 0 1
0 0 0
1 0 0


 .

It has a nonempty resolvent set since the matrix

I +Q(z)B =




1 0 −q0(z)
−r#(z) 1 0

0 0 1




is invertible. Furthermore,

(Ã− z)−1 = (AQ − z)−1 − ΓQzB (I +Q(z)B)−1 Γ∗
Qz∗ . (3.4)

The next theorem implies in particular that in the state space L(Q) also the
pair (Ã, ϕ( · , z)) is a (not necessarily minimal) realization of q.

Theorem 3.3. With respect to the decomposition L(Q) = P ⊕H0 we have

(Ã− z)−1 = (A− z)−1 ⊕ (A0 − z)−1, (3.5)

where A is the self-adjoint relation in P as in Theorem 3.2 and A0 is a self-adjoint
relation in H0.
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It follows that A = Ã ∩ P2, A0 = Ã ∩ H2
0, and the relation (3.5) can be

written as

Ã = {{f + h, g + k} | {f, g} ∈ A, {h, k} ∈ A0} = A⊕A0.

Proof of Theorem 3.3. We show first that for z, w ∈ ρ(Ã),

(z − w)(Ã − z)−1ϕ( · , w) = ϕ( · , z)− ϕ( · , w). (3.6)

For this we apply (3.4) with

B(I +Q(z)B)−1 = −




0 0 1
0 0 0
1 0 q0(z)




to the Γ-field ΓQw. Using the defining relations (1.2) and (1.3) for a Γ-field, we
obtain

(z − w)(Ã − z)−1ΓQw = ΓQz − ΓQw

+ΓQz




0 0 1
0 0 0
1 0 q0(z)





q0(z)− q0(w) 0 0

0 0 r#(z)− r#(w)
0 r(z)− r(w) 0




= ΓQz − ΓQw + ΓQz




0 r(z)− r(w) 0
0 0 0

q0(z)− q0(w) q0(z)(r(z)− r(w)) 0


 .

Multiplying both sides of this equality from the right by the column vector v(w)
and observing that ΓQwv(w) = ϕ( · , w) we find

(z − w)(Ã − z)−1ϕ( · , w)

= ΓQzv(w) − ϕ( · , w) + ΓQz




r(z)− r(w)
0

q0(z)r(z)− q0(w)r(w)




= ΓQzv(w) − ϕ( · , w) + ΓQz(v(z) − v(w))
= ϕ( · , z)− ϕ( · , w).

This implies (3.6). From Theorem 3.2 we have that

(z − w)(A − z)−1ϕ( · , w) = ϕ( · , z)− ϕ( · , w),

and comparing this with (3.6) we obtain

(Ã− z)−1ϕ( · , w) = (A− z)−1ϕ( · , w).

Since the elements ϕ( · , w), w ∈ ρ(A), form a total set in P we have in fact that

(Ã− z)−1h = (A− z)−1h, h ∈ P .

It follows that P is invariant under (Ã − z)−1 for all z ∈ ρ(Ã), and by taking
adjoints we see that also H0 is invariant under this resolvent operator. Thus the
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decomposition of (Ã− z)−1 with respect to the decomposition L(Q) = P ⊕H0 is
a diagonal block operator matrix with entries (A − z)−1 and an operator R0(z),
say, on H0. Since R0(z) satisfies the resolvent identity and R0(z)∗ = R0(z∗), it is
the resolvent of a self-adjoint relation A0 in H0. �

3. Now we give a description of L(Mr). This space is also considered in [DeH],
but here we emphasize the structure of the space via the spectral decomposition
of the self-adjoint relation AMr in the model for the functionMr. Recall that the
function r is given by (3.1). We write

r(z) = r0(z) + r1(z) + · · ·+ r�(z),

with

r0(z) := σν0z
ν0 + σν0−1z

ν0−1 + · · ·+ σ1z + σ0,

ri(z) :=
νi∑
j=1

−σij
(z − α∗

i )j
, i = 1, 2, . . . , �,

where all the coefficients are complex numbers, σν0 �= 0, and σiνi �= 0 for i =
1, 2, . . . , �. Set Mi(z) :=Mri(z), Ai := AMri

, i = 0, 1, 2, . . . , �.

Theorem 3.4. We have

L(Mr) = L(M0)⊕ L(M1)⊕ · · · ⊕ L(M�) (3.7)

and this orthogonal decomposition is the spectral decomposition for the self-adjoint
relation AMr = A0 ⊕A1 ⊕ · · · ⊕A� in the model for Mr:

(a) For i = 1, 2, . . . , �, the space L(Mi) is spanned by two Jordan chains, each
of length νi, corresponding to the eigenvalues αi and α∗

i of Ai in L(Mi) :
( 1
ζ−αi

0

)
,

( 1
(ζ−αi)2

0

)
, . . . ,

( 1
(ζ−αi)νi

0

)
and
(

0
1

ζ−α∗
i

)
,

(
0
1

(ζ−α∗
i )2

)
, . . . ,

(
0
1

(ζ−α∗
i )νi

)

The Gram matrix G̃i for this basis is given by

G̃i :=
(

0 Gi
G∗i 0

)
, Gi :=




σi1 σi2 . . . σiνi

σi2 · · · 0
...

...
...

...
σiνi 0 . . . 0




−1

;

in particular the linear spans of the two chains are skewly-linked.
(b) If the polynomial r0 is not a constant, the space L(M0) is spanned by two

chains of length ν0, corresponding to the eigenvalue ∞ of A0 in L(M0):
(

1
0

)
,

(
ζ
0

)
, . . . ,

(
ζν0−1

0

)
and

(
0
1

)
,

(
0
ζ

)
, . . . ,

(
0

ζν0−1

)
.
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The Gram matrix G̃0 for this basis is given by

G̃0 :=
(

0 G0

G∗0 0

)
, G0 :=




σ1 σ2 . . . σν0
σ2 . . . · · · 0
...

...
...

...
σν0 0 . . . 0




−1

;

in particular the spans of the chains are skewly-linked.

Proof. We writeKi( · , w) forKMi( · , w), i = 0, 1, 2, . . . , �. FromMr(z) =M0(z)+
M1(z) + · · ·+M�(z), we obtain

KMr( · , w) = K0( · , w) +K1( · , w) + · · ·+K�( · , w),

whence (3.7), where, by [ADRS, Section 1.5], the sum is orthogonal because it is
direct. The latter follows from the description of these spaces which we give now;
in particular, elements from different summands have different singularities.

(a) For
(
a
b

)
,

(
c
d

)
∈ C

2 we have

〈
Ki(·, w)

(
a
b

)
,Ki(·, v)

(
c
d

)〉

L(Mi)

=
(
c∗ d∗

)
Ki(v, w)

(
a
b

)

= c∗
r#i (v)− r#i (w∗)

v − w∗ b+ d∗
ri(v) − ri(w∗)

v − w∗ a.

Choosing in particular a = c = 0 or b = d = 0 we find that the subspaces
{(

0
g

)
∈ L(Mi)

}
,

{(
f
0

)
∈ L(Mi)

}

of L(Mi) are neutral subspaces. This accounts for the zero entries on the main
diagonal of the Gram matrix G̃i. For a = d = 1 and b = c = 0, the above formula
reads as 〈(

0
ri(ζ)−ri(w

∗)
ζ−w∗

)
,

(
r#i (ζ)−r#i (v∗)

ζ−v∗
0

)〉

L(Mi)

=
ri(v) − ri(w∗)

v − w∗ . (3.8)

Now we use that

ri(ζ) − ri(w∗)
ζ − w∗ =

νi∑
j=1

j−1∑
s=0

σij
(ζ − α∗

i )j−s(w∗ − α∗
i )s+1

and
r#i (ζ)− r#i (v∗)

ζ − v∗ =
νi∑
j=1

j−1∑
s=0

σ∗
ij

(ζ − αi)j−s(v∗ − αi)s+1
.

We multiply both sides of (3.8) by (w∗ − α∗
i )
n(v − α∗

i )
m, integrate over a small

circle around α∗
i with respect to w∗ and likewise with respect to v, and obtain for
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n,m = 0, 1, . . . , νi − 1,
〈(

0∑ν
j=n+1

σij

(ζ−α∗
i )j−n

)
,

(∑ν
j=m+1

σ∗
ij

(ζ−αi)j−m

0

)〉

L(Mi)

= σi,n+m+1,

where we set σi,j = 0 if j ≥ νi + 1. These equalities can be written in matrix form
G−1
i HiG−1

i = G−1
i where Hi = (hl,m)νi

l,m=1with

hl,m =
〈(

0
1

(ζ−α∗
i )m

)
,

( 1
(ζ−αi)l

0

)〉

L(Mi)

.

From this relation we see that Hi = Gi, and the formula for the Gram matrix G̃i
now readily follows. The rest of the proof of part (a) is left to the reader.
(b) The proof is similar to the previous one. The analog of (3.8) is

〈(
0∑ν0

j=1

∑j−1
s=0 σjζ

j−1−sw∗s

)
,

(∑ν0
j=1

∑j−1
s=0 σ

∗
j ζ
j−1−sv∗s

0

)〉

L(M0)

=
ν0∑
j=1

j−1∑
s=0

σjv
j−1−sw∗s.

If we multiply with w∗(−n−1)v−m−1 and integrate with respect to w∗ and v over
small circles around the origin, we obtain for n,m = 0, 1, . . . , ν0 − 1,

〈(
0∑ν0

j=n+1 σjζ
j−n−1

)
,

(∑ν0
j=m+1 σ

∗
j ζ
j−m−1

0

)〉

L(M0)

= σn+m+1,

where σj = 0 if j ≥ ν0 + 1. This readily leads to the formula for the Gram matrix
G̃0 in this case. �

4. The space H0

It may happen that in the factorization (3.2) a real generalized zero β (generalized
pole α, respectively) of the function q is a generalized pole (generalized zero,
respectively) of q0 as well.

Example. The function q0(z) = 1− 1
z ∈ N0 has a generalized pole at β = 0, which

is of positive type. If q(z) = 1 + 1
z−1 , then q ∈ N1 and q(z) = r#(z)q0(z)r(z) with

r(z) = z
z−1 .

In this example the factor z − β cancels and the function q ∈ N1 does not
have a pole at z = 0. In the more general situation this “cancellation” corresponds
to the fact that the model (Ã, ϕ( · , z)) is not minimal in the state space L(Q). In
this section we describe the space H0, which is nontrivial in exactly this case.
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Lemma 4.1. Let q0 ∈ N0 be given.
(i) Assume either β ∈ C and n > 1 or n = 1 and the point β ∈ C is not a

generalized pole of q0. If

lim
z→̂β

(z − β)nq0(z) = 0,

then every f ∈ L(q0) has the same behavior at β as q0, that is,

lim
ζ→̂β

(ζ − β)nf(ζ) = 0.

(ii) Assume n > 1 or n = 1 and∞ is not a generalized pole of q0. If lim
z→̂∞

q0(z)
zn = 0

then also lim
ζ→̂∞

f(ζ)
ζn = 0 for every f ∈ L(q0).

Proof. We only prove statement (i), the other case can be proven in a similar
way. With the abbreviation x( · , ζ∗) := (ζ∗ − β∗)nKq0( · , ζ) we find under the
assumptions of the lemma and since q0(z) ∈ N0 that for w ∈ D(q0)

lim
ζ→̂β
〈x( · , ζ∗),Kq0( · , w)〉L(q0) = lim

ζ→̂β
x(w, ζ∗) = 0

and
lim
ζ→̂β
〈x( · , ζ∗), x( · , ζ∗)〉L(q0) = lim

ζ→̂β
(ζ − β)nx(ζ, ζ∗) = 0.

That is, x( · , ζ∗) converges for ζ→̂β weakly to the zero element. Hence we have

lim
ζ→̂β

(ζ − β)nf(ζ) = lim
ζ→̂β
〈f( · ), (ζ∗ − β∗)nKq0( · , ζ)〉L(q0) = 0. �

Let the rational function r(z) and the matrix functionMr(z) again be given
as in Section 3. For simplicity we use the following notations: α0 :=∞, β0 :=∞,
and

I+ =
{
0 ≤ i ≤ � | αi ∈ σp

(
Âq0
)}
, J+ =

{
0 ≤ j ≤ k | βj ∈ σp (Aq0)

}
,

where Âq0 is the self-adjoint relation in L(q0) which is the isomorphic copy of the
self-adjoint relation A−1/q0 in L(−1/q0) in the canonical model for the function
−1/q0 under the operator of multiplication by q0(ζ) mapping L(−1/q0) onto L(q0);
see Corollary 2.3. Moreover, by

x̂αi(ζ) :=





q0(ζ)
ζ − αi

for i ∈ I+ \ {0},

q0(ζ) for i = 0 ∈ I+

and

xβj (ζ) :=





1
ζ − βj

for j ∈ J+ \ {0},

1 for j = 0 ∈ J+

we denote those eigenelements of Âq0 and Aq0 , respectively, which correspond to
the eigenvalues that are cancelled. Note that the αi’s and the βj ’s are real numbers.
Now we can give an explicit description of the space H0.
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Theorem 4.2. The space H0, defined in Lemma 3.1, is given by

H0 = span







x̂αi

0
−q−1

0 x̂αi


 ,



xβj

−r#xβj

0



∣∣∣∣∣ i ∈ I

+, j ∈ J+


 . (4.1)

Proof. Note that the span on the right-hand side of (4.1) is contained in H0.

Conversely, by definition an element f̃ =



f
g
h


 with f ∈ L(q0) and

(
g
h

)
∈ L(Mr)

belongs to the space H0 if and only if

f(ζ) +
g(ζ)
r#(ζ)

+ q0(ζ)h(ζ) = 0. (4.2)

The function g(ζ)/r#(ζ) is a linear combination of the functions

(ζ − β∗
j )

−m, m = 1, . . . , κj, j = 1, . . . , k,

and (recall τ from (3.3)) if τ > 0, of the functions ζm−1, m = 1, . . . , τ . The
function h(ζ) in (4.2) is holomorphic at the points ζ = βj for j = 1, . . . , k and,
if τ > 0, also at ζ = ∞. Observe that limz→̂βj (z − βj)nq0(z) = 0 for n > 1 and
j = 1, . . . , k, and, if j �∈ J+, also for n = 1. Hence multiplying both sides of the
relation (4.2) by (ζ − β∗

j )
n for n > 1 and by ζ − β∗

j for j �∈ J+ and then taking
the limit ζ→̂β∗

j we find – step by step – that g(ζ)/r#(ζ) reduces to a sum of the
form

∑
j∈J+

gj xβj with gj ∈ C. Dividing both sides of (4.2) by q0(ζ) gives

u(ζ) +
1

q0(ζ)
g(ζ)
r#(ζ)

+ h(ζ) = 0

with u(ζ) := f(ζ)/q0(ζ) ∈ L(−1/q0). In the same way as above it follows that
q0(ζ)h(ζ) =

∑
i∈I+

hi x̂αi(ζ) with hi ∈ C and hence

f(ζ) = −
∑
j∈J∗

gj xβj (ζ)−
∑
i∈I∗

hi x̂αi(ζ),

which completes the proof. �

Corollary 4.3. The dimension of H0 is the sum of the number of generalized poles
of q that are generalized zeros of q0 and the number of generalized zeros of q that
are generalized poles of q0.

The following example illustrates the foregoing theorem.

Example. For q0 ∈ N0 and r(z) = z−β
z−α there appear four cases. If we identify

L(Mr) with C
2 according to its basis given in Theorem 3.4 we obtain:

(i) If neither α is a generalized zero nor β is a generalized pole of q0, then
H0 = {0}.
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(ii) If α is not a generalized zero, but β is a generalized pole of q0, then

H0 = span







xβ
−1
0





 .

(iii) If α is a generalized zero of q0, but β is not a generalized pole, then

H0 = span






x̂α
0
−1




 .

(iv) If both α is a generalized zero and β is a generalized pole of q0, then

H0 = span







xβ
−1
0


 ,


x̂α
0
−1





 .

Whether a generalized zero (generalized pole) of q is also a generalized pole
(generalized zero, respectively) of q0 can also be characterized in terms of limits.

Theorem 4.4. Let q ∈ Nκ be given. Then

β ∈ σp(Âq) ∩ σp(Aq0) ⇐⇒ ∃κβ ∈ N : lim
z→̂β

q(z)
(z − β)2κβ−1

< 0,

and

α ∈ σp(Aq) ∩ σp(Âq0 ) ⇐⇒ ∃ να ∈ N : lim
z→̂α

(z − α)2να−1q(z) > 0.

Proof. According to [L], β ∈ σp(Âq) has degree of non-positivity κβ if and only if

lim
z→̂β

q(z)
(z − β)2κβ−1

≤ 0 and lim
z→̂β

q(z)
(z − β)2κβ+1

> 0 or ∞.

From the factorization (3.2) of q we see that the first limit above is �= 0 if and
only if lim

z→̂β
(z − β)q0(z) �= 0, which happens exactly if β ∈ σp(Aq0). The second

equivalence can be proved in a similar way. �
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gaps of a class of Jacobi matrices resulting from periodic perturbations of
Jacobi operators with smooth coefficients.
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1. Introduction

This paper considers infinite Jacobi matrices determined by a real sequence {an},
an �= 0, of the following form:

C =




0 a1 0 0 . . .
a1 0 a2 0 . . .
0 a2 0 a3 . . .
. 0 a3 0 . . .
. . . . . . .




(1.1)

DC =
{
x = {xn} ∈ �2 : Cx ∈ �2

}
.

In general it will be assumed that an = jn + cn where {jn} is monotone increas-
ing with limn→∞ jn = ∞, {jn − jn−1} is bounded, and cn+2 = cn. In this case,

Carleman’s condition
∞∑
n=1

1
an

= ∞ implies that C is self-adjoint on the indicated

maximal domain. If C is self-adjoint, then the spectral theorem asserts that it is
unitarily equivalent to a multiplication operator Mx : D → L2(µ) defined on a
dense subset D of L2(µ) by Mx : f(x) → xf(x). If C =

∫
λdEλ, then the Borel

measure µ is defined by µ(β) = ‖E(β)φ1‖2, where φ1 is the first standard basis
vector. The vector φ1 is a cyclic vector since the subdiagonal entries of the matrix
are non-zero.
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The given sequence {an} uniquely determines a set of polynomials {Pn(x)}
defined as follows:

P1(x) = 1, P2(x) = x/a1

Pn+1(x) = [xPn(x) − an−1Pn−1(x)] /an, n ≥ 2. (1.2)

When (1.1) defines a self-adjoint operator, these polynomials form an or-
thonormal basis for the corresponding Hilbert space L2(µ). They are useful in
establishing the results that follow.

The results in this paper are closely related to those in [DJMP], which dis-
cusses the existence of spectral gaps under similar assumptions on the sequence
{an}. Partial results are presented on the existence of eigenvalues in these gaps.
This paper looks specifically at the eigenvalue problem, using an approach which
can simplify some of the arguments in [DJMP]. Theorem 3.3 and Theorem 3.5 be-
low extend Corollary 3.10 in [DJMP] to the case 2

3 < p < 1. Related ideas appear
in [DP02b].

2. Preliminary results

This section considers the action of the operator C, and its spectral projections,
on a particular class of vectors, which includes the eigenvectors. The next lemma
generalizes some results established in [DP02a] and [DP02b].

Lemma 2.1. Let C be a self-adjoint Jacobi matrix generated by some positive
sequence {an}. Then the spectrum of C is symmetric about the origin. If C =∫
λdEλand ψ is any vector in DC such that E(0,∞)ψ = ψ(orE(−∞, 0)ψ = ψ)

and ψ =
∞∑
n=1
〈ψ, ϕn〉ϕn, then

∞∑
n=1

|〈ψ, ϕ2n−1〉|2 =
∞∑
n=1

|〈ψ, ϕ2n〉|2 .

Proof. Let {ϕn} be the standard basis for �2. Define U : �2 → �2 by Uϕn =
(−1)n+1ϕn. Then UCU−1 = −C and it follows that the spectrum of C is symmet-
ric about the origin. Viewed as an operator on L2(µ), UPn(x) = (−1)n+1Pn(x) =
Pn(−x). It follows that Uψ(x) = ψ(−x). If E(0,∞)ψ = ψ(orE(−∞, 0)ψ = ψ),
then 〈ψ,Uψ〉 = 0. Hence

0 = 〈ψ,Cψ〉 =
∞∑
n=1

|〈ψ, ϕ2n−1〉|2 −
∞∑
n=1

|〈ψ, ϕ2n〉|2.

3. Eigenvalues

The results in this section address the existence of eigenvalues. In some cases it is
also possible to obtain results on absolute continuity. In the first theorem x = y
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and so there is no gap. It will be shown that there are non-zero eigenvalues, since
the spectral measure is absolutely continuous on (−∞, 0) ∪ (0,∞).

Theorem 3.1. Let {jn} be a monotone increasing sequence of real numbers with
difference sequence {dn} , dn = jn−jn−1, n ≥ 2. Assume {dn} is bounded, 1

2d3 ≤ d2

and 1
2 (dn+1 + dn−1) ≤ dn, n > 2. Let a2n−1 = j2n−1 + x, a2n = j2n + x with x

chosen so that a1− 1
2d2 > 0. Then C defined by (1.1) is self-adjoint and the spectral

measure of C is absolutely continuous on (−∞, 0) ∪ (0,∞).

Proof. Since {dn} is bounded, Carleman’s condition implies that C is self-adjoint.
Choose a bounded interval ∆, such that ∆ ⊂ (0,∞). Let ψ = E(∆)ϕ1, ψn =
〈ψ, ϕn〉. Let S be the unilateral shift defined on �2 by Sφn = φn+1, n = 1, 2, . . . . If
J = (S − S∗)/i and K is defined by the commutator equation CJ − JC = −2iK
it follows that

〈Kψ,ψ〉 = a1 |ψ1|2 +
∞∑
n=2

(jn − jn−1) |ψn|2 +
∞∑
n=2

(jn − jn−1)ψn−1ψn+1

≥ a1 |ψ1|2 +
∞∑
n=2

(jn − jn−1) |ψn|2

−
∞∑
n=2

(jn − jn−1)
[
1
2
|ψn−1|2 +

1
2
|ψn+1|2

]

≥ a1 |ψ1|2 +
∞∑
n=2

dn |ψn|2 −
∞∑
n=1

1
2
dn+1 |ψn|2 −

∞∑
n=3

1
2
dn−1 |ψn|2

≥ (a1 −
1
2
d2) |ψ1|2 + (d2 −

1
2
d3) |ψ2|2 +

∞∑
n=3

(dn −
1
2
dn+1 −

1
2
dn−1) |ψn|2

≥ (a1 −
1
2
d2) |ψ1|2 = (a1 −

1
2
d2) ‖E(∆)ϕ1‖4 .

On the other hand, if λ is the midpoint of the interval ∆, then CJ − JC =
(C − λI)J − J(C − λI), and if |∆| denotes the Lebesgue measure of the interval
∆ it follows that |〈KE(∆)φ1, E(∆)φ1〉 | ≤ 2 ‖J‖ ·‖E(∆)(C − λI)φ1‖ ‖E(∆)ϕ1‖ ≤
‖J‖ · |∆| · ‖E(∆)φ1‖2.

The two inequalities can be combined to show that if µ(∆) = ‖E(∆)φ1‖2 �=
0 then µ(∆) ≤

(
‖J‖

a1− 1
2d2

)
|∆| so that the measure is absolutely continuous on

(−∞, 0) ∪ (0,∞). �

Example 3.2. Choose jn = n, x > − 1
2 . The conditions of Theorem 3.1 are satisfied

since dn = 1 and a1 − 1
2d2 = 1 + x− 1

2 .

Theorem 3.3. For 0 < α < 1, let jk = kα. For k ≥ 1, let a2k−1 = j2k−1 + x, a2k =
j2k + y. Assume x > y ≥ −(2 − 2α). Then (− |x− y| , |x− y|) is a gap in the
essential spectrum containing no non-zero eigenvalues.
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Proof. It follows from the results in [DJMP] that (− |x− y| , |x− y|) is a gap in
the essential spectrum. Thus it remains to consider the issue of eigenvalues. The
argument below uses the restriction of an eigenvector to the subspace spanned by
the odd subscripted basis vectors to show that any non-zero eigenvalue must be
outside the gap.

It follows from Lemma 2.1 above that for any vector ψ in DC and λ �= 0 such
that Cψ = λψ,

1
2
〈
C2ψ, ψ

〉
=

1
2
〈Cψ,Cψ〉

=
∞∑
k=1

[((2k − 1)α + x)ψ2k−1 + ((2k)α + y)ψ2k+1]
2

=
∞∑
k=1

[((2k − 1)α + y)ψ2k−1 + ((2k)α + y)ψ2k+1]
2

+
∞∑
k=1

2(x− y) [((2k − 1)α + y)ψ2k−1 + ((2k)α + y)ψ2k+1]ψ2k−1

+ (x − y)2
∞∑
k=1

ψ2
2k−1

≥
∞∑
k=1

2(x− y)((2k − 1)α + y)ψ2
2k−1

− 2(x− y)
∞∑
k=1

{
1
2
((2k)α + y)ψ2

2k+1 +
1
2
((2k)α + y)ψ2

2k−1

}

+
∞∑
k=1

(x− y)2ψ2
2k−1

≥ 2(x− y)
∞∑
k=1

[
(2k − 1)α − 1

2
(2k)α +

1
2
y

]
ψ2

2k−1

− 2(x− y)
∞∑
k=2

1
2
((2k − 2)α + y)ψ2

2k−1 +
∞∑
k=1

(x− y)2ψ2
2k−1

≥ 2(x− y)
∞∑
k=2

[
(2k − 1)α − 1

2
(2k)α − 1

2
(2k − 2)α

]
ψ2

2k−1

+
∞∑
k=1

(x− y)2ψ2
2k−1 + 2(x− y)

[
1− 1

2
(2)α +

1
2
y

]
ψ2

1

≥
∞∑
k=1

(x− y)2ψ2
2k−1 .

Thus it follows that
〈
C2ψ, ψ

〉
≥ (x − y)2 ‖ψ‖2. �
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Corollary 3.4. If x > y > −(2 − 2α) then
〈
C2ψ, ψ

〉
> (x − y)2 ‖ψ‖2 and so the

endpoints of the gap ± |x− y| cannot be eigenvalues.

Theorem 3.5. For 0 < α < 1, let jk = kα. For k≥ 1,let a2k−1 = j2k−1 + x, a2k =
j2k + y. Assume y > x ≥ −(2α+1 − 3α). Then (− |x− y| , |x− y|) is a gap in the
essential spectrum containing no non-zero eigenvalues.

Proof. As in the proof above, it follows from the results in [DJMP] that
(− |x− y| , |x− y|) is a gap in the essential spectrum. It remains then to con-
sider the issue of non-zero eigenvalues. The argument below uses the restriction of
the eigenvector to the subspace spanned by the even subscripted basis vectors. It
will again be shown that the corresponding eigenvalue must be outside the gap.

It follows from Lemma 2.1 that for any vector ψ in DC and λ �= 0 such that
Cψ = λψ,

1
2
〈
C2ψ, ψ

〉
=

1
2
〈Cψ,Cψ〉

= a2
1 |ψ2|2 +

∞∑
k=1

[a2kψ2k + a2k+1ψ2k+2]
2

= (1 + x)2 |ψ2|2 +
∞∑
k=1

[((2k)α + y)ψ2k + ((2k + 1)α + x)ψ2k+2]
2

= (1 + x)2 |ψ2|2 +
∞∑
k=1

[((2k)α + x)ψ2k + ((2k + 1)α + x)ψ2k+2]
2

+ 2(y − x)
∞∑
k=1

[((2k)α + x)ψ2k + ((2k + 1)α + x)ψ2k+2]ψ2k

+ (y − x)2
∞∑
k=1

|ψ2k|2

≥ (1 + x)2 |ψ2|2 + 2(y − x)
∞∑
k=1

((2k)α + x) |ψ2k|2

− 2(y − x)
∞∑
k=1

[
1
2
((2k + 1)α + x) |ψ2k|2 +

1
2
((2k + 1)α + x) |ψ2k+2|2

]

+
∞∑
k=1

(y − x)2 |ψ2k|2

≥ (1 + x)2 |ψ2|2 + 2(y − x)
∞∑
k=1

((2k)α − 1
2
(2k + 1)α +

1
2
x) |ψ2k|2

− 2(y − x)1
2

∞∑
k=2

((2k − 1)α + x) |ψ2k|2 +
∞∑
K=1

(y − x)2 |ψ2k|2
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≥ (1 + x)2 |ψ2|2 + 2(y − x)
∞∑
k=2

((2k)α − 1
2
(2k + 1)α − 1

2
(2k − 1)α) |ψ2k|2

+ 2(y − x)((2)α − 1
2
(3)α +

1
2
x) |ψ2|2 +

∞∑
k=1

(y − x)2 |ψ2k|2 .

It follows that
〈
C2ψ, ψ

〉
≥ (y − x)2 ‖ψ‖2. �

Corollary 3.6. If y > x > −(2α+1 − 3α) then
〈
C2ψ, ψ

〉
> (y − x)2 ‖ψ‖2 and thus

the endpoints of the gap ± |x− y| cannot be eigenvalues.

It remains to consider the case α = 1. The next theorem summarizes results
established in [DJMP].

Theorem 3.7. Choose x > −1, y > −2. Let a2n−1 = (2n− 1) + x, a2n = (2n) + y.
Then (− |x− y| , |x− y|) is a gap in the essential spectrum of C containing at most
2 eigenvalues. Furthermore, 0 is an eigenvalue if and only if y > x. If y > x then
0 is the only eigenvalue in the spectral gap.

With relatively minor changes in the proof, this result can be improved to
allow the possibility of negative entries in (1.1) so that the sequence {an} is still
monotone increasing with limn→∞ an = ∞. An outline of the proof will be given
indicating the needed changes.

Theorem 3.8. Let a2n−1 = (2n− 1) + x, a2n = (2n) + y. Assume an �= 0 ∀n. Then
(− |x− y| , |x− y|) is a gap in the essential spectrum of C. Let N be the smallest
positive integer so that N + (x−1)

2 ≥ 0, N + y
2 ≥ 0 Then the spectral gap contains

at most 2Neigenvalues. Furthermore, 0 is an eigenvalue if and only if y > x.

Proof. Carleman’s condition implies that C defined by (1.1) is self-adjoint. Let
A+ denote the restriction of C2 to the subspace spanned by the basis vectors
{ϕ2k−1}∞k=1. Then A+ is tridiagonal with subdiagonal sequence a+

n = a2n−1a2n

and diagonal sequence b+n = a2
2n−2 + a2

2n−1. Obtain A− from A+ by negating the
diagonal entries. Define the diagonal operator D so that A− = Ã− + D where
Ã− has row sums equal to 0. Then Dϕn = [−(a2

2n−2 + a2
2n−1) + (a2n−3a2n−2 +

a2n−1a2n)]ϕn if a0 = 0.
〈
A−ψ, ψ

〉
=
〈
Ã−ψ, ψ

〉
+ 〈Dψ,ψ〉

= −
∞∑
n=1

a+
n |ψn+1 − ψn|2 + 〈Dψ,ψ〉

= −
∞∑
n=1

(2n− 1 + x)(2n+ y) |ψn+1 − ψn|2 + 〈Dψ,ψ〉

= −4
∞∑
n=1

(n+
x− 1

2
)(n+

y

2
) |ψn+1 − ψn|2 + 〈Dψ,ψ〉 .
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Let N be the smallest positive integer so that N + (x−1)
2 ≥ 0, N + y

2 ≥ 0. Then for
any ψ = {ψn} , ψn = 0, n = 1, . . . , N ,

〈
A−ψ, ψ

〉
≤ −4

∞∑
n=1

(n+N +
x− 1

2
)(n+N +

y

2
) |ψn+1 − ψn|2 + 〈Dψ,ψ〉

≤ (−4)
1
4

∞∑
n=1

|ψn|2 + 〈Dψ,ψ〉

≤ −(x− y)2
∞∑
n=1

|ψn|2 .

Hence 〈A+ψ, ψ〉 ≥ (x − y)2
∞∑
n=1
|ψn|2 and it follows that (− |x− y| , |x− y|) is a

gap in the essential spectrum of C containing at most 2N eigenvalues. �
The next result gives sufficient conditions for the existence of non-zero eigen-

values in the gap.

Theorem 3.9. Let a2n−1 = (2n − 1) + x, a2n = (2n) + y. Assume an �= 0 ∀n. If
x ≥ y and |1 + x| ≤ |x− y| then C defined by (1.1) has a non-zero eigenvalue in
the gap (− |x− y| , |x− y|).
Proof. It was shown in [DP02b] that if an+1 − an ≥ 0 with δ = a2n − a2n−1, d =
a2n+1−an, then 0 is an eigenvalue if and only if δ > d. In this case, it follows that 0
is an eigenvalue if and only if y > x. Also, replacing an by |an| leads to a unitarily
equivalent operator. Note that λ = |1 + x| is a root for P3(λ). Let s(λ) = Pn(λ).
Then the modified Wronskian Wn(s(λ), s(−λ)) = (−1)n2anPn(λ)Pn+1(λ) has at
least one node. Therefore by the results in [T96] the interval (−λ, λ)contains at
least one eigenvalue, which in this case must be non-zero. �
Remark 3.10. If x > −1, and x ≥ y, then |1 + x| ≤ |x− y| implies that y ≤ −1.
If x ≤ −1 and x ≥ y, then |1 + x| ≤ |x− y| implies that y ≤ 2x+ 1.

Example 3.11. Let x = − 1
2 , y = −1. Then the spectral gap is (− 1

2 ,
1
2 ) and it follows

from the above result that there is at least one non-zero eigenvalue in the spectral
gap. By symmetry there must be at least two eigenvalues in the spectral gap, and by
Theorem 3.9, with N = 2, there are exactly two non-zero eigenvalues in this gap.

4. Special case: j2n−1 = j2n

In this section it will generally be assumed that a2n−1 = nα+x, a2n = nα+ y, 0 <
α ≤ 1, with x and y chosen so that an �= 0 ∀n.

Theorem 4.1. For x ≥ y ≥ 0, let a2n−1 = n+ x, a2n = n+ y. Then for C defined
by (1.1)

(−
∣∣1
2 + x− y

∣∣ , ∣∣ 12 + x− y
∣∣)

is a gap in the essential spectrum no non-zero eigenvalues.
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Proof. It was shown in [DJMP] that (−
∣∣ 1
2 + x− y

∣∣ , ∣∣ 12 + x− y
∣∣) is a gap in the

essential spectrum. Thus it remains to consider the eigenvalues. The argument
below considers the restriction of a possible eigenvector to the subspace spanned
by the odd subscripted basis vectors. For any vector ψ in DC and λ �= 0 such that
Cψ = λψ.

1
2
〈
C2ψ, ψ

〉
=

1
2
〈Cψ,Cψ〉

=
∞∑
k=1

[(k + x)ψ2k−1 + (k + y)ψ2k+1]
2

=
∞∑
k=1

[(k + y)ψ2k−1 + (k + y)ψ2k+1 + (x − y)ψ2k−1]
2

=
∞∑
k=1

[(k + y)ψ2k−1 + ((k + y)ψ2k+1]
2

+ 2(x− y)
∞∑
k=1

[(k + y)ψ2k−1 + (k + y)ψ2k+1]ψ2k−1 + (x− y)2
∞∑
k=1

|ψ2k−1|2

≥
∞∑
k=1

k2 |ψ2k−1 + ψ2k+1|2

+ 2(x− y)
∞∑
k=1

[
(k + y)ψ2

2k−1 −
1
2
(k + y)ψ2

2k+1 −
1
2
(k + y)ψ2

2k−1

]

+ (x− y)2
∞∑
k=1

|ψ2k−1|2

≥
∞∑
k=1

k2 |ψ2k−1 + ψ2k+1|2

+ 2(x− y)
∞∑
k=1

[
1
2
(k + y)ψ2

2k−1 −
1
2
(k + y)ψ2

2k+1

]
+ (x− y)2

∞∑
k=1

|ψ2k−1|2

≥
∞∑
k=1

k2 |ψ2k−1 + ψ2k+1|2 + (x − y)
[
(1 + y)ψ2

1 +
∞∑
k=1

ψ2
2k+1

]

+ (x− y)2
∞∑
k=1

|ψ2k−1|2

≥ (
1
2

+ x− y)2
∞∑
k=1

|ψ2k−1|2.

Hence
〈
C2ψ, ψ

〉
≥ (1

2 + x− y)2
∞∑
k=1

|ψk|2. �
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Corollary 4.2. If x > y > 0, then the endpoints of the gap ±
∣∣1
2 + x− y

∣∣ cannot be
eigenvalues.

Proof. In this case the above proof shows that for any vector ψ in DC and λ �= 0

such that Cψ = λψ,
〈
C2ψ, ψ

〉
> (1

2 + x− y)2
∞∑
k=1

|ψk|2. �

Remark 4.3. It should be noted that it follows from Theorem 2.1 in [DP02] that if
x > −1, 0 ≤ y−x ≤ 1, y+ 1

2 (y−x) > 0 then there are no non-zero eigenvalues in the
spectral gap (−

∣∣1
2 + x+ y

∣∣ , ∣∣12 + x+ y
∣∣), since the spectral measure is absolutely

continuous. Furthermore, a careful look at the proof indicates that the conclusion
holds if x �= −1 and 0 ≤ y − x ≤ 1, y + 1

2 (y − x) > 0. Thus, for example, the
conclusion holds if x = − 5

4 , y = − 1
4 . In this case a1 = 1 + x = − 1

4 .

Theorem 4.4. For x > y > −1, let a2n−1 = nα+ x, a2n = nα + y, 0 < α < 1. Then
for C defined by (1.1), (− |x− y| , |x− y|) is a gap in the essential spectrum, and
the closed interval [− |x− y| , |x− y|] contains no non-zero eigenvalues.

Proof. It was shown in [DJMP] that (− |x− y| , |x− y|) is a gap in the essential
spectrum. Thus it only remains to consider the eigenvalues. The argument below
uses the restriction of a possible eigenvector to the subspace spanned by the odd
subscripted basis vectors. For any vector ψ in DC and λ �= 0 such that Cψ = λψ.

1
2
〈C2ψ, ψ〉 = 1

2
〈Cψ,Cψ〉

=
∞∑
k=1

[(kα + x)ψ2k−1 + (kα + y)ψ2k+1]
2

=
∞∑
k=1

[(kα + y)ψ2k−1 + (kα + y)ψ2k+1 + (x− y)ψ2k−1]
2

=
∞∑
k=1

[(kα + y)ψ2k−1 + (kα + y)ψ2k+1]
2

+ 2(x− y)
∞∑
k=1

[(kα + y)ψ2k−1 + (kα + y)ψ2k+1]ψ2k−1

+ (x − y)2
∞∑
k=1

|ψ2k−1|2

≥ 2(x− y)
∞∑
k=1

[
(kα + y)ψ2

2k−1 −
1
2
(kα + y)ψ2

2k+1 −
1
2
(kα + y)ψ2

2k−1

]

+ (x − y)2
∞∑
k=1

|ψ2k−1|2

≥ (x− y)
∞∑
k=1

(kα + y)ψ2
2k−1 − (x− y)

∞∑
k=1

(kα + y)ψ2
2k+1 + (x− y)2

∞∑
k=1

ψ2
2k−1
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≥ (x− y)(1 + y)ψ2
1 + (x− y)

∞∑
k=1

[
((k + 1)α − kα)ψ2

2k+1

]
+ (x− y)2

∞∑
k=1

ψ2
2k−1

> (x− y)2
∞∑
k=1

ψ2
2k−1.

Thus ‖Cψ‖2 > (x− y)2 ‖ψ‖2. �
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Abstract. A turning point method for difference equations is developed. This
method is coupled with the LG-WKB method via matching to provide ap-
proximate solutions to the initial value problem. The techniques developed
are used to provide strong asymptotics for Hermite polynomials.
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1. Introduction

In this article we will be interested developing a turning point theory for difference
equations of the form

an+1ψn+1(x) + (bn − x)ψn(x) + anψn−1(x) = 0, (1.1)

with an > 0, and bn real and matching the solutions obtained from this theory to
those obtained from the LG-WKB method. Various asymptotics for the solutions
of (1.1) with ψ−1 = 0, ψ0 = 1 when the coefficients tend to infinity in magnitude
such as nth root asymptotics, ratio asymptotics, strong asymptotics, and weak
asymptotics, have been investigated by a large number of authors (Braun [B],
Geronimo-Smith [GS], Maejima-Van Assche [MV], Nevai-Dehesa [ND], Schulten-
Gordon [SG], Van Assche [V], Van Assche-Geronimo [VG], etc.). However with
the exception of weak asymptotics these studies required x to be exterior to the
region where the solutions of the above difference equation oscillate. In order to
control the growth of the coefficients it was suggested in Nevai-Dehesa and further
developed in Van Assche, and Van Assche et al. that the preliminary change of

J.S.G. was supported by NSF grants.
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variables x = λly be performed so that a(n, l) = an

λl
and b(n, l) = bn

λl
for n ≤ l are

bounded functions of n and l. This produces the difference equation

a(n+ 1, l)ψ̃(n+ 1, y, l) + (b(n, l)− y)ψ̃(n, y, l) + a(n, l)ψ̃(n− 1, y, l) = 0. (1.2)

To study the solutions of (1.2) in the oscillatory region and near the turning
points a WKB method based upon an epsilon difference equation (see equation
2.6) was proposed by Deift and McLaughlin [DM] and further developed by Costin
and Costin [CC]. While satisfactory away from the turning points, i.e., where
y−b(n,l)
a(n,l) ≈ ±2, this technique requires the matching of various solution of (1.2) in

neighborhoods of the turning points, that shrink as l−1/2 as l tends to infinity. As
noted by Wang and Wong [WW] in their study of the difference equation satisfied
by Bessel functions the above theory does not lead to a satisfactory uniform asymp-
totic expansion for Bessel functions. Other methods to study (1.2) have been
proposed by Dingle and Morgan [DM] and Schulten and Gordon [SG], and we will
use these methods to modify the technique of Deift and McLaughlin. We proceed
as follows: in Section 2 we motivate the turning point technique to be discussed.
In particular a Langer transformation for difference equations is proposed. In the
next section (Section 3) this technique is put on firm ground and it is extended
to the complex plane in Section 4. One of the main drawbacks of the techniques
of the preceeding sections is that they cannot be used to solve the initial value
problem for coefficients in (1.2) that tend to zero as l tends to infinity, for instance
when the coefficients in (1.1) tend to infinity. In order to overcome this we recall,
in Section 5 the WKB method proposed by Deift and McLaughlin away from the
turning points and following Geronimo and Smith modify it to be applicable to
the initial value problem. In Section 6 these techniques are used to obtain uniform
asymptotics for Hermite polynomials. In a sequel to this article [G] the theory of
external fields will be used to help obtain uniform asymptotics for other sets of
orthogonal polynomials including those associated with discrete measures.

2. Motivation

a. Differential equations – the Langer transformation

Consider the differential equation,(
d2

dt2
− ε−2k(t)2

)
φ(t) = 0 k : R→ C (2.1)

where k2 : R → R is assumed to be a smooth monotonically increasing function
of t in [tin, tfi] tin = tinitial, tfi = tfinal with one simple zero, t0, in the region.
Away from t0 the LG-WKB method ([0, p. 191]) gives two solutions

φ±(t) =
1

(|k2(t)|) 1
4
e±ε

−1 ∫ t k(u)du(1 +O(ε)).

While adequate in this region the asymptotics provided by these solutions breaks
down in a neighborhood of t0. The standard procedure introduced by Langer([L],
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[O, p. 398]) to overcome this difficulty is to make the change of variables

2
3
ρ3/2(t) =

∫ t

t0

k(u)du (2.2)

which yields the equation,

d2

dρ2
Φ = (ε−2ρ+ δ(ρ))Φ,

where Φ = (ρ′)1/2φ, δ = k̂−1/2 d2

dρ2 k̂
1/2, with k̂2 = k2

ρ . Langer showed that under
suitable conditions there are two solutions of (2.1) which provide uniform asymp-
totics in a neighborhood of t0, namely

φ1 = k̂−1/2Ai(ε−2/3ρ) +O(ε)f(ε−2/3ρ),

and
φ2 = k̂−1/2Bi(ε−2/3ρ) +O(ε)f(ε−2/3ρ)−1,

where the Airy functions Ai(ε−2/3ρ) and Bi(ε−2/3ρ) satisfy the differential equa-
tion,

d2

dρ2
χ = ε−2ρχ, (2.3)

and f is a function that decays at the same rate as Ai for large values of its
argument.

b. A model equation

In order to find an analog of the Langer transformation for difference equations as
well as the corresponding solutions we begin by considering the model equation

ψ(t+ ε) + ψ(t− ε)− 2 coshk(t)ψ = 0.

Following Schulten and Gordon we search for approximate solutions by making the
ansatz ψ(t) = g(t)Ai(ε−2/3ρ(t)) where the functions g and ρ will be chosen so that
ψ satisfies the difference equation up to order ε2. Roughly speaking this will allow
us to show that there are actual solutions to the above difference equation that
are within ε of these approximate solutions after ε−1 steps. Using the asymptotic
formula for Ai (Olver[O] p. 392),

Ai(ε−2/3ρ) =
e−2/3ε−1ρ3/2

2
√
πε−1/6ρ1/4

(
1− µ1ε

2
3ρ

3/2

)
+O(ε2),

we find

ψ (t± ε) = (g(t)± εg′(t))

e−2/3ε−1ρ3/2(t±ε)

2
√
πε−1/6ρ(t± ε)1/4

(
1− µ1ε

2
3ρ(t± ε)3/2

)
+O(ε2).
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With f = 2
3ρ

3/2 write,

eε
−1f(t)e−ε

−1f(t±ε) = e±f
′(t)
(

1− εf ′′(t)
2

)
+O(ε2).

Thus,

eε
−1fψ(t± ε) = (g(t)± εg′(t))

(
1− εf ′′(t)

2

)(
1∓ εf ′(t)

6f(t)

)

(
1− εµ1

f(t)

)
e±f

′(t)

2
√
πε−1/6ρ1/4(t)

+O(ε2),

which implies

ψ(t+ ε) + ψ(t− ε)− 2 coshk(t)ψ(t)

= (e−f
′(t) + ef

′(t) − 2 coshk(t))ψ(t) + ε

(
f ′(t)
3f(t)

− cosh f ′(t)
sinh f ′(t)

f ′′(t)− 2g′(t)
g(t)

)

× g(t) sinh f ′(t)
e−ε

−1f(t)

2
√
πε−1/6ρ(t)1/4

(
1− εµ1

f(t)

)
+O(ε2).

In order to have only the O(ε2) term remain choose f and g so that

f ′(t) = k(t),

and
g′(t)
g(t)

= −1
2

coshk(t)k(t)′

sinh k(t)
+
ρ′(t)
4ρ(t)

.

Thus
2
3
ρ3/2 =

∫
k(t)dt,

and

g(t) =
(

ρ(t)
sinh2 k(t)

)1/4

.

With this choice of ρ and g, ψ satisfies the second order difference equation up to
order ε2.

c. The Langer transformation for difference equations

For difference equations of the form

an+1ψn+1(x) + (bn − x)ψn(x) + anψn−1(x) = 0, (2.4)

with an > 0, and bn real, we assume that an and bn are discretizations of the at
least three times differentiable functions a(u) and b(u) respectively. With u = t

ε
set

a(t, ε) =
a( tε)
λε

and b(t, ε) =
b( tε )
λε

, (2.5)

then (2.4) becomes the epsilon difference equation

a(tn+1, ε)ψ̃(tn+1, y, ε) + (b(tn, ε)− y)ψ̃(tn, y, ε) + a(tn, ε)ψ̃(tn−1, y, ε) = 0, (2.6)
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where tn = nε, x = λεy, ψ̃(tn, y, ε) = ψn(λεy), and λε is chosen so that a(t, ε)
and b(t, ε) are bounded functions of ε. In order to find the modifications to the
g and k above write a(t + ε, ε) = a(t + ε/2, ε) + εa′(t+ε/2,ε)

2 + O(ε2) and a(t, ε) =
a(t+ ε/2, ε)− εa′(t+ε/2,ε)

2 +O(ε2) and set

cosh k(t, y, ε) =
y − b(t, ε)

2a
(
t+ ε

2 , ε
) for t ≥ t0, (2.7)

cos k(t, y, ε) =
y − b(t, ε)

2a
(
t+ ε

2 , ε
) for t ≤ t0.

Here t0 is such that y−b(t0,ε)
2a(t0+ ε

2 ) = 1. We now define the Langer transformation for
the above difference equation as

2
3
ρ3/2(t, y, ε) =

∫ t

t0

cosh−1(
y − b(u, ε)

2a
(
u+ ε

2 , ε
))du for t ≥ t0, (2.8)

2
3
(−ρ)3/2(t, y, ε) =

∫ t0

t

cos−1 y − b(u, ε)
2a
(
u+ ε

2 , ε
)du for t ≤ t0.

The function g can be written as

g(t, y, ε) =




(
ρ(t,y,ε)

a2(t+ ε
2 ,ε) sinh2 k(t,y,ε)

)1/4

t ≥ t0,
(

ρ(t,y,ε)

a2(t+ ε
2 ,ε) sin2 k(t,y,ε)

)1/4

t < t0,

(2.9)

and the corresponding approximate solutions are given by

ψ1(t, y, ε) = g(t, y, ε)Ai(ε−
2
3 ρ(t, y, ε)), (2.10)

and
ψ2(t, y, ε) = g(t, y, ε)Bi(ε−

2
3 ρ(t, y, ε)). (2.11)

From (2.7) we can rewrite k as

k(t, y, ε) = ln

(
y − b(t, ε)

2a(t+ ε
2 , ε)

+

√
(
y − b(t, ε)

2a(t+ ε
2 , ε)

)2 − 1

)
, (2.12)

where the branch of the square root is chosen so that ln(z +
√
z2 − 1) ∼ ln z for z

large. Then (2.8) can be written in the compact form

2
3
ρ

3
2 (t, y, ε) =

∫ t

t0

k(u, y, ε)du. (2.13)

We will suppose that for each fixed y ∈ [y1, y2], there is an ε0(y) > 0 so that for
each ε ∈ [0, ε0(y)], k2(t, y, ε) is a monotonically increasing function of t with one
zero, t0, in the interval [tin, tfi].
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Also

i. ∂i

∂ti k
2(t, y, ε) ∈ C0([tin, tfi]× [0, ε0]) i = 0, . . . , 3,

ii. ∂i

∂ti
k2(t,y,ε)
t−t0(y,ε) ∈ C0([tin, tfi] × [0, ε0]) , i = 0, 1, 2 with k2(t,y,ε)

t−t0(y,ε) strictly positive
in [tin, tfi]× [0, ε0] and,

iii. | sinh2(k(t,y,ε))
t−t0(y,ε) | > 0 for (t, ε) ∈ [tin, tfi]× [0, ε0].

In order to obtain solutions that are continuous in y we will suppose,

ia. ∂i

∂ti k
2(t, y, ε) ∈ C0([tin, tfi]× [y1, y2]× [0, ε0]), i = 0, . . . , 3

iia. ∂i

∂ti
k2(t,y,ε)
t−t0(y,ε) ∈ C0([tin, tfi]× [y1, y2]× [0, ε0]) , i = 0, 1, 2 with k2(t,y,ε)

t−t0(y,ε) strictly
positive in [tin, tfi]× [y1, y2]× [0, ε0], and

iiia. | sinh2(k(t,y,ε))
t−t0(y,ε) | > 0 for (y, t, ε) ∈ [tin, tfi]× [y1, y2]× [0, ε0].

Finally we will suppose that

∂i

∂ti
a(t, ε) ∈ C0([tin, tfi]× [0, ε0]), i = 0, . . . , 3. (2.14)

The turning points are located at ( y−b(t,ε)
2a(t+ ε

2 ,ε)
)2 = 1 which will be either at

y = 2a(t+ ε
2 , ε)+b(t, ε) = γ+(t, ε) or y = b(t, ε)−2a(t+ ε

2 , ε) = γ−(t, ε). Conditions ii
and iii impose that for each fixed y there is a unique simple zero of k2, t0 ∈ [tin, tfi]
such that y = γ+(t0, ε) and the second turning point is not encountered.

If
A(ε) = inf

t∈[tin,tfi]
γ−(t, ε), (2.15)

and
B(ε) = sup

t∈[tin,tfi]

γ+(t, ε), (2.16)

then we see from above that for each fixed ε in order for y to be a turning point
it must be in the interval [A(ε), B(ε)].

The next section is devoted to making the arguments leading to (2.10) and
(2.11) rigorous.

3. Error analysis

We begin by considering the Langer transformation (2.13). The lemma below which
follows from a lemma of Olver ([O] p. 399) shows that smoothness in k is transferred
to smoothness in ρ.

Lemma 3.1. Suppose that for (y, ε) ∈ [y1, y2] × [0, ε0], k2(t, y, ε) is montonically
increasing for t in [tin, tfi] and satisfies i and ii. Then equation (2.13) gives a one
to one map between t and ρ such that ρ satisfies i and ii. If it is assumed that k2

satisfies ia and iia then so does ρ.
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We now examine the solution to the Airy differential equation. From (2.3) it
can be seen using Taylor series that χ(ε−2/3ρ(t + ε)) and χ(ε−2/3ρ(t− ε)) can be
written in terms of χ(ε−2/3ρ(t)) and χ′(ε−2/3ρ(t)). With

ρ̃± = ±ρ(t± ε)− ρ(t)
ε

, (3.1)

the methods of Wang and Wong [WW, Lemma 1] can be slightly modified to
obtain

Lemma 3.2. Suppose χ is any solution of (2.3) with ρ and ρ̃ continuous then

χ(ε−2/3ρ(t± ε)) = χ(ε−2/3ρ(t)± ε1/3ρ̃±) (3.2)

= χ(ε−2/3ρ(t))X1(ρ, ρ̃±,±ε)± ε1/3χ′(ε−2/3ρ(t))X2(ρ, ρ̃±,±ε),
with

Xi(ρ, ρ̃±,±ε) =
∞∑
n=0

(±ε)nXi,n(ρ, ρ̃±) i = 1, 2, (3.3)

where for ρ > 0,

X1,0(ρ, ρ̃) = cosh
√
ρρ̃ , X2,0(ρ, ρ̃) =

sinh
√
ρρ̃

√
ρ

, (3.4)

and

Xi,k(ρ, ρ̃) =
1
√
ρ

∫ ρ̃

0

sXi,k−1(ρ, s) sinh
√
ρ(ρ̃− s)ds. (3.5)

Above if ρ < 0 then
√
ρ is replaced by i

√−ρ.
Also using induction one finds (see Wang and Wong [WW])

|X1,k(ρ, ρ̃)| ≤ 3k
(

1
3

)

k

|ρ̃|3k
(3k)!

e�(
√
ρρ̃), (3.6)

and

|X2,k(ρ, ρ̃)| ≤ 3k
(

2
3

)

k

|ρ̃|3k+1

(3k + 1)!
e�(

√
ρρ̃). (3.7)

By taking the partial of (3.2) with respect to ρ̃± it is not difficult to see that

χ′(ε−2/3ρ(t)± ε1/3ρ̃±) = ±ε−1/3χ(ε−2/3ρ(t))X3(ρ, ρ±,±ε) (3.8)

+ χ′(ε−2/3ρ(t))X4(ρ, ρ±,±ε),
where

X3 =
∂

∂ρ̃
X1, (3.9)

and
X4 =

∂

∂ρ̃
X2. (3.10)

Equations (3.4) and (3.5) imply that

X1,1(ρ, ρ̃±) =
ρ̃2
±

4
√
ρ

sinh
√
ρρ̃± −

ρ̃±
4ρ

cosh
√
ρρ̃± +

1
4ρ3/2

sinh
√
ρρ̃±,
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and

X2,1(ρ, ρ̃±) =
ρ̃2
±

4
√
ρ

cosh
√
ρρ̃± −

ρ̃±
4ρ3/2

sinh
√
ρρ̃±.

If ρ̃± can be expanded as

ρ̃± = ρ(t)′ ± ε ρ(t)
′′

2
+ r̂±, (3.11)

with

r̂± = ± 1
2ε

∫ t±ε

t

ρ(3)(s)(t± ε− s)2ds, (3.12)

then

X1,0 − cosh
√
ρρ′ ∓ ε

√
ρρ′′

2
sinh
√
ρρ′ (3.13)

= r̂± sinh
√
ρρ′ +

ρ

2

∫ ρ̃±

ρ′
cosh

√
ρs(ρ̃± − s)ds,

X1,1 −
(ρ′)2

4
√
ρ

sinh
√
ρρ′ +

ρ′

4ρ
cosh

√
ρρ′ − 1

4ρ3/2
sinh
√
ρρ′ (3.14)

=
∫ ρ̃±

ρ′
(
s

4
√
ρ

sinh
√
ρs+

s2

4
cosh

√
ρs) ds,

X2,0 −
sinh
√
ρρ′

√
ρ

∓ ερ
′′

2
cosh

√
ρρ′ = r̂± cosh

√
ρρ′ (3.15)

+
√
ρ

2

∫ ρ̃±

ρ′
sinh
√
ρs(ρ̃± − s)ds,

and

X2,1 −
(ρ′)2

4ρ
cosh

√
ρρ′ +

ρ′

4ρ3/2
sinh
√
ρρ′ (3.16)

=
∫ ρ̃±

ρ′
((
s2

4
− 1

4ρ
) sinh

√
ρs+

s

4
√
ρ

cosh
√
ρs)ds.

If ρ < 0 then replace
√
ρ by i

√−ρ in the above formulas.
The theorems below makes rigorous the argument of Shulten and Gorden and

show that the Langer transformation plays a role in difference equations similar
to that in differential equations.

Set
W = {(t, ε), t ∈ [tin + ε, tfi − ε] ⊂ [tin, tfi], ε ∈ (0, ε0]}

and
W = clos(W ).
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Theorem 3.3. Suppose that for each fixed y ∈ [y1, y2], k2 is monotonically increas-
ing in t with a single zero, t0 ∈ [tin, tfi], and satisfies i, ii, and iii. Also suppose
a(t, ε) is strictly positive and satisfies (2.14). Let ψi(t, y, ε) i = 1, 2 be given by
equations (2.10) and (2.11) respectively. Then for all (t, ε) ∈W,

a(t+ ε, ε)ψi(t+ ε, y, ε) + a(t, ε)ψi(t− ε, y, ε) (3.17)

− 2a(t+ ε/2, ε) coshk(t, y, ε)ψi(t, y, ε)

= β(i)(t, y, ε) i = 1, 2

where for each y ∈ [y1, y2], ψi ∈ C0([tin, tfi]× (0, ε0]), and β(i) ∈ C0(W ). Further-
more,

|β(1)(t, y, ε)| ≤ c(y)ε2 sup
u∈(t−ε,t+ε)

[|Ai(ε−2/3ρ(u, y, ε))|+ ε1/3|Ai′(ε−2/3ρ(u, y, ε))|],

while

|β(2)(t, y, ε)| ≤ c(y)ε2 sup
u∈(t−ε,t+ε)

[|Bi(ε−2/3ρ(u, y, ε))|+ ε1/3|Bi′(ε−2/3ρ(u, y, ε))|].

If it is assumed that ia–iiia. hold then ψi ∈ C0([tin, tfi] × [y1, y2] × (0, ε0]), and
βi ∈ C0(W × [y1, y2]).

Proof. We will only consider the case i = 1 as the i = 2 case is proved in a similar
manner. From the Lemma 3.1 it follows that k2(y,t)

ρ(t) satisfies i. and is nonzero for
y ∈ [y1, y2] and (t, ε) ∈ [tin, tfi] × [0, ε0]. From the hypotheses on k we see also
that k

sinh k satisfies i in the same region. This implies g(t) satisfies i and is nonzero.
Lemma 3.2 says that

Ai(ε−2/3ρ(t± ε)) = Ai(ε−2/3ρ(t))X1(ρ, ρ̃±,±ε)± ε1/3Ai′(ε−2/3ρ(t))X2(ρ, ρ̃±,±ε)
(3.18)

where ρ̃± has the expansions given in (3.11). Equations (3.13) through (3.16),
conditions i and ii and equations (3.6) and (3.7) imply that

|X1,0 − cosh
√
ρρ′ ∓ ε sinh

√
ρρ′
√
ρρ′′

2
| < c(y)ε2, (3.19)

|X1,1 −
(ρ′)2

4
√
ρ

sinh
√
ρρ′ +

ρ′

4ρ
cosh

√
ρρ′ − 1

4ρ3/2
sinh
√
ρρ′| < c(y)ε, (3.20)

|X2,0 −
sinh
√
ρρ′

√
ρ

∓ ε cosh
√
ρρ′

ρ′′

2
| < c(y)ε2, (3.21)

|X2,1 −
(ρ′)2

4ρ
cosh

√
ρρ′ − ρ′′

2
cosh

√
ρρ′′ +

ρ′

4ρ3/2
sinh
√
ρρ′| < c(y)ε, (3.22)

and

|X1,k| < 3k
(

1
3

)

k

c(y)k

(3k)!
, |X2,k| < 3k

(
2
3

)

k

c(y)k

(3k)!
,
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where c(y) is independent of (t, ε) ∈W . Thus,

Ai(ε−2/3ρ(t± ε)) =

(
cosh

√
ρρ′ (3.23)

± ε
[
(ρ′)2

4
√
ρ

sinh
√
ρρ′ +

√
ρρ′′

2
sinh
√
ρρ′ − ρ′

4ρ
cosh

√
ρρ′ +

1
4ρ3/2

sinh
√
ρρ′
])

Ai

± ε1/3
(

sinh
√
ρρ′

√
ρ

± ε
[
(ρ′)2

4ρ
cosh

√
ρρ′ +

ρ′′

2
cosh

√
ρρ′ − ρ′

4ρ3/2
sinh
√
ρρ′
])

Ai′

+ e(t, y, ε).

From the above estimates and the convergence of the series (3.3) we obtain the
bound

|e(t, y, ε)| ≤ ε2c1(y) sup
u∈(t−ε,t+ε)

[|Ai(ε−2/3ρ(u, y, ε))|+ ε1/3|Ai′(ε−2/3ρ(u, y, ε))|].

Suppose for now that ρ �= 0. If g(t±ε) and a(t± ε
2 ) are expanded out to second order

in ε we find using the equation, g
′

g = 1
4
ρ′

ρ −
1
2
a′(t+ε2)
a(t+ ε

2 ) −
cosh(ρ1/2ρ′)
2 sinh(ρ1/2ρ′) (

ρ−1/2ρ′2

2 +ρ1/2ρ′′)
that

ã(t+ ε)(gAi)(t+ ε) + ã(t)(gAi)(t− ε)− (y − b(t, ε))(gAi)(t) (3.24)

= a
(
t+

ε

2

)
g(t)

[
Ai(ε−2/3ρ(t+ ε)) + Ai(ε−2/3ρ(t− ε))

− 2 cosh(ρ1/2ρ′)Ai(ε−2/3ρ(t))

+ ε

(
1
4
ρ′

ρ
− cosh(ρ1/2ρ′)

2 sinh(ρ1/2ρ′)

(
ρ−1/2ρ′2

2
+ ρ1/2ρ′′

))

×
(
Ai(ε−2/3ρ(t+ ε))−Ai(ε−2/3ρ(t− ε))

)]

+ e1(t, y, ε),

where

|e1(t, y, ε)| ≤ 2ε2 sup
u∈(t−ε,t+ε)

[|a′g′|+ |ag′′|+ |ga′′|+ ε(|a′g′′|+ |a′′g′|)

+ ε2|a′′g′′|]|Ai(ε−2/3ρ(u, y, ε))|
≤ ε2c2(y) sup

u∈(t−ε,t+ε)
|Ai(ε−2/3ρ(u, y, ε))|.

Here,

c2(y) = sup
(t,ε)∈W

[|a′g′|+ |ag′′|+ |ga′′|+ ε(|a′g′′|+ |a′′g′|) + ε2|a′′g′′|].
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This as well as (3.23) show that there is cancellation on the right-hand side of
(3.24) out to order ε2 so that

a(t+ ε)(gAi)(t+ ε) + a(t)(gAi)(t− ε)− 2a (t+ ε2) cosh(ρ1/2ρ′)(gAi)(t)

= β(1)(t, y, ε), (3.25)

where

|β(1)(t, y, ε)| ≤ ε2c(y) sup
u∈(t−ε,t+ε)

[|Ai(ε−2/3ρ(u, y, ε))|+ ε1/3|Ai′(ε−2/3ρ(u, y, ε))|].

Since
(
a
(
t+

ε

2

)1/2
g(t)
)′

= a
(
t+

ε

2

)
g(t)
(

1
4
ρ′

ρ
− cosh(ρ1/2ρ′)

2 sinh(ρ1/2ρ′)

)(
ρ−1/2ρ′22 + ρ1/2ρ′′

)
,

the restriction ρ �= 0 can now be removed. An analogous bound for β(2)(t, y, ε)
holds with Ai replaced by Bi. The continuity properties follow from conditions
i–iii, (3.2) and the fact that the Airy functions are continuous (in fact entire)
functions of their arguments. The uniformity of the error when ia–iiia are imposed
follow by taking the supremum over y in the constants given and the continuity
properties follow as above. �

To show that the above functions stay close to real solutions of the difference
equation we introduce some auxiliary functions.

Let u(j)(x) = g(x)ũ(j)(x) with ũ(i)(x) =
(−x

3

)1/2
e(−1)j+1iπ/6H

(j)
1/3(

2
3 (−x)3/2).

where H(1)
1/3, H

(2)
1/3 are the first and second kind Hankel functions of order one third.

Here we define ln z so that it is positive for large enough positive z. From the series
representation forH(i)

1/3 we see that ũ(i)(x) is continuous and infinitely differentiable
for x real and each satisfies the Airy differential equation. The following give the
relations between ũ(j), Ai and Bi [O, pp. 250 and 392]. For x > 0,

Ai(x) = −1
2
ũ(1)(x) =

1
2

(x
3

)1/2
e2iπ/3H

(1)
1/3

(
2
3
x3/2eiπ/2

)
,

and

Bi(x) = (
x

3
)1/2Re

(
e−iπ/6H(2)

1/3

(
2
3
x3/2eiπ/2

))
,

while for x < 0
Ai(x) = Re(ũ(1)(x)),

and
Bi(x) = −Im(ũ(1)(x)).
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For x < 0 , ũ(2)(x) = ũ(1)(x) (Olver [O] p. 238). Note that for large negative x we
find that

ũ(j)(x) =
1√
π

(−x)−1/4e(±1)(j+1)(i 23 (−x)3/2− iπ
4 )

(
1 +

1
|x|2/3

)
, (3.26)

and

ũ(j)(x)′ =
1√
π

(−x)1/4e(±1)(j+1)(i 23 (−x)3/2− iπ
4 )

(
1 +

1
|x|2/3

)
. (3.27)

An important property of ũ(j), is that they do not vanish for all x real [W]. Some
useful auxiliary functions we will use below are the modulus function, M , and
weight function, E, associated with the Airy functions. If c0 < 0, c0 ∼ −.36 is the
largest point on the x axis where Ai(x) = Bi(x) we find from Olver [O, p. 395]
that

M(x) = (2Ai(x)Bi(x))1/2, E(x) =
(

Bi(x)
Ai(x)

)1/2

, x ≥ c0, (3.28)

and
M(x) = (Ai(x)2 + Bi(x)2)1/2, E(x) = 1, x ≤ c0.

The Airy functions Ai and Bi can be expressed in terms of these functions as

E(x)Ai(x) = M(x) sin θ(x), E−1(x)Bi(x) = M(x) sin θ(x), (3.29)

where θ is called the phase function. The modulus and weight functions have the
following asymptotic properties

E(x) ∼
√

2e
2
3x

3
2 ,

for large positive x while, M(x) ∼
√
π|x|−1/4, for large x. The weight function is

a nondecreasing function of its argument while the modulus function is increasing
for x ≤ c0 ([O, Lemma 5.1]). Since M is continuous there is a positive constant c3
such that for all x,

M(x) ≤ c3. (3.30)

We also have [O, p. 395] that

π|x|1/2M(x)2 ≤ λ1 < 2. (3.31)

Formulas similar to (3.29) also hold for the derivatives of the Airy functions. In
this case the functions M and θ are replaced by N and ω respectively. For large
x, N(x) ∼ √π|x|1/4 so from the continuity of N(x) we find that

N(x) ≤ c4(1 + |x|1/4) (3.32)

Furthermore it also follows from the above asymptotic formulas that there is a
constant, say c5, such that

|E
2(x)u(1)(x)
ũ(2)(x)

|, |E
−2(x)ũ(2)(x)
ũ(1)(x)

| ≤ c5. (3.33)
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That ũ(j) solve the same differential equations as the Airy functions implies
using the above arguments,

Lemma 3.4. Suppose that for each fixed y ∈ [y1, y2], k2 is monotonically increasing
in t with a single zero , t0 ∈ [tin, tfi], and satisfies i, ii, and iii. Also suppose a(t, ε)
is strictly positive and satisfies (2.14). Then for all (t, ε) ∈W ,

a(t+ ε, ε)u(j)(t+ ε, y, ε) + a(t, ε)u(j)(t− ε, y, ε) (3.34)

− 2a(t+ ε/2) coshk(t, y, ε)u(j)(t, y, ε) = β
(j)
1 (t, y, ε), j = 1, 2

where for each y ∈ [y1, y2], u(j) ∈ C0([tin, tfi] × (0, ε0]), and β
(j)
1 ∈ C0(W ).

Furthermore,

|β(j)
1 (t, y, ε)| ≤ c(y)ε2 sup

u∈(t−ε,t+ε)

(
M(ε−2/3ρ(u, y, ε))

+ ε1/3N(ε−2/3ρ(u, y, ε))
)
E(−1)j

(ε−2/3ρ(u, y, ε)).

If it is assumed that ia.–iiia. hold then u(j) ∈ C0([tin, tfi]× [y1, y2]× (0, ε0]), and
β(j) ∈ C0(W × [y1, y2]).

Since ũ(j) satisfy the Airy equation it is not difficult to compute their
Wronskian

W (ũ(1), ũ(2)) = ũ(1)(x)′ũ(2)(x) − ũ(2)(x)′ũ(1)(x) =
2i
π
.

With this we can obtain,

Lemma 3.5. Suppose that for each fixed y ∈ [y1, y2], k2 is monotonically increasing
in t with a single zero , t0 ∈ [tin, tfi], and satisfies i, ii, and iii. Also suppose a(t, ε)
is strictly positive and satisfies (2.14). Then for all (t, ε) ∈W ,

u(1)(t+ ε, y, ε)u(2)(t, y, ε)− u(1)(t, y, ε)u(2)(t+ ε, y, ε) (3.35)

= ε1/3
2i
π
g(t+ ε, y, ε)g(t, y, ε)X2(ρ, ρ̃+, ε).

For ε0 sufficiently small there is a constant c6(y) such that

| 2
π
g(t+ 1, y, ε)g(t, y, ε)X2(ρ, ρ̃+, ε)|−1 < c6(y) (3.36)

If it is assumed that ia.-iiia. hold then c6 can be choosen uniform in y.

Proof. Equation (3.35) follows from the Wronskian identity above and (3.2) with
χ replaced by u(i), i = 1, 2. Conditions ii and iii imply that for ε0 sufficiently
small X2(ρ, ρ̃+) ((3.4)) is nonzero. The convergence of the series for X2 which
follows from (3.7) shows that X2 is nonzero for ε0 sufficiently small which leads to
(3.36). �
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In the rest of the paper we will assume that ε0 is chosen sufficiently small so
that (3.36) holds.

We now apply the above results to show how close ψj (tn, y, ε) stays to a
solution of the difference equation

a1((n+ 1)ε, ε)f(n+ 1) + a1(nε, ε)f(n− 1)− (y − b1(nε, ε))f(n) = 0 . (3.37)

With tn = εn, σji = fi(n)−ψj(n)
u(j)(n)

i = 1 . . . 2, ψ̂j(n) = ψj(n)
u(j)(n)

, β̂(j) = β(j)(n)
u(j)(n)

, and

∆(w(n)) ≡ w(n)− w1(n),

we find using (3.17) and (3.37),

u(j)(n− 1) (σj1(n)− σj1(n− 1))− u(j)(n+ 1)
a((n+ 1)ε, ε)
a(nε, ε)

(σj1(n+ 1)− σj1(n))

(3.38)

= hj1(n) + qj1(n)

where

hj1(n) =

(
∆
(
y − b(nε, ε)
a(nε, ε)

)
+
β̂

(j)
1 (nε)
a(nε, ε)

)
u(j)(n)σj(n)

−∆
(
a((n+ 1)ε, ε)
a(nε, ε)

)
u(j)(n+ 1)σj(n+ 1),

and

qj1(n) = ∆
(
y − b(nε, ε)
a(nε, ε)

)
u(j)(n)ψ̂j(n)

−∆
(
a((n+ 1)ε, ε)
a(nε, ε)

)
u(j)(n+ 1)ψ̂j(n+ 1) + β̂(j)(nε)

u(j)(n)
a(nε, ε)

.

Selecting a solution of f1 of (3.37) such that σj1(n2) = 0 = σj1(n2 − 1) yields

σj1(n) =
n2−1∑
i=n+1

Gj1(n, i)
hj(i) + qj(i)
u(j)(i− 1)

where

Gj1(n, i) = −
i−1∑
k=n

a(iε, ε)u(j)(i− 1)u(j)(i)
a((k + 1)ε, ε)u(j)(k)u(j)(k + 1)

. (3.39)

The above formula for σ can be recast as

σj1(n) =
n2−1∑
i=n+1

G̃j1(n, i)
qj1(i)

u(j)(i− 1)
+

n2∑
i=n+1

Kj
1(n, i)σ

j
1(i), (3.40)
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where

Kj
1(n, i) = G̃j1(n, i)

(
∆
(
y − b(iε, ε)
a(iε, ε)

)
+
β̂

(j)
1 (iε)
a(iε, ε)

)
u(j)(i)

u(j)(i− 1)

+ G̃j1(n, i− 1)∆
(

a((i)ε, ε)
a((i− 1)ε, ε)

)
u(j)(i)

u(j)(i− 2)
.

Here G̃j1(n, i) = Gj1(n, i) for i ≤ n2 − 1 and zero otherwise. Note that Gj1(n, i) = 0
for i ≤ n.

Applying a similar argument to that above on the equation

u(j)(n+ 1)(σj2(n+ 1)− σj2(n))− a(nε, ε)
a((n+ 1)ε, ε)

u(j)(n− 1) (σj2(n)− σj2(n− 1))

(3.41)

= hj2(n) + qj2(n),

where

hj2(n) = −
(

∆
(
y − b(nε, ε)
a((n+ 1)ε, ε)

)
+

β̂
(j)
1 (nε)

a((n+ 1)ε, ε)

)
u(j)(n)σj(n)

+ ∆
(

(a(nε, ε)
a((n+ 1)ε, ε)

)
u(j)(n− 1)σj(n− 1),

and

qj2(n) = −∆
(

y − b(nε, ε)
a1((n+ 1)ε, ε)

)
u(j)(n)ψ̂j(n)

+ ∆
(

a(nε, ε)
a((n+ 1)ε, ε)

)
u(j)(n− 1)ψ̂j(n− 1)− β̂(j)(nε)u(j)(n)

a((n+ 1)ε, ε)
,

and selecting a solution f2 of (3.37) such that σj2(n1) = 0 = σj2(n1 + 1) gives

σj2(n) =
n−1∑

i=n1+1

Gj2(n, i)
qj2(i)

u(j)(i+ 1)
+

n−1∑
i=n1

Kj
2(n, i)σj2(i). (3.42)

Here G̃j2(n, i) = Gj2(n, i) for i ≥ n1 + 1 and zero otherwise,

Gj2(n, i) =
n−1∑
k=i

a((i+ 1)ε, ε)u(j)(i+ 1)u(j)(i)
a((k + 1)ε, ε)u(j)(k)u(j)(k + 1)

, (3.43)

and

Kj
2(n, i) = −G̃j2(n, i)

(
∆
(
y − b(iε, ε)
a((i+ 1)ε, ε)

)
+

β̂
(j)
1 (iε)

a((i+ 1)ε, ε)

)
u(j)(i)

u(j)(i+ 1)

+ G̃j2(n, i+ 1)∆
(
a((i+ 1)ε, ε)
a(i+ 2)ε, ε)

)
u(j)(i)

u(j)(i+ 2)
.

The lemma below gives a bound on the above Green’s functions.
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Lemma 3.6. Set z(i) = ε−2/3ρ(iε, y, ε) and suppose that the hypotheses of Lem-
ma 3.5 hold. Then for fixed y such that [tn, ti] ⊂ [tin + ε, tfi − ε], ε ∈ (0, ε0] the
following inequalities hold

|Gjj(n, i)| ≤ G(i) = c(y)ε−1/3M(i)M(i− 1), j = 1, 2 (3.44)

If ia–iiia hold then the above constant can be chosen uniform in y.

Proof. Set

c7(y) = sup
(t,ε)∈W

|g(t+ ε, y, ε)|,

c8(y) = sup
(t,ε)∈W

E−1(x(t))E(x(t + ε)), x = ε−2/3ρ(t, y, ε).

Since g is strictly bounded (from ii and iii) we find that c7 is finite. The continuity
and asymptotic properties of E show that c8 is also finite. If conditions ia–iiia hold
then the above constants can be made uniform in y. The hypothesis that k2 is a
monotonically increasing function of t implies the e−

2
3ε ρ

3
2 (t) will be exponentially

decreasing for t > t0 and of magnitude one for t < t0. Thus it is appropriate to
set j = 1 when considering the solution to (3.38) and j = 2 when considering the
solutions (3.41).

We now take up the case i = 1 and we will temporarily suppress the depen-
dence on all variables except k. Observe that the denominators in each term of G1

1

can be recast as
1

a(k + 1)u(1)(k)u(1)(k + 1)
(3.45)

=
1

a(k + 1)
1

u(2)(k + 1)u(1)(k)− u(2)(k)u(1)(k + 1)

(
u(2)(k + 1)
u(1)(k + 1)

− u(2)(k)
u(1)(k)

)
.

Since
1

a(k + 1)
1

u(2)(k + 1)u(1)(k)− u(2)(k)u(1)(k + 1)
(3.46)

− 1
a(k + 2)

1
u(2)(k + 2)u(1)(k + 1)− u(2)(k + 1)u(1)(k + 2)

= −u(2)(k + 1)
a(k + 2)u(1)(k + 2) + a(k + 1)u(1)(k))

Dk

+ u(1)(k + 1)
a(k + 2)u(2)(k + 2) + a(k + 1)u(2)(k))

Dk
),

where Dk is the common denominator of the left-hand side of the above equation,
equation (3.34) can be use to recast (3.46) as

=
β

(2)
1 (k + 1)u(1)(k + 1)− β(1)

1 (k + 1)u(2)(k + 1)
Dk

.
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With the above equations, summation by parts yields

i−1∑
k=n

1
a(k + 1)u(1)(k)u(1)(k + 1)

(3.47)

=
i−2∑
k=n

(
u(2)(k + 1)
u(1)(k + 1)

− u(2)(j)
u(1)(j)

)
β

(2)
1 (k + 1)u(1)(k + 1)− β(1)

1 (k + 1)u(2)(k + 1)
Dk

+
(
u(2)(i)
u(1)(i)

− u(2)(n)
u(1)(n)

)
1
a(i)

1
u(2)(i)u(1)(i− 1)− u(2)(i− 1)u(1)(i)

.

From equation (3.33) we find using the monotonicity of E that

|u
(2)(m)
u(1)(m)

| ≤ c5E2(i),

for m ≤ i. Also the definitions of β and β1, equations (3.32) and (3.30) yield,

|β(2)
1 (k + 1)u(1)(k + 1)| < c(y)ε2c3(c3 + 2ε1/6c4(y))c7(y),

and

|β(1)
1 (k + 1)u(2)(k + 1)| < c(y)ε2c3(c3 + 2ε1/6c4(y))c7(y)c8(y).

Finally from Lemma 3.5 we find that if ε0 is chosen sufficiently small so that
equation (3.36) holds for all (t, ε) ∈W , then

| 1
a(k + 1)(u(2)(k + 1)u(1)(k)− u(2)(k)u(1)(k + 1))

| ≤ ε−1/3c6(y) sup
1

a(t, ε)
.

Since there are at most ε−1 terms in the sum on the right-hand side of (3.47) we
find using the above bounds that it is bounded by a constant times ε1/3E2(i). The
above inequalities also show that the boundary term in (3.47) is bounded by a
constant times ε−1/3E2(i). From the relations between u(1) and the Airy functions
we find the inequality

|a(i)u(1)(i− 1)u(1)(i)| ≤ c7(y)2 sup a(t, ε)M(i− 1)M(i)E−1(i− 1)E−1(i),

which used with c8 yields

|G1
1(n, i)| ≤

i−1∑
k=n

| a(i)u(1)(i− 1)u(1)(i)
a(k + 1)u(1)(k)u(1)(k + 1)

| ≤ c(y)ε−1/3M(i)M(i− 1),

which gives the result for i = 1. The result for i = 2 follows in an analogous
manner with the roles of u(1) and u(2) interchanged. �
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With the above lemma we can now show

Lemma 3.7. Suppose that the hypotheses of Lemma 3.5 hold and [tN1−1, tN2+1] ⊂
[tin, tfi], ε ∈ (0, ε0]. Then,

N2∑
j=N1

G(i) < c(y)ε−1.

If ia–iiia hold then the above constant can be chosen uniform in y.

Proof. From Lemma 3.6 we find

N2∑
i=N1

G(i) ≤ c̃(y)ε−1/3
N2∑
i=N1

M(i− 1)M(i).

The sum on the right-hand side of the above equation can be bounded by

N2∑
i=N1

M(i− 1)M(i) ≤ c23 +
∑

(i:ρ(i−1)>0)

M(i− 1)M(i) +
∑

(i:ρ(i)<0)

M(i− 1)M(i).

If (3.31) is now used we find

∑
(i:ρ(i−1)>0)

M(i− 1)M(i) ≤ λ2
1

c9(y)
ε−2/3

∫ tN2

t0

dt

(t− t0)1/2
≤ c(y)ε−2/3,

where

c9(y) = inf
t,ε
| ρ(t, y, ε)
(t− t0(y, ε))

| 12 .

Condition ii assures that c9(y) > 0. Applying the same reasoning to the remaining
sum yields the result. �

With the above we will now show that there is an actual solution of the
difference equation (3.37) that is close to the approximate solution. First set

c10(y) = max

(
sup

(t,ε)∈W
|u

(j)(t+ 1, y, ε)
u(j)(t, y, ε)

|, sup
(t,ε)∈W

| u(j)(t, y, ε)
u(j)(t+ 1, y, ε)

|
)

j = 1, 2

Theorem 3.8. Suppose that for each fixed y ∈ (y1, y2), k2 is monotonically in-
creasing in t with a single zero t0 ∈ [tin, tfi] and satisfies i, ii, and iii,. Also sup-
pose a(t, ε) is strictly positive and satisfies (2.14), and that a1(t, ε) and b1(t, ε) ∈
C0([tin, tfi])× C0([0, ε0]), are uniformly bounded on [tin, tfi]× [0, ε0], and a1(t, ε)
is strictly positive. Let [tN1−1, tN2+1] ⊂ [tin, tfi], ε ∈ (0, ε0], and set

K(i) = c10(y)G(i)
(
|∆
(

a(iε)
a((i− 1)ε)

)
|+ |∆

(
y − b(iε)
a(iε)

)
|
)
, j = 1, 2.
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Then there exists solutions f1 and f2 of (3.37) such that

|σ1
1(nε)| = |f1(nε)− ψ

1(nε)
u(1)(nε)

| (3.48)

≤ c(y)
N2∑
N1

(|K(i) +G(i)|β̂(1)(i)|)ec(y)
∑N2

N1
(K(i)+G(i)|β̂(1)

1 (i))|),

and

|σ2
2(nε)| = |f2(nε)− ψ

2(nε)
u(2)(nε)

| (3.49)

≤ c(y)
N2∑
N1

(K(i) +G(i)|β̂(2)(i)|)ec(y)
∑N2

N1
(K(i)+G(i)|β̂(2)

1 (i))|).

Thus, if ∑
K(i) = o(1), j = 1, 2, (3.50)

then
fj(n, y, ε)− ψj(n, y, ε)

u(j)(n, y, ε)
= o(1), j = 1, 2, (3.51)

uniformly in W . If

sup
(t,ε)∈W

|a(t, ε)− a1(t, ε)| = 0(ε2) = sup
t,ε
|b(t, ε)− b1(t, ε)|, (3.52)

then the o(1) in equation (3.51) is in fact 0(ε). If it is assumed that ia.–iiia. hold
then the above convergence is uniform on W × [y1, y2].

Proof. The interval [tN1 , tN2 ] ⊂ [tin, tfi], ε ∈ (0, ε0] so that Theorem 3.3 and
Lemma 3.4 can be used. Take the magnitude of both sides of equation (3.40) with
j = 1. Replace |G̃1

1(n, i)| by G(i) and note that |ψ̂j | is uniformly bounded as are
|a(nε, ε)|, |a(nε, ε)|−1, |a1(nε, ε)|, and |a1(nε, ε)|−1. Inequality (3.48) now follows
from the Picard iteration. The inequality (3.49) follows from equation (3.42) (with
j = 2) in a similar manner. Suppose now that (3.50) holds. From Theorem 3.3 and
Lemma 3.4 we see that |β̂(1)(i)| = c(y)ε2 = |β̂(1)

1 (i)| for all i ∈ [N1 + 1, N2 − 1].
Thus

n2∑
n1

G(i)|β̂(1)(i)|) ≤ c(y)ε,

where Lemma 3.7 has been used. Since the same inequality holds with β̂(1) replaced
by β̂

(1)
1 we see that there is a solution f1 satisfying (3.51). If (3.52) holds then∑

K1(i) ≤ cε2
∑
G(i) = c(y)ε so that (3.51) is true for j = 1 with o(1) replaced

by 0(ε). That the convergence is uniform on W or uniform on W × [y1, y2] follows
from the fact that the constants in the error terms may be chosen uniform on W
or W × [y1, y2] respectively. Similar reasoning can be used for f2. �
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4. Extension to complex values

The above considerations can be extended to complex values of the parameter y.
We first extend Theorem 3.3. We remind the reader that

g(t, y, ε) =

(
ρ(t, y, ε)

a2
(
t+ ε

2 , ε
)
sinh2(ρ1/2ρ′)(t, y, ε)

)1/4

,

where the above differentiation is with respect to t. Let Ω be a region in the
complex plane and H(Ω) the set of functions holomorphic in Ω. We will assume

ib. g and ρ ∈ C∞([tin, tfi]× [0, ε0])×H(Ω), and ∂i

∂ti g and ∂i

∂ti ρ ∈ C0([tin, tfi]×
[0, ε0]× Ω), i = 0, . . . , 3,

iib. there is a point t0(y, ε) such that ρ
t−t0 ∈ C

2([tin, tfi]) × C0([0, ε0] × Ω) and
| ρ
t−t0(y,ε) | is uniformly bounded away from zero for (t, y, ε) ∈ [tin, tfi]× Ω×

[0, ε0],
iiib. for fixed (y, ε) ∈ Ω× [0, ε0], Reρ(t, y, ε)3/2 is a nonincreasing function of t.

Remark. The choice of iiib. is dictated by the examples discussed below.

Theorem 4.1. Let Ω be a region in the complex plane. Suppose ib holds and
a ∈ C∞([tin, tfi] × [0, ε0]) is strictly positive for (t, ε) ∈ [tin, tfi] × [0, ε0]. Let f
be any entire function solution of the Airy differential equation and ψ(t, y, ε) =
g(ρ(t, y, ε))f(ε−2/3ρ(t, y, ε)). Then ψ ∈ C∞([tin, tfi] × (0, ε0]) × H(Ω) and for all
(t, ε) ∈ W satisfies

a(t+ ε, ε)ψ(t+ ε, y, ε) + a(t, ε)ψ(t− ε, y, ε) (4.1)

− 2a(t+ ε/2, ε) cosh(ρ−1/2ρ′(t, y, ε))ψ(t, y, ε) = β(f)(t, y, ε)

where β(f) ∈ C(W )×H(Ω), and β(f) ∈ C∞(W × Ω). Furthermore,

|β(f)(t, y, ε)| ≤ d(y)ε2 sup
u∈(t−ε,t+ε)

[|f(ε−2/3ρ(u, y, ε))|+ ε1/3|f ′(ε−2/3ρ(u, y, ε))|].

In the above formulas the constant d(y) may be chosen uniform on compact subsets
of Ω.

Proof. Let K be a compact subset of Ω and set di(K) = supK ci, i = 1, 2, and
d = supK c. The proof follows as in Theorem 3.3 replacing ci and c by di and d. �

In the extension of the Airy differential equation to the complex plane it is
customary to introduce the solutions Ai0 = Ai, and

Ai±1(z) = Ai(ze∓2iπ/3), (4.2)

and the regions S0 = {z : | arg z| ≤ π
3 } and

S±1 = e±2π/3S0.
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Since the above function and Bi all satisfy the same differential equation there is
a relation among them given by ([O, p. 414]),

Ai± =
1
2
e±

iπ
3 (Ai(z)∓ iBi(z)). (4.3)

Thus it follows from the asymptotic expansions of Ai and Bi [O, p. 413] that Aij
is recessive in Sj and dominant in Sj+1, and Sj−1 where the suffix j is enumerated
mod 3. Furthermore since the zeros of Ai are all real and negative [O, p. 418], Ai1
is nonzero in S0 ∪S1. Two other solutions of the Airy equation that will be useful
are w̃(i) which for complex values of z are defined by

w̃(j)(y) =
1
2
(
y

3
)

1
2 e(−1)j+1iπ

6H
(j)
1/3(

2
3
y

2
3 e

iπ
2 ), j = 1, 2 (4.4)

where we take the branch of the square root so that Re(z3/2) ≥ 0 for z ∈ S0 and
Re(z3/2) ≤ 0 for z ∈ S1 which is the principal branch of z3/2. It follows from the
asymptotic expansions for Hankel functions ([O, p. 238]) that w̃(1) is recessive in
S0 while w̃(2) dominant in S0. The equations ([O, p. 239])

H1
ν (ze

mπi) = −[sin{(m− 1)νπ}H1
ν (z) + e−νπi sin{mνπ}H2

ν (z)]/ sin νπ, (4.5)

and

H2
ν (ze

mπi) = −[eνπi sin{mνπ}H1
ν (z) + sin{(m+ 1)νπ}H2

ν (z)]/ sin νπ, (4.6)

with ν = 1/3 and m = 1 show that w̃(1) is dominant in S1 as is w̃(2). Since K1/3(z)
is nonzero for | arg(z)| ≤ π (Watson [W], Olver [O, p. 254]) and πi

2 e
πi
6 H

(1)
1/3(ze

iπ
2 ) =

K1/3(z), we find that w̃1(z) is nonzero for | arg(z)| ≤ π
3 . Lommel’s method [O, p.

414] applied to w̃(1) and h = 1
2 (y3 )

1
2 e−i

π
6H

(2)
1/3(

2
3y

2
3 e−

iπ
2 ) can now be used to show

that w̃(1) has no zeros in S1 ∪ S0 ∪ S−1. Another application of Lommel’s method
with w̃(2) in place of w̃(1) above and a corresponding change to h shows that w̃(2)

is also nonzero in S1 ∪ S0 ∪ S−1.
Set S = S0 ∪ S1, and let Ω a region in the complex y plane. We will restrict

Ω so that
ρ([t1, t2],Ω, [0, ε0])3/2 ⊂ S0 ∪ S1. (4.7)

Extensions to S0 ∪S−1 can be accomplished using the symmetry properties of the
solutions. Because w̃(2) is dominant in S1 ∪ S0 it is not a numerically satisfactory
auxillary function in this region thus we set

ũ(1) = w̃(1),

ũ(2) = Ai1,

û(1)(z) = e2/3z
3/2
ũ(1)(z), û(2)(z) = e−2/3z3/2

ũ(2)(z), Âi0(z) = e2/3z
3/2

Ai0(z),

and
Âi1(z) = e−2/3z3/2

Ai1(z).
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It is not difficult to see from the continuity and asymptotic expansions for the
above functions ([O, p. 392, 413]) that the following constants are finite,

d3 = max
(

sup
S
|û(1)(z)|, sup

S
|Âi1(z)|, sup

S
|Âi0(z)|

)
,

ν1 = max
(

sup
S
|z1/2û(1)(z)|, sup

S
|z1/2û(2)(z)|

)
,

d4 = max

(
sup
S

|e2/3z3/2
ũ(1)(z)′|

1 + |z|1/4 , sup
S

|e−2/3z3/2
ũ(2)(z)′|

1 + |z|1/4

)
,

and

d5 = max
(

sup
S
|e−4/3z3/2 ũ(2)(z)

ũ(1)(z)
|, sup

S
|e4/3z

3/2 ũ(1)(z)
ũ(2)(z)

|
)
.

Set
ψ1 = gAi0, (4.8)

and
ψ2 = gAi1. (4.9)

With k(t, y, ε) = ρ(t, y, ε)1/2ρ′(t, y, ε), we now obtain an analog of Lemma 3.6.
Because of iib. the appropriate functions to use are G2

1 and G1
2 in 3.39 and 3.43

respectively, also the role of the weight function will be played by

Ẽ(t) = |e2/3ρ(t,y,ε)3/2 |. (4.10)

Lemma 4.2. Suppose that (4.7) holds, ib–iiib are satisfied, and

a(t, ε) ∈ C∞([tin, tfi]× [0, ε0])

is strictly positive. Let K be a compact subset of Ω. Then there is a constant d(K)
such that for [nε, iε] ⊂ [tin + ε, tfi − ε], ε ∈ (0, ε0] the following inequality holds

|G1
2(n, i)| ≤ G̃1(i) = d(K)ε−1/3|û(1)(i)û(1)(i− 1)|, (4.11)

and
|G2

1(n, i)| ≤ G̃2(i) = d(K)ε−1/3|û(2)(i)û(2)(i− 1)|. (4.12)

Proof. The Wronskian of A1 and ũ(1) is

W (A1, ũ
(1)) = −e

− 2πi
3

2
√

3π
,

which is less in magnitude than 2/π.
Thus let di(K) = supK ci(y) i = 6, 7 where c6 is given in (3.36) and c7 in

Lemma 3.6. Let d8(K) = sup(t,y,ε)∈W×K Ẽ(x(t, Y, ε))E−1(x(t+ε, y, ε)), x(t, y, ε) =
ε−2/3ρ(t, y, ε). Conditions ib and iib insure that these constants are finite. We begin
with G2

1 and observe that for y fixed the steps in Lemma 3.6 can be followed to
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equation (3.47) with the roles of u(1) and u(2) interchanged. From iiib we find the
bound

|u
(1)(m)
u(2)(m)

| ≤ d5(K)Ẽ−1(i)2,

for m ≤ i. The rest of the steps to (4.11) now follow as in Lemma 3.6. A similar
analysis gives (4.12). �

With the above lemma we can now show

Lemma 4.3. Suppose the hypotheses of Lemma 4.2. Let K be a compact subset of Ω.
Then there is a constant d(K) such that such that for [tN1−1, tN2+1] ⊂ [tin, tfi], ε ∈
(0, ε0],

N2∑
j=N1

G̃j(i) < d(K)ε−1, j = 1, 2.

Proof. Set d9 = inf [tin,tfi]×Ω×[0,ε0] |
ρ

t−t0 |
1/2 which by iiib is nonzero. From Lem-

ma 4.2
N2∑
i=N1

G̃1(i) ≤ d̃(K)ε−1/3
N2∑
i=N1

|û(1)(i− 1)û(1)(i)|,

which can be bounded by
N2∑
i=N1

|û(1)(i− 1)û(1)(i)| ≤ d2
3 +

∑
(i:�(ρ(i)3/2)<0)

|û(1)(i− 1)û(1)(i)|

+
∑

(i:�(ρ(i−1)3/2)>0)

|û(1)(i− 1)û(1)(i)|.

If ν1 is now used we find
∑

(i:�(ρ(i−1)3/2)>0)

|û(1)(i− 1)û(1)(i)| ≤ ν2
1

d9(K)
ε−2/3

∫ tN2

tN1

dt

|t− t0|1/2
≤ d(K)ε−2/3.

A similar argument bounds the remaining sum which gives the result for j = 1.
The result for j = 2 follows in a similar manner. �

With the above lemmas we can now prove the main result of this section

Theorem 4.4. Suppose that (4.7) holds, ib–iiib are satisfied, and

a(t, ε) ∈ C∞([tin, tfi]× [0, ε0])

is strictly positive. Furthermore suppose that a1(t, ε) and b1(t, ε) are continuous
on [tin, tfi] × [0, ε0] and a1(t, ε) is strictly positive. Let [(N1 + 1)ε, (N2 − 1)ε] ⊂
[tin, tfi], ε ∈ (0, ε0], and set

Kj(i) = d15(K)Gj(i)
(
|∆
(

a(iε)
a((i− 1)ε)

)
|+ |∆

(
y − b(iε)
a(iε)

)|
))

, j = 1, 2.
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Then there exist solutions f1 and f2 of (3.37) such that

|σ1
2(nε)| = |f1(nε)− ψ

1(nε)
u(1)(nε)

| (4.13)

≤ d(K)
n2∑
n1

(|K1(i) +G1(i)|β̂(1)(i)|)ed(K)
∑n2

n1
(K1(i)+G1(i)|β̂(1)

1 (i))|),

and

|σ2
1(nε)| = |f2(nε)− ψ

2(nε)
u(2)(nε)

| (4.14)

≤ d(K)
n2∑
n1

(K2(i) +G2(i)|β̂(2)(i)|)ed(K)
∑n2

n1
(K2(i)+G2(i)|β̂(2)

1 (i))|).

Here ψj , j = 1, 2 are defined by (4.8) and (4.9) respectively. Thus if
∑

Kj(i) = o(1), j = 1, 2, (4.15)

then
f j(n) = ψj(y, n) + o(1). (4.16)

If
sup
t,ε
|a(t, ε)− a1(t, ε)| = 0(ε2) = sup

t,ε
|b(t, ε)− b1(t, ε)|, (4.17)

with the sup be taken over [tin, tfi] × [0, ε0] then the o(1) in equation (4.16) is in
fact 0(ε).

Proof. The proof follows like the one given in Theorem 3.8 with d10 = supy∈K c10.
�

In the next section we consider the initial value problem.

5. Initial value problem singular case

If tin can be taken to be equal to zero then the above results can be used to
solve the initial value problem and thus give uniform asymptotics for orthogonal
polynomials. Unfortunately in the case when a(n) and |b(n)| tend to infinity, in
general k(t, y, ε)2 will not satisfy condition i and a(t, ε) will not satisfy (2.14) for t
in a neighborhood of zero. This is because if a(t, ε) and b(t, ε) are to be bounded
then λε must increase to infinity (see Section 6 for an example). Another case
where condition i or (2.14) can be violated is in the case of varying recurrence
coefficients [DM], [KV]. Finally it may not by evident where ρ is a single-valued
analytic function so a LG-WKB approach is useful. We begin by switching to the
equation satisfied by the polynomials p̃n = 2npn/kn,

p̃n+1(x) + 2(bn − x)p̃n(x) + 4a2
npn−1(x) = 0.
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If the scaling indicated in the introduction is performed we arrive at the difference
equation

p̃n+1(y) + 2(b(nε, ε)− y)p̃n(y) + 4a2(nε, ε)p̃n−1(y) = 0. (5.1)

We now consider the ε-difference equation

ψ(t+ ε, y, ε) + 2(b(t, ε)− y)ψ(t, y, ε) + 4a2(t, ε)ψ(t− ε, y, ε) = 0. (5.2)

Following Deift and McLaughlin [DM, Appendix I] we look for solutions of (5.2)
of the form

f(t, y, ε) = e
1
ε s0(t,y,ε)+s1(t,y,ε)(1 +O(ε2)). (5.3)

Substitute the expressions for f in (5.2) then expand f(t ± ε, ε) (here again we
suppress the dependence upon y) in powers of ε. The coefficient of ε0 is

es0(t,ε)
′
+ 4a(t, ε)2e−s0(t,ε)

′
= 2(y − b(t, ε)), (5.4)

while the coefficient of ε1 is

s1(t, ε)′ = − es0(t,ε)
′
+ 4a2(t, ε)e−s0(t,ε)

′

2(es0(t,ε)′ − 4a2(t, ε)e−s0(t,ε)′)
s0(t, ε)′′. (5.5)

With the use of

(es
′
0 − a2e−s

′
0)′ = (es

′
0 + 4a2e−s

′
0)s′′0 − 8aa′e−s

′
0 ,

and the derivative of (5.4) we find

s1(t, ε)′ =− (es0(t,ε)′ − 4a(t, ε)2e−s0(t,ε)
′
)′

2(es0(t,ε)′ − 4a2(t, ε)e−s0(t,ε)′)

+
b(t, ε)′

es0(t,ε)′ − 4a2(t, ε)e−s0(t,ε)′
+
s0(t, ε)′′

2
.

Solving the relevant equations yields

s±0 (t, ε) =
∫ t

ln
(
y − b(u, ε)±

√
(y − b(u, ε))2 − 4a(u, ε)2

)
du, (5.6)

and

s±1 (t, ε) =− 1
4

ln 22((y − b(t, ε))2 − 4a(t, ε)2) (5.7)

+
1
2

ln(y − b(t, ε)±
√

(y − b(t, ε))2 − 4a(t, ε)2)

± 1
2

∫ t b′(u, ε)du√
(y − b(u, ε))2 − 4a(u, ε)2

.

This gives us two approximate solutions to the difference equation given by

f±(tn, y, ε) = e
1
ε s

±
0 (tn,y,ε)+s

±
1 (tn,y,ε),

with s±0 and s±1 given above and tn = nε.
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Set

Vti,tj (g) =
∫ tj

ti

|g(t, ε)|dt, (5.8)

V1(t, ε) = Vt,t+ε(b′′(·)(t + ε− ·)) + Vt,t+ε(a′′a(·)(t+ ε− ·)) (5.9)

+ Vt,t+ε(a′(·)2(t+ ε− ·)) + Vt,t+ε(b′(·)2(t+ ε− ·))
+ Vt,t+ε((4a′a(·))2(t+ ε− ·))),

V2(t, ε) = (Vt−ε,t(b′′(·)(· − (t− ε)) + Vt−ε,t(|a′′a(·)|(· − (t− ε))) (5.10)

+ Vt−ε,t(a′(·)2(· − (t− ε)))
+ Vt−ε,t(b′(·)2(· − (t− ε))) + Vt−ε,t((4a′a(·))2(· − (t− ε)))),

and
V3(t, ε) = Vt,t+ε(aa′)2 + Vt,t+ε(b′)2. (5.11)

We will impose the following assumptions on a(t, ε) and b(t, ε)
ic. a(t, ε), b(t, ε) ∈ C0([0, tfi]× [0, ε0]),
iic. ∂i

∂ti a(t, ε),
∂i

∂ti b(t, ε) ∈ C0((0, tfi]× [0, ε0]) i = 1, 2,
iiic. sup

∫ tfi

0
|b′(t, ε)| <∞, sup

∫ tfi

0
|a′a(t, ε)| <∞

vic. a(0, 0) = 0 but a(t, ε) > 0, (t, ε) ∈ (0, tf ]× [0, ε0],
vc. V1(t, ε) ∈ C0([0, tfi − ε]× [0, ε0]),V2(t, ε) ∈ C0([ε, tfi]× [0, ε0]), andV3(t, ε) ∈

C0([0, tfi]× [0, ε0])
Let

A(ε) = inf
[0,tfi]

(b(t, ε)− 2a(t, ε)), B(ε) = sup
[0,tfi]

(b(t, ε) + 2a(t, ε)),

I(ε) = [A(ε), B(ε)],
Aa,b(ε) = inf

[tin,tfi]
(b(t, ε)− 2a(t, ε)), Ba,b(ε) = sup

[tin,tfi]

(b(t, ε) + 2a(t, ε)),

and
Ia,b(ε) = [Aa,b(ε), Ba,b(ε)].

We now examine the analytic properties of the above approximate solution.
Set

f1(t, y, ε) =
√

(y − b(t, ε))2 − 4a(t, ε)2

and,
f±
2 (t, y, ε) = y − b(t, ε)±

√
(y − b(t, ε))2 − 4a(t, ε)2.

Lemma 5.1. Suppose conditions ic. holds. Then f1, and f+
2 are nonvanishing in

[0, tfi]×C\I(ε), and f1, f+
2 , and ln f+

2 ∈ C0([0, tfi])×H(C\I(ε)). Likewise f−
2 is

nonvanishing in [tin, tfi]×C and ln f−
2 ∈ C0([tin, tfi])×H(C\Ia,b(ε)) for tin > 0.

For any compact set K such that I(0) ⊂ int(K) there is an εK such that f1 and
f+
2 are non-zero in [0, tfi]× [0, εK ]×C\K, and f1, f+

2 , and ln f+
2 ∈ C0([0, tfi]×

[0, εK ]) × H(C\K). If K̃ is a compact set in C \ K then f1, f
+
2 and ln f+

2 ∈
C0([0, tfi]× [0, εK]×K̃). Finally if tin > 0 and K a compact set such that Ia,b(0) ⊂
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int(K), then there is an εK such that f±
2 and ln f±

2 ∈ C2([tin, tfi]×[0, εK ])×H(C\
K), f−

2 is nonzero in [tin, tfi] × [0, εK ] × C \K, and f±
2 , ln f±

2 ∈ C2([tin, tfi] ×
[0, εK ]× K̃) where K̃ is a compact subset of C\K.

Proof. From the definition of I(ε) we see that (y − b(t, ε))2 − 4a(t, ε)2 is nonzero
for all (t, y) ∈ [0, tfi]× C\I(ε) hence a branch of the square root function can be
choosen so that f1(t, y, ε) ∈ H(C \ I(ε)) for each t ∈ [0, tfi] and such that for large
y, f+

2 ∼ 2y. That f1(t, y, ε) ∈ C0([0, tfi])×H(C\I(ε)) follows from the continuity
properties of a, b, and the square root function. The above argument also shows
that f+

2 ∈ C0([0, tfi])×H(C\I(ε)). Since x+
√
x2−1
2 maps C\[−1, 1] to the exterior

of the unit circle we see that f+
2 is nonvanishing in [0, tfi]× C\I(ε). This implies

that ln f+
2 ∈ C0([0, tfi])×H(C\I(ε)). For t > tin iic and the differentiability of ln

and square root functions show that ∂i

∂ti f1,
∂i

∂ti f
±
2 and ∂i

∂ti ln f+
2 ∈ C0([tin, tfi]) ×

H(C \ I(ε)) i = 1 . . . 2. Since a(t, ε) is strictly greater than zero in [tin, tfi] we find

f−
2 =

4a(ε, t)2

f+
2

,

which does not vanish for each

(t, y) ∈ [tin, tfi]× C\I(ε) , tin > 0.

The properties of ln f−
2 now follow. Let K be a compact set such that I(0) ⊂

int(K). The continuity of a(t, ε) and b(t, ε) imply that there exists an εK ≤ ε0 such
that I(ε) ⊂ int(K) for all ε ≤ εK . This plus the continuity properties of the ln and
square root functions give that f1, f+

2 , and ln f+
2 ∈ C0([0, tfi]× [0, εK ])×H(C\K)

and f1, f+
2 and ln f+

2 ∈ C0([0, tfi]× [0, εK ]× K̃) for any compact set K̃ ⊂ C\K.
For t ∈ [tin, tfi] the properties of f±

2 and ln f±
2 follow in a similar manner. �

With this we now discuss the approximate solutions and their relation to the
initial value problem. Define

H±
s0,s1(t) = ε(s0(t)′′/2± s′1(t)),

J±
s0,s1(t) =

1
2ε

∫ t±ε

t

s′′′0 (u)(t± ε− u)2du

+
∫ t±ε

t

s′′1 (u)(t± ε− u)du,

and

R±
s0,s1(t) = (H±

s0,s1(t) + J±
s0,s1(t))

2

∫ 1

0

e(H
±
s0,s1

(t)+J±
s0,s1

(t))u(1 − u)du.
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With the above we have

Lemma 5.2. Suppose ic–ivc hold and set

f+(t, y, ε) =
(y − b(t, ε) +

√
(y − b(t, ε))2 − 4a(t, ε)2)1/2

((y − b(t, ε))2 − 4a(t, ε)2)1/4
(5.12)

× exp(
∫ t

0

b′(u, ε)du
2
√

(y − b(u, ε))2 − 4a(u, ε)2
)

× exp(1/ε
∫ t

0

ln(y − b(u, ε) +
√

(y − b(u, ε))2 − 4a(u, ε)2)du),

and

f−(t, y, ε) =
(y − b(t, ε)−

√
(y − b(t, ε))2 − 4a(t, ε)2)1/2

((y − b(t, ε))2 − 4a(t, ε)2)1/4
(5.13)

× exp(−
∫ tfi

t

b′(u, ε)du
2
√

(y − b(u, ε))2 − 4a(u, ε)2
)

× exp(1/ε
∫ tfi

t

ln(y − b(u, ε)−
√

(y − b(u, ε))2 − 4a(u, ε)2)du).

Then for nε ∈ [0, tfi], 0 < ε ≤ ε0, f+ ∈ C0([0, tfi]) ×H(C\I(ε)), is nonzero and
satisfies the difference equation

f+((n+ 1)ε) + 2(b(nε, ε)− y)f+(nε) (5.14)

+ 4a2(nε, ε)f+((n− 1)ε = η+(nε)f+(nε), ε ≤ nε < tfi − ε

where

η+(t) = es
+
0 (t)′(J+

s+0 ,s
+
1
(t) + 4a(t, ε)2R+

s+0 ,s
+
1
(t)) (5.15)

+ e−s
+
0 (t)′(J−

s+0 ,s
+
1
(t) + 4a(t, ε)2R−

s+0 ,s
+
1
(t)).

Likewise for nε ∈ [tin, tfi], tin > 0 and 0 < ε ≤ ε0, f− ∈ C[tin, tfi]×H(C\Ia,b(ε))
is nonzero and satisfies the above difference equation for tin+ ε < nε < tfi− ε with
η+ replaced by

η−(t) = es
−
0 (t)′(J+

s−0 ,s
−
1
(t) +R+

s−0 ,s
−
1
(t)) + e−s

−
0 (t)′(J−

s−0 ,s
−
1
(t) +R−

s−0 ,s
−
1
(t)). (5.16)

Let K be compact subset of C such that I(0) ⊂ int(K) and K̃ be a compact subset
of C\K. Then there is an εK such that f+ ∈ C0([0, tfi] × (0, εK ]) × H(C\K),
f+ ∈ C0([0, tfi] × (0, εK ] × K̃), η+ ∈ C0([ε, tfi − ε] × [0, εK ] × K̃), and η+ ∈
C0([ε, tfi − ε] × [0, εK ]) ×H(C \K). If tin > 0, K and K̃ are compact sets such
that Ia,b(0) ⊂ int(K), and K̃ ⊂ C\K, then there exists an εK such that f− ∈
C0([tin, tfi]×(0, εK ])×H(C\K), and f− ∈ C0([tin, tfi]×(0, εK ]×K̃) where tin > 0.
Also η− ∈ C0([tin, tfi]× [0, εK ])×H(C\K) and η− ∈ C0([tin, tfi]× [0, εK ]× K̃).
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Proof. It follows from Morera’s Theorem, Lemma 5.1 and the integrability of b′

that the integrals in (5.12) yield functions analytic in C\I(ε) for each t ∈ [0, tfi].
The fact that f+ ∈ C0[0, tfi]×H(C\I(ε)) for ε > 0 now follows from Lemma 5.1
and the integrability of b′. The nonvanishing of f1 and f2

+ in [0, tfi]×C\I(ε) shows
that f+ is nonvanishing in this set also. Let K be a compact set in C such that
I(0) ⊂ int(K) then Lemma 5.1 and condition ic imply that there is an εK so that
the integral

I1(t, y, ε) =
∫ t

0

ln
(
y − b(u, ε) +

√
(y − b(u, t))2 − 4a2(u, t)

)
du,

is C0([0, tfi] × [0, εK ]) × H(C\K). Also for any compact set K̃ ∈ C\K, I1 ∈
C0([0, tfi]× [0, εK ]× K̃). From the integral representation,

1√
(y − b)2 − 4a2

=
1
π

∫ b+2a

b−2a

dx√
(x − b)2 − 4a2

, (5.17)

we find that 1
f1

is uniformly bounded for (t, ε, y) ∈ [0, tfi] × [0, εK ] × C\K. The
continuity conditions ic and iic, and the uniform integrability of b′ imply that

I2(t, y, ε) =
∫ tfi

0

b′(u, ε)√
(y − b(u, ε))2 − 4a(u, ε)2

,

is in C0([0, tfi] × [0, εK ]) ×H(C\K) and I2 ∈ C0([0, tfi] × [0, εK ] × K̃) for K̃ as
above. This plus Lemma 5.1 and the fact that 1

ε is continuous for ε > 0 gives the
continuity properties of f+. A similar argument gives the continuity properties
of f−.

The equations for η± are obtained by substituting (5.12) or (5.13) into (5.14)
expanding to first order using Taylor’s Theorem with the remainder and equations
(5.4) and (5.5). From the definition of H and J we find

H±
s±0 ,s

±
1
(t) + J±

s±0 ,s
±
1
(t) =

1
ε

∫ t±ε

t

s±0 (u)′′(t± ε− u)du+
∫ t±ε

t

s±1 (u)′du. (5.18)

Also

s±0 (t)′′ = ∓b
′(t, ε)
f1
∓4a′(t, ε)a(t, ε)

f±
2 (t)f1

. (5.19)

Lemma 5.1, iic, vc, and (5.18) show that R+

s+0 ,s
+
1
∈ C0([0, tfi−ε]×[0, ε0])×H(C\K),

and R+

s+0 ,s
+
1
∈ C0([0, tfi − ε] × [0, ε0] × K̃). In a similar manner it follows that

R−
s+0 ,s

+
1
∈ C0([ε, tfi] × [0, ε0]) × H(C\K), and R−

s+0 ,s
+
1
∈ C0([ε, tfi] × [0, ε0] × K̃).

By differentiating s+0 (t)′′ with respect to t and likewise s+1 (t)′ it follows from vc.
after a tedious computation that J+

s+0 ,s
+
1
∈ C0([ε, tfi − ε]× [0, ε0])×H(C\K) and

J+

s+0 ,s
+
1
∈ C0([ε, tfi− ε]× [0, ε0]× K̃) while J−

s+0 ,s
+
1
∈ C0([ε, tfi]× [0, ε0])×H(C\K)

and J−
s+0 ,s

+
1
∈ C0([ε, tfi]×[0, ε0]×K̃). Thus η+ has the continuity properties claimed

in the Lemma. A similar analysis follows for η−. �
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The following Lemma will be useful in controlling the error between the
approximate solutions and bona fide solutions of the initial value problem.

Lemma 5.3. Suppose ic–vc hold and let K̃ be a compact subset of C\I(0). Then
there exists an εK̃ such that for all ε ∈ [0, εK̃ ],

n−1∑
i=1

|R+

s+0 ,s
+
1
(iε)| ≤

n−1∑
i=1

Vti,ti+1(s
+
0

′′
) + Vti,ti+1(s

+
1

′
))2ed(K̃) (5.20)

≤ d(K̃)
n∑
i=1

V3(ti, ε),

n−1∑
i=1

|R−
s+0 ,s

+
1
(iε)| ≤

n−1∑
i=1

(Vti−1,ti(s
+
0

′′
) + Vti−1,ti(s

+
1

′
))2ed(K̃) (5.21)

≤ d(K̃)
n−1∑
i=0

V3(ti, ε)

n−1∑
i=1

|J+(s+0 , s
+
1 )(ti)| ≤

n−1∑
i=1

(
1
2
Vti,ti+1(s

+
0

′′′
(ti+1 − ·)) + Vti,ti+1(s

+
1

′′
(ti+1 − ·))

(5.22)

≤ d(K̃)
n−1∑
i=1

V1(ti, ε),

and
n−1∑
i=1

|J−(s+0 , s
+
1 )(ti)| ≤

n−2∑
i=0

1
2
Vti,ti+1(s

+
0

′′′
(· − ti)) + Vti,ti+ε(s

+
1

′′
(· − ti)) (5.23)

≤ d(K̃)
n−2∑
i=1

V2(ti, ε).

Here d(K̃) is a constant depending only upon K̃ and ti = iε.

Proof. From Lemma 5.1 there exists a constant M such that

| 1
f1
|, | 1
f+
2

| < M

for all (t, ε, y) ∈ [0, tfi]× [0, εK̃ ]× K̃. Thus from Lemma 5.1, equation (5.19) and
equation (5.5) we find, |s+0 (t)′′| ≤ |b′(t,ε)|

M + 4|a′(t,ε)a(t,ε)|
M2 and |s+1 (t)′| <

d̃(K)
(

|b′(t,ε)|
M + 4|a′(t,ε)a(t,ε)|

M2

)
, where d(K̃) depends only upon K̃. Thus

|H+

s+0 ,s
+
1
(t) + J+

s+0 ,s
+
1
(t)| ≤ d(K)

∫ t+ε

t

|b′(u, ε)|+ |a′(u, ε)a(u, ε)|du,
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and

|H−
s+0 ,s

+
1
(t) + J−

s+0 ,s
+
1
(t)| ≤ d(K)

∫ t

t−ε
|b′(u, ε)|+ |a′(u, ε)a(u, ε)|du.

Therefore,

|R+

s+0 ,s
+
1
(ti)| ≤

(1
ε
Vti,ti+1(s

+
0

′′
(ti+1 − ·)) (5.24)

+ Vti,ti+1(s
+
1

′
)
)2
e2d(K)M1 , ti ∈ [0, tf − ε]

and

|R−
s+0 ,s

+
1
(ti)| ≤ (

1
ε
Vti−1,ti(s

+
0

′′
(· − ti−1)) + Vti−1,ti(s

+
1

′
))2e2d(K)M1 , ti ∈ [ε, tf ].

(5.25)
Summing (5.24) from 1 to n − 1 then using standard inequalities gives the first
part of (5.20). Substituting the above inequalities for |s+0 (t)′′| and |s+1 (t)′| in (5.24)
and using standard inequalities gives the second part of (5.20). Equation (5.21) is
obtained in the same way. Lemma 5.1 and elementary calculus gives the bound

|s+0 (t)′′′| ≤ d(K)(|b(t)′′|+ 4(|a(t)a′′(t)|+ |a′(t)2|) + (|b′(t)|+ 4|a(t)a(t)′|)2),
and likewise for |s+1 (t)|. These bounds give the second inequalities in (5.22) and
(5.23). �

Lemma 5.4. Suppose that ∂i

∂ti a(t, ε),
∂i

∂ti b(t, ε) ∈ C0([tin, tfi] × [0, ε0]), i = 0 . . . 2

then
∑[

tfi
ε

]

i=[
tin

ε ]
|η±(ti)| < cε.

Proof. The boundedness of a, b and the first and second partial time derivatives
imply that

[
tfi

ε ]∑

i=[
tin

ε ]

|η±(ti)| <
[

tfi
ε ]∑

i=[
tin

ε ]

cε2 < c̃ε.

�

We now obtain error bounds on how close f+ stays to a solution of the initial
value problem. Similar results were obtained (without error bounds) by [GS] in
the case when the coefficients in the recurrence formula were in certain classes of
regularly varying or slowly varying functions. For the case when a(t, ε) are strictly
bounded away from zero and a(t, ε), b(t, ε) ∈ C∞ similar results were obtained by
Costin and Costin [CC] and Deift and McLaughlin [DM].

Theorem 5.5. Suppose ic–vc. hold, and suppose that a1(t, ε) and b1(t, ε) are in
C[0, tfi]×C[0, ε0]) and a1(t, ε) > 0, for (t, ε) ∈ (0, tf ]× [0, ε0]. Let K be a compact
set in C\I(0) and p̃n(y, ε) be a solution of

p̃n+1(y, ε) + 2(b1(nε, ε)− y)p̃n(y, ε) + 4a1(nε, ε)2p̃n−1(y, ε) = 0, (5.26)

p̃0(y, ε) = 1, p̃1(y, ε) = 2(y − b1(0, ε)).
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Then there exists an εK such that for (nε, ε) ∈ [0, tf ]× (0, εK ]

p̃n(y, ε) = f+(nε, y, ε)/f+(0, y, ε)(1 + φ(nε, y, ε)), (5.27)

where

|φ(nε, y, ε)| < d(K)
(
∆(b(0, ε)) + 4a2(0, ε) (5.28)

+ ed(K)(V0,ε(b
′)+V0,ε(aa

′)) − 1 + L(1, n− 1)
)
,

where

S(n− 1) =

(
n−1∑
i=1

V1(ti, ε) + V2(ti, ε) + ∆(b(iε)) + ∆(a(iε)2) +
n∑
i=0

V3(ti, ε)

)
.

Proof. The proof is very close to that given in the earlier sections and we will only
indicate the differences. Substituting (5.27) into (5.26) and following the steps that
led to (3.41) it is not difficult to see that φ satisfies the equation,

φ(n+ 1)− φ(n)− 4a(nε)2
f+(n− 1)
f+(n+ 1)

(φ(n) − φ(n− 1)) (5.29)

= (∆(b(nε)) − η+(n))
f+(n)

f+(n+ 1)
(1 + φ(n))

+ 4∆(a(nε)2
) f+(n− 1)
f+(n+ 1)

(1 + φ(n− 1)), 1 ≤ n

where we have suppressed the dependence on all variables but n. Solve the above
equation with the initial conditions φ(0) = 0, φ(1) = f+(0)p̃1(y, ε)/f+(1) − 1 to
obtain,

φ(n) =
(
f+(0)p(1)
f+(1)

− 1
)
G(n, 0) + 4∆

(
a(ε)2
)f+(0)
f+(2)

G(n, 1) (5.30)

+
n−1∑
i=1

G(n, i)(∆(b(iε))− η+(i))
f+(i)

f+(i+ 1)
(1 + φ(i))

n−2∑
i=1

G(n, i+ 1)4∆(a((i+ 1)ε)2)
f+(i)

f+(i+ 2)
(1 + φ(i))

where

G(n, i) =
n−1∑
j=i

f+(i+ 1)f+(i)
f+(j + 1)f+(j)

j∏
k=i+1

4a(kε, ε)2.

With

f+(i+ 1)f+(i)
f+(j + 1)f+(j)

=
j+1∏
i+2

f+(k − 2)
f+(k)

,
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so that

f+(i+ 1)f+(i)
f+(j + 1)f+(j)

j∏
k=i+1

4a(kε, ε)2 =
f+(j − 1)
f+(j + 1)

4a((i+1)ε, ε)2
j∏

k=i+2

4a(kε, ε)2

f+(k)2
eg(kε,ε),

where

g(kε, ε) =
1
2ε

∫ (k−2)ε

kε

∂

∂u
log f2

+(u, ε)((k − 2)ε− u)du+ s+1 ((k − 2)ε, ε)− s+1 (kε, ε).

From Lemma 5.1, the above hypothesis, and the mapping properties of
x2+

√
x2−1

2 mentioned above we find that there is an εK , such that for all (t, ε, y) ∈
[0, tfi]× [0, εK ]×K, ln |f+

2 /2a(t, ε)| > ln r with r > 1. Also from the nonvanishing
of f+

2 we find

| f+(k)
f+(k + 1)

| < e
1
ε

∫ tk+1
tk

| ln(f+
2 (u))|du+d(K)(Vtk,tk+1 (b′)+Vtk,tk+1 (aa′) ≤ d(K̃).

Thus,

|G(n, i)| ≤ d(K)ed(K)(V0,tfi
(b′)+V0,tfi

(aa′)
n−1∑
j=i

1− r−2(n−i)

1− r−1

From (5.4) the inequality

|p(1)f+(0)
f+(1)

− 1| < d(K)(∆(b(0, ε)) + 4a2(0, ε) + ed(K)(V0,ε(b
′)+V0,ε(aa

′)) − 1)

can be obtained, and (5.15) and Lemma 5.3 can be used to obtain
n−1∑
i=1

|e−s
+
0 (iε)′η+(iε)| ≤ d(K)

(
n−1∑
i=1

V1(ti, ε) + V2(ti, ε) + V3(ti−1, ε)

)
, n > 1.

Thus the Picard iteration applied to (5.30) gives

|φ(n)| ≤ d(K)(∆(b(0, ε)) + 4a2(0, ε) + ed(K)(V0,ε(b
′)+V0,ε(aa

′)) − 1 (5.31)

+ S(n− 1))ed(K)S(n−1),

where S(n− 1) is given above. This leads to the required bound for |p(n)|. �

A formula that will be useful for the matching of various solutions is
∫ tn

0

ln y − b(u) +
√

(y − b(u))2 − 4a2(u +
ε

2
)du (5.32)

=
∫ tn

0

ln y − b(u) +
√

(y − b(u))2 − 4a2(u)du

− ε

2

∫ tn

0

4a(u)a′(u)
f(u)
√

(y − b(u))2 − 4a(u)2
+ φ1,

where φ1 has properties similar to φ above.
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6. Applications

The previous results can be combined to obtain uniform asymptotics for solutions
the difference equation of the form (2.6) including the initial value problem. This
is accomplished by matching solutions in various overlapping regions. Here we will
study the case of Hermite polynomials whose asymptotics can be found in [S]
and more recently [DKMVZ]. More general problems will be considered at a later
time [G].

The orthonormal Hermite polynomials {Ĥn(x)} (Olver [O, p. 403], Szegő
[S]) have recurrence coefficients bn = 0, n ≥ 0, an =

√
n/2, n ≥ 1 and we choose

ε = 1/l, tn = n/l and λ̂l = λε =
√

2l + 1 which yields a
(
t, 1
l

)
= 1

2

√
2lt

2l+1 . Sterling’s
formula implies

el
∫

l̄
0 ln 2a(u+ 1

2l ,
1
l )du

∏n
1

2a(i)
λ1/l

=
e1/4

π1/4
(1 +O(

1
l
)),

so that for y ∈ C\
[
−
√

2ltif +1
2l+1 ,

√
2ltfi+1
2l+1

]
, tfi ≥ 1 equation (5.27) and (5.32) give

pn(y,
1
l
)

=
e1/4

π1/4

(
y2

y2−4a2(tn+ 1
2l ,

1
l )

)1/4

e
l
∫ tn
0 ln

(
λ̂ly√
2lu+1

+

√(
λ̂ly√
2lu+1

)2

−1

)
du
(

1+O
(

lnl
l

))
,

where pn(y, 1
l ) = Ĥn(λ̂ly). Since

l

∫ 0

− 1
2l

ln


 λ̂ly√

2lu+ 1
+

√√√√
(

λ̂ly√
2lu+ 1

)2

− 1


 du

=
1
2

ln
(
λ̂ly +

√
(λ̂ly)2 − 1

)
+

1
2
(λ̂ly)2 −

1
2
λ̂ly

√
(λ̂ly)2 − 1,

we find

pn(y,
1
l
) (6.1)

=
1

(λ̂l2)1/2π1/4

(
1

y2 − 4a2(tn + 1
2l ,

1
l )

)1/2

e
l
∫ tn

− 1
2l

ln

(
λ̂ly√
2lu+1

+

√(
λ̂ly√
2lu+1

)2

−1

)
du

×
(

1 +O

(
ln l
l

))
.

Thus for tn = 1, pl(y, 1
l ) = Ĥl(λ̂ly) and for y ∈ C\[−1, 1],

Ĥl(λ̂ly)

eλ̂
2
l y

2/2
=

(
y +
√
y2 − 1

)λ̂2
l /2

√
2λ̂lπ1/4(y2 − 1)1/4

e−λ̂
2
l y

√
y2−1
2

(
1 +O

(
ln l
l

))
.
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The convergence in the above formula is uniform on compact subsets of C\[−1, 1].
We now analyze the behavior of the Hermite polynomials in the oscillatory region.
With t0 = (λ̂ly)

2−1
2l , the Langer transformation (2.2) gives for y >

√
2ltfi + 1

2
3
ρ3/2(t, y, l) =

∫ t0

t

ln


 λ̂ly√

2lu+ 1
+

√√√√
(

λ̂ly√
2lu+ 1

)2

− 1


 du. (6.2)

The change of variables v =
√

2lu+ 1 in the above integral gives

2
3
ρ3/2(t, y, l) =

1
l

∫ λ̂ly

0

ln


 λ̂ly

v
+

√√√√
(
λ̂ly

v

)2

− 1


 v dv

− 1
l

∫ √
2lt+1

0

ln


 λ̂ly

v
+

√√√√
(
λ̂ly

v

)2

− 1


 v dv

=
(λ̂ly)2

2l
− 1
l

∫ √
2lt+1

0

ln
(
λ̂ly +

√
(λ̂ly)2 − v2

)
dv.

The last integral in the above formula gives an analytic extension to ρ3/2 which
shows that Reρ3/2 is a decreasing function of t and limImy→0,Imy>0 ρ

3/2 is a con-
tinuous function which for y real and positive has only one zero at t0. Also for
large enough y, ρ3/2 is nonzero. Thus Theorems 3.8 and 4.4 can be used. Let
S = {y ∈ C : �(y) > 0, 0 ≤ y ≤ δ} where δ is chosen sufficiently small so that

ρ
3
2

(t−t0(y,ε))
3
2

is nonzero in S. For fixed y ∈ S there exists an interval [ta, tb] ⊂ (0, tfi)

tfi > 1 and an ε̃(y) such that for all ε < ε̃(y), t0(y, ε) /∈ [ta, tb]. From equation
(6.1) we find

pn(y, 1
l )

e(λ̂ly)2/2
=

1√
2λ̂lπ1/4

(
1

y2 − 4a2(tn + 1
2l )

)1/4

e−
2
3 lρ

3/2(tn,y,
1
l )(1+O(

ln l
l

)). (6.3)

Since the function on the left-hand side of the above equation satisfies the same
difference equation as pn(y, 1

l ) Theorem 4.4 implies that it can be written as c1ψ1+
c2ψ2 with c1 and c2 independent of tn. Equation 4.3, the Wronskian of Ai and Bi,

W [Ai,Bi] =
1
π

and equation 3.4 we obtain

ψ1(tn+1)ψ2(tn)− ψ1(tn)ψ2(tn+1) = g(tn)2
ie−

iπ
3

2πl
1
3

sinh(
√
ρ(tn)ρ(tn)′)√
ρ(tn)

.
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The asymptotic expansions of the Airy functions,

Ai(l
2
3 ρ(t, y,

1
l
)) =

1
2π

1
2 l

1
6 ρ(tn, y, 1

l )
1
4
e−

2
3 lρ

3/2(tn,y,
1
l )(1 +O(

1
l
)),

Bi(l
2
3 ρ(t, y,

1
l
)) =

1
π

1
2 l

1
6 ρ(tn, y, 1

l )
1
4
e

2
3 lρ

3/2(tn,y,
1
l )(1 +O(

1
l
)),

coupled with the previous equation yields

c1 =
π1/4l

1
6

λ̂
1/2
l

(1 + 0(
ln l
l

)),

and

|c2| < c(y)
π1/4
√

2

λ̂
1/12
l

e−
2
3Re(ρ3/2(tn,y,ε)+ρ

3/2(tn+ε,y,ε))O(
ln l
l

).

Thus for ta ≤ tn,

|c2ψ2| < c(y)e−
2
3Re(ρ3/2(tb+ε,y,ε))O(

ln l
l

),

where the fact that Re(ρ3/2) is a decreasing function of t has been used. This leads
to

pn(y, 1
l )

e(λ̂ly)2/2
=
π1/4l

1
6

λ̂1/2
g

(
tn, y,

1
l

)
Ai
(
λ̂

2/3
l ρ

(
tn, y,

1
l

))(
1 +O

(
ln l
l

))
,

The above formula is valid for tb < tn < tfi with tfi > 1 so that for tn = 1,

Ĥl(λ̂ly)
e(2l+1)y2/2

=
√

2π1/4

(2l+ 1)1/12

(
ρ̂(y)

(y2 − 1)2

)1/4

Ai((2l + 1)1/3ρ̂(y))
(

1 +O

(
ln l
l

))
,

where ρ̂ = l2/3

λ̂
4/3
l

ρ. For 1 < y we find

l2/3ρ

(
1, y,

1
l

)
= (2l+ 1)2/3

(
3
4
y
√
y2 − 1− 3

4
cosh−1(y)

)2/3

,

while for 0 < y < 1 we find

l2/3ρ

(
1, y,

1
l

)
= −(2l + 1)2/3

(
3
4

cos−1(y)− 3
4
y
√

1− y2

)2/3

.

The above formula is similar to the one found in Olver [O, p. 403]. Examination
of the errors show that these formulas convergence uniformly on compact subsets
of S. Extensions to other regions of the complex plane may be accomplished by
using the symmetries Hn(−z) = (−1)nHn(z) and Hn(z̄) = Hn(z).
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Bounds for the Points of
Spectral Concentration of
One-dimensional Schrödinger Operators

Daphne J. Gilbert, Bernard J. Harris and Suzanne M. Riehl

Abstract. We investigate the phenomenon of spectral concentration for one-
dimensional Schrödinger operators with decaying potentials on the half-line.
For suitable classes of short range and long range potentials, we outline sys-
tematic procedures which enable numerical estimates of upper bounds for
points of spectral concentration to be obtained. Our approach involves use of
the Riccati equation to construct appropriate convergent series for a gener-
alised Dirichlet m-function, from which the existence and properties of deriva-
tives of the corresponding spectral functions can be established. An incidental
outcome in the case of long range potentials is that upper bounds for embed-
ded singular spectrum can also be obtained.
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1. Introduction

In the context of this paper, we use the term spectral concentration to refer to
a significant localised intensification of the spectrum occuring within an interval
of purely absolutely continuous spectrum. This terminology and usage in con-
nection with the one-dimensional Schrödinger operator goes back to Titchmarsh,
who provided a detailed mathematical analysis in a number of well-known cases
[22]. Titchmarsh’s investigations were themselves developments of earlier work by
Schrödinger, Oppenheimer and others on such problems as ionisation of the hy-
drogen atom in a weak electric field (the Stark effect), and the behavior of the hy-
drogen atom in a uniform magnetic field (the Zeeman effect) [16], [19]. A common
feature of these problems is that a discrete spectrum is replaced by a continuous
spectrum after the introduction of a ‘perturbing’ field while, in the vicinity of
the eigenvalues of the original problem, there are poles of the meromorphic con-
tinuation of the perturbed Green’s function located just below the real axis, on
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the so-called unphysical sheet. These poles, also known as resonances or pseudo-
eigenvalues, are of significant interest to physicists in connection with impedance
theory, resonance scattering and spectral stability, and are correlated with the
existence of scattering states which remain localised for a long time [5], [12].

In Titchmarsh’s examples, the influence of the eigenvalues of the unperturbed
problem is also reflected in the occurence nearby of sharp peaks in the perturbed
spectral density function, and away from these peaks the perturbed spectral den-
sity is small. Thus close to the eigenvalues of the original operator, there are
so-called points of spectral concentration of the perturbed operator, so that in
some sense the spectrum of the perturbed operator is ‘close’ to that of the original
[11]. Moreover, the fact that both resonance poles and points of spectral concen-
tration are located in the vicinity of the eigenvalues of the unperturbed problems
suggests that a correlation between spectral concentration and resonances may
hold more widely, and indeed there is considerable evidence to support this idea,
whether or no the phenomena arise in connection with the perturbation of a dis-
crete spectrum. For example, in those cases for which the Kodaira formula for the
spectral density holds ([13], p.940), it is evident that if a resonance pole in the
meromorphic continuation of the Green’s function into the unphysical sheet lies
sufficiently close to the real axis, then it is liable to increase the spectral density
on part of the real axis closest to the pole. These related phenomena have given
rise to a considerable literature over the years and useful references may be found
in [12], [17].

Independently of the connection with resonance poles, the study of spectral
concentration in its own right introduces a valuable additional dimension into
analysis of the absolutely continuous part of the spectrum. In recent years, there
has been a significant focus on the development of analytical and numerical meth-
ods for investgating the existence and location of this phenomenon (see, e.g., [3],
[6]). The present paper provides an overview of some recent contributions of the
authors in this direction.

2. Mathematical background

We consider the one-dimensional Schrödinger operator Hα associated with the
system

Ly(x) := −y′′(x) + q(x)y(x) = zy(x), x ∈ [0,∞), z ∈ C,

y(0) cosα+ y′(0) sinα = 0, α ∈ [0, π),
where the potential q(x) is real-valued, locally square integrable and decays to zero
as x → ∞. In this situation the self-adjoint operator Hα acting on H = L2[0,∞)
is defined by

Hαf = Lf, f ∈ D(Hα),
where

D(Hα) = {f ∈ H : Lf ∈ H; f, f ′ locally a.c.; cosαf(0) + sinαf ′(0) = 0}.
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It is well known that L is in Weyl’s limit point case at infinity, so that for each
z ∈ C\R there exists precisely one linearly independent solution of Lu = zu in
L2[0,∞), and that the essential spectrum of Hα fills the semi-axis [0,∞).

Associated with Hα is a non-decreasing spectral function, ρα(λ), and we
define the spectrum, σ(Hα), to be the complement in R of the set of points in a
neighbourhood of which ρα(λ) is constant (which is consistent with the more usual
definition in terms of the resolvent operator). Subject to the normalisation ρα(0) =
0, the spectral function can be decomposed uniquely into absolutely continuous,
singular continuous and pure point parts, in terms of which the corresponding
components of the spectrum, σa.c.(Hα), σs.c.(Hα) and σp.p.(Hα), are defined in a
similar way.

The spectrum of Hα may also be studied through properties of the related
Titchmarsh-Weyl m-function, mα(z), which is defined and analytic on C\R and is
a Herglotz function in the upper half-plane. Formulae connecting ρα(λ) and mα(z)
include

mα(z2)−mα(z1) =
∫ ∞

−∞

(
1

λ− z2
− 1
λ− z1

)
dρα(λ),

which holds for z1, z2 ∈ C+, and

ρ′α(λ) = lim
ε→0

1
π
�mα(λ+ iε), (2.1)

which holds for all λ ∈ R for which the respective limits exist. The m-function is
closely related to the Green’s function for Hα and hence reflects the analyticity
properties of the resolvent operator. It is also related to solutions of the differential
equation in various ways. For example, for z ∈ C+, let ψ(x, z) denote the so-called
Weyl solution of Lu = zu, which is in L2[0,∞) and satisfies ψ(x, z) ∼ exp ikx as
x → ∞, where k2 = z and the principal branch is chosen. Then the logarithmic
derivative of ψ(x, z) with respect to x, evaluated at x = 0, is equal to the value of
the Dirichlet m-function, m0(z), at z, i.e.,

ψ′(0, z)
ψ(0, z)

= m0(z)

We remark that for z ∈ C+, ψ(x, z) cannot vanish at x = 0, since to do so
would imply that H0 had a non-real eigenvalue at z, and thus contradict the self-
adjointness of H0. In a similar way, ψ(x0, z) �= 0 for any x0 > 0, z ∈ C+. We may
therefore set

m(x, z) :=
ψ′(x, z)
ψ(x, z)

(2.2)

for x ≥ 0, z ∈ C+, and it is straightforward to check that for each x0 ≥ 0,
m(x0, z) is the Dirichlet m-function associated with the system: Lu = zu, x ≥ x0,
u(x0, z) = 0. We will refer to m(x, z) as the generalised Dirichlet m-function, and
note that in terms of our earlier notation, m(0, z) ≡ m0(z). Since ψ(x, z) is a



142 D.J. Gilbert, B.J. Harris and S.M. Riehl

solution of Lu = zu, it follows from (2) that m(x, z) satisfies the Riccati equation

∂

∂x
m(x, z) = −z + q(x) − (m(x, z))2 (2.3)

for x ∈ [0,∞), z ∈ C+.
In the present context, we formally define spectral concentration as follows

(cf. [3]).

Definition 2.1. The point λc ∈ R is said to be a point of spectral concentration of
Hα if

(i) ρ′α(λ) exists finitely and is continuous in a neighbourhood of λc, and
(ii) ρ′α(λ) has a local maximum at λc.

We note that since ρα(λ) is non-decreasing, the definition implies that ρ′α(λ) ex-
ists and satisfies 0 ≤ ρ′α(λ) < ρ′α(λc) <∞ in a deleted neighbourhood of λc, from
which it follows by the local continuity of ρ′α(λ) that ρ′α(λ) > 0 in a neighbour-
hood of λc. Thus the definition effectively restricts attention to points of spectral
concentration which occur in subintervals of the essential spectrum in which the
spectral function is purely absolutely continuous and strictly increasing. A further
consequence of the definition is that if ρ′′α(λ) exists and has one sign for λ > M ,
then ρ′α(λ) exists, is absolutely continuous, but has no local maxima in (M,∞),
so that M is an upper bound for points of spectral concentration of Hα.

3. Short range potentials

In the case where q ∈ L1[0,∞), it was shown by Titchmarsh [21] that for λ > 0,

mα(λ) := lim
ε↓0

mα(λ+ iε)

exists and satisfies

mα(λ) =
µ1(λ) + iν1(λ)
µ(λ) + iν(λ)

,

where µ1(λ), ν1(λ), µ(λ), ν(λ) are continuous functions of λ, and µ(λ), ν(λ) do not
vanish simultaneously. It follows from the properties of these functions and (1)
above that

ρ′α(λ) =
1
π
�mα(λ) =

1
π
√
λ(µ2(λ) + ν2(λ))

,

so that ρ′α(λ) is continuous with 0 < ρ′α(λ) < ∞ for λ > 0, and hence σ(Hα)
is purely absolutely continuous on (0,∞) [9]. It is not hard to show that the
generalised Dirichlet m-function and corresponding Dirichlet spectral functions on
L2[x,∞) have similar properties, so that m(x, z) may be continuously extended
on to the non-negative real axis, z = λ ∈ R+, for x ≥ 0. We then have (cf. (2))
that m(x, λ) is well defined, continuous and non-real for x ≥ 0, λ > 0, and satisfies

m(x, λ) =
ψ′(x, λ)
ψ(x, λ)

,
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where ψ(x, λ) �∈ L2[0,∞) is the pointwise limit as z ↓ λ of the Weyl solution,
and is itself a solution of Lu = λu. It follows that the Riccati equation (3) is also
satisfied for z = λ > 0, so that

∂

∂x
m(x, λ) = −λ+ q(x)− (m(x, λ))2 , (3.1)

where m(x, λ) is the finite non-real limit as z ↓ λ of the generalised Dirichlet
m-function, m(x, z).

We now show that we can investigate the behavior of the spectral density,
ρ′0(λ), using the Riccati equation. For x ≥ 0, λ > 0, we have

m(x, λ) := �m(x, λ) + i�m(x, λ),

from which by (1),

m(0, λ) := m0(λ) = �m0(λ) + iπρ′0(λ). (3.2)

Hence, in principle, ρ′0(λ) can be obtained for λ > 0 by finding the appropriate
solution of the Riccati equation and evaluating at x = 0. If in addition it can be
shown that m(x, λ) is differentiable with respect to λ for sufficiently large λ, we
can also seek conditions under which ρ′′0(λ) exists and satisfies

ρ′′0(λ) =
1
π

[
� ∂

∂λ
m(x, λ)

]

x=0

. (3.3)

Equations (4) and (6) will form the basis for our investigation into the existence
of upper bounds for points of spectral concentration of H0.

It is rarely possible to solve the Riccati equation explicitly, so we proceed by
postulating a series representation for m(x, λ), which is substituted into (4). We
then choose the terms of the series, establish sufficient conditions for the validity
of the representation, and investigate the existence of ρ′′0 (λ). Based on the known
asymptotic behavior of m(x, λ) as λ→ ∞ (cf. [10]; [18], Theorem 5.1), we seek a
series representation in the form

m(x, λ) = i
√
λ+ g(x, λ) where g(x, λ) :=

∞∑
n=0

mn(x, λ) (3.4)

is in L1([0,∞); dx), and satisfies g(x, λ) → 0 as x → ∞. It may be shown that
the Riccati equation has at most one solution of this form (see [7]), from which
it follows that if the series representation in (7) is a valid solution of (4), then it
does indeed represent the extension of the generalised Dirichlet m-function onto
the real axis, as sought.

Substituting for m(x, λ) from (7) into (4) and rearranging yields

m′
1 + 2i

√
λm1 +m′

2 + 2i
√
λm2 +

∞∑
n=3

(m′
n + 2i

√
λmn)

= q −m2
1 −

∞∑
n=3

(
m2
n−1 + 2mn−1

n−2∑
k=1

mk

)
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where ′ denotes differentiation with respect to x. Choosing the {mn} to satisfy

m′
1 + 2i

√
λm1 = q

m′
2 + 2i

√
λm2 = −m2

1

m′
n + 2i

√
λmn = −

(
m2
n−1 + 2mn−1

n−2∑
k=1

mk

)
, n ≥ 3,

yields

m1(x, λ) = −e−2i
√
λx

∫ ∞

x

e2i
√
λtq(t)dt,

m2(x, λ) = e−2i
√
λx

∫ ∞

x

e2i
√
λtm2

1(t, λ)dt, (3.5)

mn(x, λ) = e−2i
√
λx

∫ ∞

x

e2i
√
λt

(
m2
n−1 + 2mn−1

n−2∑
k=1

mk

)
dt, n ≥ 3.

In order to determine under what circumstances ρ′′0 (λ) exists for sufficiently large
λ, we now define

wn(x, λ) :=
∂

∂λ
mn(x, λ), n = 1, 2, 3, . . . .

for those λ for which the derivatives exist. The following lemma establishes some
key properties of {mn(x, λ)} and {wn(x, λ)}, and is proved in [7].

Lemma 3.1. Let q(x) ∈ L1[0,∞) and suppose that there exists Λ1 > 0 such that
for x ≥ 0 and λ > Λ1

∣∣∣∣
∫ ∞

x

e2i
√
λtq(t)dt

∣∣∣∣ ≤ a(x)η(λ),

where a(x) ∈ L1[0,∞) is decreasing, η(λ)→ 0 as λ→∞, and 32η(λ)
∫∞
0
a(t)dt ≤

1. Then for x ≥ 0, λ > Λ1 and n = 1, 2, 3, . . .

| mn(x, λ) | ≤
a(x)η(λ)

2n−1
,

| wn(x, λ) | ≤ η(λ)
2n−1

√
λ

∫ ∞

x

a(t)dt,

so that the series
∑∞

n=1mn(x, λ) and
∑∞

n=1 wn(x, λ) are uniformly absolutely con-
vergent in x and λ.

We remark that the conditions of Lemma 1 are satisfied, for example, if (1 +
x)q(x) ∈ L1[0,∞) or if q(x) ∈ L1[0,∞) is monotonic [10]. The convergence and
continuity properties of the series in Lemma 1 imply that
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(i) m(x, λ), as defined in (7) and (8), is a valid series representation of the
generalised Dirichlet m-function for x ≥ 0, λ > Λ1, and

(ii) ρ′′0(λ) exists for λ > Λ1 and is given by

ρ′′0(λ) =
1
π

(
1

2
√
λ

+
∞∑
n=1

�wn(0, λ)

)
.

This leads to the following result.

Theorem 3.2. Let q(x) ∈ L1[0,∞) and suppose that the hypothesis of Lemma 1 is
satisfied. Then for all λ > Λ1, ρ′′0(λ) exists and satisfies∣∣∣∣ρ′′0(λ) − 1

2π
√
λ

∣∣∣∣ ≤
4

π
√
λ
η(λ)
∫ ∞

0

a(t)dt,

so that ρ′′0 (λ) > 0 for all λ > Λ1. In particular, there are no points of spectral
concentration of H0 for λ > Λ1.

Theorem 1 enables explicit upper bounds for points of spectral concentration to be
calculated, as illustrated in Example 1 below. Details of the proof of this theorem
are given in [7].

4. Long range potentials

In the case where q(x) → 0 as x → ∞, but q(x) �∈ L1[0,∞), the situation is
more delicate. It is no longer true in general that ρ′0(λ) exists, is continuous and
satisfies ρ′0(λ) > 0 for all λ > 0. If q(x) decays more slowly than the Coulomb
potential, examples can be constructed where ρ0(λ) is discontinuous on a dense
set of eigenvalues in [0,∞) [15]. If q(x) fails to be in L2[0,∞), then the absolutely
continuous spectrum may be empty, in which case there is a dense set of points
in [0,∞) on which ρ′0(λ) does not exist as a finite limit [4], [9], [20]. The situation
is more fully understood in the case of von Neumann-Wigner type potentials,
where the spectrum is purely absolutely continuous on (0,∞) apart from an at
most countable set of isolated eigenvalues, known as resonances [1], [2]. Moreover,
under fairly minimal smoothness conditions, classes of decaying, but non-integrable
potentials do exist for which the spectrum is purely absolutely continuous on
(0,∞) or on (M,∞) for sufficiently large M [2], [6]. In such circumstances, we
can investigate whether it is possible to extend m(x, z) continuously onto part of
the non-negative real axis in such a way that ρ′′0(λ) exists and (4), (5) and (6) are
satisfied for sufficiently large λ. If this can be achieved, then estimates of upper
bounds for both embedded singular spectrum and points of spectral concentration
can normally be obtained.

We proceed as before by postulating the existence of a series representation
for the generalised Dirichlet m-function, m(x, z), in this case for �z > 0, �z ≥ 0,
and | z | sufficiently large. It is necessary to consider the m-function in the upper
half-plane as well as on the real axis, so as to ensure that if m(x, λ) exists and is
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continuous in x and λ for | λ |> M , then it is the unique continuous extension of
m(x, z), z ∈ C+, as z ↓ λ ∈ R. Also, in order to construct a series with the desired
convergence properties, it is helpful to introduce an additional term, R(x, z), into
the expression for m(x, z), so we now seek a representation in the form

m(x, z) = i
√
z +R(x, z) + g(x, z) (4.1)

where

g(x, z) :=
∞∑
n=0

mn(x, z)

is in L1([0,∞); dx), and satisfies g(x, z) → 0 as x → ∞. The introduction of
R(x, z) enables the terms of the series to be generated iteratively with Q(x, z) :=
q(x)−R′ −R2− 2i

√
λR ∈ L1([0,∞); dx) having an analogous role to that of q(x)

in the short range case. We observe that in general the choice of R(x, z) is not
unique.

Proceeding as before, we substitute for m(x, z) from (9) into (3), and after
rearrangement the {mn} are chosen to satisfy:

m′
1 + (2i

√
z + 2R)m1 = Q

m′
2 + (2i

√
z + 2R)m2 = −m2

1

m′
n + (2i

√
z + 2R)mn = −

(
m2
n−1 + 2mn−1

n−2∑
k=1

mk

)
, n ≥ 3,

The solutions {mn} of these equations, and their derivatives, form the basis
of our analysis of the long range case. This leads to the following theorem which
is proved in [8].

Theorem 4.1. Let q(x) be continuously differentiable and satisfy q(x)→ 0 as x→
∞, q(x) �∈ L1[0,∞). Define

Q(x, z) := q(x)−R′ −R2 − 2i
√
zR

for �z > 0, �z ≥ 0, where R = R(x, z) is chosen so that Q(·, z) ∈ L1[0,∞), R′

denotes differentiation with respect to x, and Q, R, ∂Q
∂z , ∂R

∂z are continuous in x
and z. Suppose that there exists M > 0 so that
(a) for �z > 0, �z ≥ 0, | z |> M ,

(i) there exists K ∈ R so that for 0 ≤ x < t,

�
(

2i
√
z(t− x) + 2

∫ t

x

R(s, z)ds
)
≤ K,

(ii) for 0 ≤ x < t,∣∣∣∣
∫ ∞

x

e2i
√
z(t−x)+2

∫
t
x
R(s,z)dsQ(t, z)dt

∣∣∣∣ ≤ a(x)η(z),

where a(x), η(z), are real-valued functions with a(x) ∈ L1[0,∞) and decreas-
ing, η(z)→ 0 as | z |→ ∞ and 32ηeK

∫∞
0 a(t)dt ≤ 1,
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(iii)
∣∣∣∣
∂

∂z

∫ t

x

R(s, z)ds
∣∣∣∣ ≤ const(t− x) for 0 ≤ x < t <∞,

(b) for λ = �z > M , �z = 0, there exists a decreasing function b(x) such that for
x ≥ 0,

eK
∫ ∞

x

∣∣∣∣
∂Q

∂λ

∣∣∣∣+
∣∣∣∣
i√
λ

+ 2
∂R

∂λ

∣∣∣∣ a(t)η(λ)dt ≤ η(λ)√
λ
b(x).

Then ρ′′0 (λ) exists for λ > M , and satisfies∣∣∣∣ρ′′0 (λ)− 1
2π
√
λ
− 1
π
�R(0, λ)

∣∣∣∣ ≤
3

π
√
λ
η(λ)b(0).

The following corollary may be inferred from the proof of Theorem 2 (see [8]).

Corollary 4.2. Let q(x), Q(x, z) and R(x, z) be as in Theorem 2 and suppose that
Λ0 > 0 exists such that for �z > 0, �z ≥ 0, | z |> Λ0, conditions (a)(i)and (ii) of
Theorem 2 are satisfied. Then for λ = �z > Λ0, ρ′0(λ) exists as a finite limit, and
hence the spectrum of H0 is purely absolutely continuous on (Λ0,∞).

5. Applications

Example. Let q(x) = (1 + x)−γ sin(1 + x), γ > 1. By expressing sin(1 + x) in
exponential form and integrating by parts we obtain∣∣∣∣

∫ ∞

x

e2i
√
λtq(t)dt

∣∣∣∣ ≤
2

(2
√
λ− 1)(1 + x)γ

for λ > 1
4 , from which we may choose η(λ) = 2(2

√
λ− 1)−1 and a(x) = (1 + x)−γ .

It is then straightforward to show from Theorem 1 that

Λ1 =
(

1
2

+
32
γ − 1

)2

is an upper bound for points of spectral concentration of H0.

Example. Let q(x) = sin(1 + x)
1
2 (1 + x)−

1
2 . In this case q(x), q′(x) and (q(x))2

are not in L1[0,∞), so we take

R(x, z) =
q

2i
√
z
− q′

(2i
√
z)2
− q2

(2i
√
z)3

to give Q(x, z) = O(1 + x)−
3
2 ∈ L1[0,∞). This leads to the choice

a(x) =
1

(1 + x)
3
2
, η(z) =

1
5 | z | , b(x) =

47
5
√

1 + x
,

from which it follows by Theorem 2 that ρ′′0 (λ) > 0 if λ > 30, so that Λ1 = 30 is an
upper bound for points of spectral concentration of H0. Note that σ(H0) is known
to be purely absolutely continuous on (0,∞) [2], so that the issue of embedded
singular spectrum does not arise.
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Example. We consider the von Neumann Wigner type potential

q(x) =
M∑

k=−M
hk(x)e2ickx,

where for each k = −M, . . . ,M , ck ∈ R\{0}, hk(x) → 0 as x → ∞, hk(x) ∈
CL[0,∞) and hL+1

k (x) ∈ AC[0,∞). We suppose also that there exists a real-valued
non-negative function p(x) such that x(p(x))L+2 is decreasing with (p(x))L+2,
x(p(x))L+2 ∈ L1[0,∞), and that for j = 0, . . . , L+ 1, k = −M, . . . ,M ,

| h(j)
k (x) | ≤ (p(x))j+1 .

Then R(x, z) may be chosen so that, after successive integrations by parts,

| Q(x, z) | ≤ c
(

p(x)
| z | 12 −2Lc∗

)L+2

,

where c and c∗ are real constants which are computable for given q(x). We may
then take

a(x) =
∫ ∞

x

(p(t))L+2dt, η(z) =
c

(| z | 12 −2Lc∗)L+2
, b(x) =

∫ ∞

x

a(t)dt,

from which the existence of computable upper bounds, Λ0 and Λ1, for resonances
(embedded eigenvalues) and points of spectral concentration follows from Corollary
1 and Theorem 2 respectively. Further details may be found in [8].
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Reconstructing Jacobi Matrices
from Three Spectra
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Abstract. Cut a Jacobi matrix into two pieces by removing the n-th column
and n-th row. We give necessary and sufficient conditions for the spectra of the
original matrix plus the spectra of the two submatrices to uniquely determine
the original matrix. Our result contains Hochstadt’s theorem as a special case.
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1. Introduction

The topic of this paper is inverse spectral theory for Jacobi matrices, that is,
matrices of the form

H =




b1 a1

a1 b2 a2

. . . . . . . . .
aN−2 bN−1 aN−1

aN−1 bN



. (1.1)

This is an old problem closely related to the moment problem (see [9] and the
references therein), which has attracted considerable interest recently (see, e.g.,
[1] and the references therein, [3], [4], [8]). For analogous results in the case of
Sturm-Liouville operators see [2], [6], and [7]. In this note we want to investigate
the following question: Remove the n-th row and the n-th column from H and
denote the resulting submatrices by H− (from b1 to bn−1) respectively H+ (from
bn+1 to bN ). When do the spectra of these three matrices determine the original
matrix H? We will show that this is the case if and only if H− and H+ have no
eigenvalues in common.
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From a physical point of view such a model describes a chain of N particles
coupled via springs and fixed at both end points (see [11], Section 1.5). Determining
the eigenfrequencies of this system and the one obtained by keeping one particle
fixed, one can uniquely reconstruct the masses and spring constants. Moreover,
these results can be applied to completely integrable systems, in particular the
Toda lattice (see, e.g., [11]).

2. Main result

To set the stage let us introduce some further notation. We denote the spectra of
the matrices introduced in the previous section by

σ(H) = {λj}Nj=1, σ(H−) = {µ−
k }

n−1
k=1 , σ(H+) = {µ+

l }
N−n
l=1 . (2.1)

Moreover, we denote by (µj)N−1
j=1 the ordered eigenvalues of H− and H+ (listing

common eigenvalues twice) and recall the well-known formula (see [1], Theorem
2.4 and Theorem 2.8)

g(z, n) = −
∏N−1
j=1 (z − µj)∏N
j=1(z − λj)

=
−1

z − bn + a2
nm+(z, n) + a2

n−1m−(z, n)
, (2.2)

where g(z, n) are the diagonal entries of the resolvent (H − z)−1 and m±(z, n) are
the Weyl m-functions corresponding to H− and H+. The Weyl functions m±(z, n)
are Herglotz and hence have a representation of the following form

m−(z, n) =
n−1∑
k=1

α−
k

µ−
k − z

, α−
k > 0,

n−1∑
k=1

α−
k = 1, (2.3)

m+(z, n) =
N−n∑
l=1

α+
l

µ+
l − z

, α+
l > 0,

N−n∑
l=1

α+
l = 1. (2.4)

With this notation our main result reads as follows

Theorem 2.1. To each Jacobi matrix H we can associate spectral data

{λj}Nj=1, (µj , σj)N−1
j=1 , (2.5)

where σj = +1 if µj ∈ σ(H+)\σ(H−), σj = −1 if µj ∈ σ(H−)\σ(H+), and

σj =
a2
nα

+
l − a2

n−1α
−
k

a2
nα

+
l + a2

n−1α
−
k

(2.6)

if µj = µ−
k = µ+

l .
Then these spectral data satisfy

(i) λ1 < µ1 ≤ λ2 ≤ µ2 ≤ · · · < λN ,
(ii) σj = σj+1 ∈ (−1, 1) if µj = µj+1 and σj ∈ {±1} if µj �= µi for i �= j

and uniquely determine H. Conversely, for every given set of spectral data satis-
fying (i) and (ii), there is a corresponding Jacobi matrix H.
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Proof. We first consider the case where H− and H+ have no eigenvalues in com-
mon. The interlacing property (i) is equivalent to the Herglotz property of g(z, n).
Furthermore, the residues α−

i can be computed from (2.2)
∏N
j=1(z − λj)∏n−1

k=1 (z − µ−
k )
∏N−n
l=1 (z − µ+

l )
= z − bn + a2

n

N−n∑
l=1

α+
l

z − µ+
l

+ a2
n−1

n−1∑
k=1

α−
k

z − µ−
k

. (2.7)

and are given by α−
i = a−2

n−1β
−
i , where

β−
i = −

∏N
j=1(µ

−
i − λj)∏

l 	=i(µ
−
i − µ−

l )
∏N−n
l=1 (µ−

i − µ+
l )
, a2

n−1 =
n−1∑
i=1

β−
i . (2.8)

Similarly, α+
l = a−2

n β+
l , where

β+
l = −

∏N
j=1(µ

+
l − λj)∏n−1

k=1 (µ+
l − µ

−
k )
∏
p	=l(µ

+
l − µ

+
p )
, a2

n =
N−n∑
l=1

β+
l . (2.9)

Hencem±(z, n) are uniquely determined and thusH± by standard results from the
moment problem. The only remaining coefficient bn follows from the well-known
trace formula

bn = tr(H)− tr(H−)− tr(H+) =
N∑
j=1

λj −
n−1∑
k=1

µ−
k −

N−n∑
l=1

µ+
l . (2.10)

Conversely, suppose we have the spectral data given. Then we can define an,
an−1, bn, α−

k , α+
l as above. By (i), α−

k and α+
l are positive and hence give rise

to H±. Together with an, an−1, bn we have thus defined a Jacobi matrix H . By
construction, the eigenvalues µ−

k , µ+
l are the right ones and also (2.2) holds for H .

Thus λj are the eigenvalues of H , since they are the poles of g(z, n).
Next we come to the general case where µj0 = µ−

k0
= µ+

l0
(= λj0 ) at least for

one j0. Now some factors in the left-hand side of (2.7) will cancel and we can no
longer compute β−

k0
, β+

l0
, but only γj0 = β−

k0
+ β+

l0
. However, by definition of σj0

we have

β−
k0

=
1− σj0

2
γj0 , β+

l0
=

1 + σj0
2

γj0 . (2.11)

Now we can proceed as before to see that H is uniquely determined by the spectral
data.

Conversely, we can also construct a matrix H from given spectral data, but
it is no longer clear that λj is an eigenvalue of H unless it is a pole of g(z, n).
However, in the case λj0 = µ−

k0
= µ+

l0
we can glue the eigenvectors u− of H− and

u+ of H+ to give an eigenvector (u−, 0, u+) corresponding to λj0 of H . �
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The special case where we remove the first row and the first column (in which
case H− is not present) corresponds to Hochstadt’s theorem [5]. Similar results for
(quasi-)periodic Jacobi operators can be found in [10].
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On Some Asymptotic Properties of Solutions
for a Particular Class of
Finite Difference Equations

Andrey S. Osipov

Abstract. For one class of linear difference equations of arbitrary order we
obtain some results about the asymptotic behavior of its solutions, applying
a method used in the spectral analysis of discrete Sturm-Liouville operators.
We apply this asymptotic method to show, that the analog of the Hellinger-
Wall theorem of invariance in l2 is not valid in lp for p > 2.
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One of the main methods of spectral analysis of nonsymmetric difference opera-
tors generated by infinite band matrices (band operators) is based on the study of
asymptotical behavior of polynomials defined by systems of orthogonality relations
[1], [2] . Such polynomials satisfy the difference equation, associated with the stud-
ied operator. Although some asymptotic methods for such sort of linear difference
equations are known [3], [4] either they are not giving the explicit formula, or
require some special conditions to be fulfilled (e.g., dichotomy-type condition). In
the present paper, we consider the asymptotic method, which was used for the
analysis of absolutely continuous spectrum of second order difference operators in
[5]. This method is based on direct analysis of the transfer matrices, corresponding
to the difference equation, and under some simple assumptions it gives an explicit
asymptotic formula. First for the studied system of finite-difference equations of an
arbitrary order we obtain some asymptotic formulas similar to [5]. Then we apply
the method to study an analog of the Hellinger-Wall theorem for the difference
operator of a second order. Note that the continuous analog of the Hellinger-Wall
theorem is a known Weyl theorem, which states that for the Sturm-Liouville oper-
ator on a semi-axis, the property of all solutions of the corresponding differential

This work was supported by the Academy of Finland and RFBR: projects 02-01-00790 and
00-15-96100.
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equation to belong to the space L2, is invariant with respect to the spectral pa-
rameter [6]. We show that the claim of the Hellinger-Wall theorem is not true for
the spaces lp, when p > 2.

1. The asymptotic method

We consider the following infinite system of finite difference equations

µn−qun−q + an,n−q+1un−q+1 + · · ·+ an,n+q−1un+q−1 + λnun+q = zun, (1)
n > q, µn �= 0, λn �= 0,

(for some fixed index q ≥ 1 and parameter z ∈ C) with the complex coefficients,
satisfying the following conditions:

µn = nγ(n)(1 + ξn), λn = nα(n)(1 + δn); {δn}, {ξn} ∈ l2, (2)
for all n > q, α(n), γ(n) ∈ (1/2,∞),

∞∑
n=q+1

|an,n−i|n−α(n) <∞, i = −q + 1, . . . , q − 1. (3)

First consider the case when for all n > q α(n) = γ(n) = α and assume for
simplicity that all the coefficients an,n−i, (i = −q+1, . . . , q−1) for n > q are equal
to zero. Denote by Ik(a1, . . . , a2q−k) (or I−k(a1, . . . , a2q−k)) the matrix of order
2q where the only nontrivial diagonal, consisting of the elements a1, . . . , a2q−k
is shifted k steps to the right (or k steps to the left) with respect to the main
diagonal; Ik ≡ Ik(1, . . . , 1). Then system (1) admits the following representation:

un+1 = B(n)un, n > q, where un =




un−q
...

un+q−1


 , and (4)

B(n) = (B(n)i,j)
2q
i,j=1 =




0 1 0 0 0 . . . 0 0
0 0 1 0 0 . . . 0 0
0 0 0 1 0 . . . 0 0
...

...
0 0 0 0 0 . . . 0 1
−bn 0 . . . 02q,q ρn 02q,q+2 . . . 0




= I1 + I−q+1(0, . . . , 0, ρn)− I−2q+1(bn), bn =
µn−q
λn

, ρn =
z

λn
.

Matrix B(n) is a so-called transfer matrix corresponding to (1) with the restriction
that all coefficients an,n−i, (i = −q + 1, . . . , q − 1) for n > q are equal to zero. If
q = 1,

B(n) =
(

0 1
−bn ρn

)
.
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One can easily check that for n− 2q + 1 > q

B(n, n− 2q + 1) ≡ B(n)B(n− 1) . . . B(n− 2q + 1)
= B(n, n− q + 1)B(n− q, n− 2q + 1)

= [Iq + diag(

q times︷ ︸︸ ︷
0, . . . , 0, ρn−q+1, ρn−q+2, . . . , ρn)− I−q(bn−q+1, . . . , bn)]

×[Iq + diag(

q times︷ ︸︸ ︷
0, . . . , 0 ρn−2q+1, ρn−2q+2, . . . ρn−q)− I−q(bn−2q+1, . . . , bn−q)]

= diag(−bn−2q+1, . . . ,−bn−q,−b̃n−q+1, . . . ,−b̃n) + Iq(ρn−2q+1, . . . , ρn−q)
−I−q(ρn−q+1bn−2q+1, ρn−q+2bn−2q+2, . . . , ρnbn−q),

where b̃i = bi − ρiρi−q. Since {ξ}, {δ} ∈ l2, we get

bn =
µn−q
λn

= (1 − qα

n
+O(

1
n2

))(1− εn +
εnδn

1 + δn
) = 1− βn + rn,

where εn = δn − ξn−q, βn = qα/n+ εn, {rn} ∈ l1. We also have

{ρnbn−q − ρn}, {b̃n − bn} ∈ l1,
because α > 1/2.

In view of the above, we can write

B(n, n− 2q + 1) = B̃(n, n− 2q + 1) +Rn, where

B̃(n, n− 2q + 1) = diag(−bn−2q+1, . . . ,−bn)
+Iq(ρn−2q+1, . . . , ρn−q)− I−q(ρn−q+1, . . . , ρn),

and {‖Rn‖} ∈ l1. Again, using the condition α > 1/2 we obtain that
{ρn − ρn−i} ∈ l1 for i = 1, . . . , 2q − 1 and {ρn} ∈ l2, so the formula for
B(n, n− 2q + 1) can be written as

− exp(−ρnP )[I − diag(βn−2q+1, . . . , βn)][I + Sn],

where P = Iq − I−q, {‖Sn‖} ∈ l1, and I is the identity matrix.
Now assume that for a fixed index i = 1, . . . , 2q − 1, {εn − εn−i} ∈ l1

for n = q(2k + 1), k ∈ N. Then {βn − βn−i} ∈ l1, and we get

B(n, n− 2q + 1) = −(1− βn) exp(−ρnP )[I + S̃n],where {‖S̃n‖} ∈ l1.
Thus, for n = q(2k + 1) we are coming to the formula

un+1 = (−1)
n−q
2q

n−q
2q∏
j=1

(1 − βq(2j+1)) exp(−ρnP )(I + S̃n) (5)

× exp(−ρn−2qP )(I + S̃n−2q) . . . exp(−ρ3qP )(I + S̃3q)uq+1.

We have

exp(−ρnP ) = cos(ρn)I − sin(ρn)Iq + sin(ρn)I−q.

Hence, for real ρn this is a unitary matrix.
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Theorem 1. Suppose that for the system (1–3) the following conditions are fulfilled

(i) α(n) = γ(n) = α for all n > q.
(ii) The series

∑
k εk is convergent.

(iii) There exists an integer m, 0 ≤ m ≤ 2q − 1 such that {εn − εn−i} ∈ l1,
n = 2qk +m, k ∈ N, i = 1, . . . , 2q − 1.

(iv) For all k > q, ρk are real.

If u = {un}∞n=q+1 is a non-zero solution of (1–3), then for un defined by (4)

un = Pnn−α
2 (exp(− 1

2q

n∑
k=q+1

ρkP )(f + (o(1))), n→∞ (6)

for a certain vector f ∈ C
2q and a vector o(1) of norm o(1).

The method of proof is the same as for the Theorem 3.2 from [5] (see also the
example in the next section). If λn = µn, n = q + 1, . . . ,∞ (as in [5] for q = 1),
then

N∑
k=q+1

εk =
N∑

k=N−q+1

ξk −
q∑

k=1

ξk,

so the condition (ii) is automatically fulfilled (since {ξk} ∈ l2). Note that for-
mula (5) used in the proof has been derived from the additional assumption that
an,n−i = 0 for all i = −q+1, . . . , q−1, n > q. But, if in case of nonzero an,n−i the
condition (3) is fulfilled then the corresponding additional terms in the transfer
matrix B(n) give a summable error, and the formula (5) is also valid for this case.

Theorem 2. Under the assumptions of the Theorem 1 for any non-zero solution u
of (1) one obtains the asymptotic formula as N →∞

N∑
n=1

|un|2 =

{
O(N1−α), α �= 1,
O(ln(N)), otherwise.

Proof. Let the conditions of the previous theorem be fulfilled for m = q. Then, for

N = q(2k + 1),
∑N
n=1 |un|2 ≤

∑N−q
2q

p=0 ‖uq(2p+1)+1‖2. Applying (5) and using, that
‖ exp(−ρnP )‖ = 1 we get

∑q(2k+1)
n=1 |un|2 ≤

∑k
l=1

∏l
j=1 |1− βq(2j+1)|2(1 + ‖S̃q(2j+1)‖2)‖uq+1‖2

≤ C1

∑k
l=1

∏l
j=1 |1− βq(2j+1)|2‖uq+1‖2

≤ C2

∑k
l=1 exp(−2

∑l
j=1 |βq(2j+1)|)‖uq+1‖2

≤ C3

∑k
l=1 exp(−α

∑l
j=1

1
j )‖uq+1‖2 ≤ C4

∑k
l=1 l

−α,

for some suitable positive constants Cm,m = 1, . . . , 4. Here we used that
{β}, {ε} ∈ l2 and the condition (i) of the Theorem 1.
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On the other hand, there exists N0 so large, that ‖Sq(2j+1)‖ < 1 and
|βq(2j+1)| < 1 for j ≥ N0. So we obtain

q(2k+1)∑
n=1

|un|2 ≥ C5

k∑
l=N0

l∏
j=N0

|(1− βq(2j+1))|2(1 − ‖S̃q(2j+1)‖2)‖uq+1‖2

≥ C6

k∑
l=N0

l−α,

for some C5 and C6. Thus the claim of the theorem is proved for N = q(2k + 1)
and for the other N it follows from the fact, that ‖B(n)±1‖ → 1 as n→∞. �

This theorem can be applied to study the subordinated solutions of (1) for
q = 1. A solution u �= 0 is called a subordinate solution of (1) if for every solution
v linearly independent with u we have limn→∞

∑n
k=1 |uk|2/

∑n
k=1 |vk|2 = 0. We

mention here that one of the main tools in the spectral analysis of infinite Jacobi
matrices is the study of subordinated solutions of the systems (1) related to such
matrices [7], [8].

Let u = {un}∞n=1 and v = {vn}∞n=1 be two linearly independent solutions of
(1) for q = 1. One can easily check that for n ≥ 2

unvn+1 − vnun+1 =
µn−1

λn
(un−1vn − vn−1un)

=
µn−1 . . . µ1

λn . . . λ2
(u1v2 − v1u2) =

δn−1w0

λn
,

where δn = µn...µ1
λn...λ2

and w0 = u1v2 − v1u2. Assuming that infn |δn| ≥ α > 0 we get

N∑
n=1

|w0|α
|λn|

≤ 2(
N+1∑
n=1

|un|2)
1
2 (
N+1∑
n=1

|vn|2)
1
2 .

Applying the above theorem and using the same arguments as in [5] page 222, we
finally obtain ∑N+1

n=1 |un|2∑N+1
n=1 |vn|2

≥ c0 > 0.

Thus the following theorem is proved.

Theorem 3. If the system (1–3), with q = 1, satisfies the assumptions of the
Theorem 1 and the additional assumption infn|δn| > 0, then it has no subordinated
solutions.

2. Application

The above asymptotic formulas were established under the assumption that ρk are
real, so exp(−ρkP ) are unitary. To establish (6) for the complex ρk we have to
additionally assume, that exp(

∑∞
k=1 ρkP ) is convergent, which is fulfilled, e.g., for
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α > 1. For such α, as it follows from (6), all non-zero solutions of (1) are decreas-
ing not slower than n−α/2 . Nevertheless, for some cases when exp(

∑∞
k=1 ρkP ) is

divergent, it is also possible to establish the analog of (6).
As an example, we consider the application of the studied asymptotic method

to the analysis of invariance of lp property for (1), with respect to z. Namely, the
following generalization of the Hellinger-Wall theorem [9] takes place.

Theorem 4. Suppose that the coefficients of the system

µn−qun−q + an,n−q+1un−q+1 + · · ·+ an,n+r−1un+r−1 + λnun+r = zun, (7)
n > q, q, r ≥ 1, µn−q �= 0, λn �= 0, z ∈ C,

satisfy the condition
inf
i
|δi| > δ > 0, (8)

where
δ1 = µ1, δi =

µ1µ2 . . . µi
λq+1λq+2 . . . λq+i−1

, i ≥ 2.

Suppose also that for some p, 1 ≤ p ≤ 2, and z = z0 ∈ C, the series∑∞
i=1 |ui(z0)|p is convergent for every solution u = u(z) = {ui(z)}∞i=1 of (7),and,

therefore u(z0) ∈ lp. Then, for any M > 0, the series
∑∞
i=1 |ui(z)|p is uniformly

convergent for |z − z0| < M .

The proof is contained in [10]. Thus, the property of all solutions of (7) to
belong to lp (the lp property) is invariant with respect to z ∈ C for 1 ≤ p ≤ 2.

To check whether or not the statement of this theorem is true for lp, p > 2
we consider the system:

µn−1un−1 + λnun+1 = zun, n > 1, (9)

where

µn =

{
n(n+ 1), n = 2k,
n+ 1, n = 2k + 1,

λn =

{
n+ 1, n = 2k,
n2, n = 2k + 1,

k ∈ N, µ1 = 2.

Or, in other words,

nun−1 + (n+ 1)un+1 = zun for even n,
(n− 1)nun−1 + n2un = zun otherwise.

It satisfies the condition (8) of Theorem 4. For even n α(n) = γ(n − 1) = 1,
δn = 1/n, ξn−1 = 1/(n−1); for odd n α(n) = γ(n−1) = 2, δn = 0, ξn−1 = 1/(n−1),
and for all n µn−1/λn = 1− 1/n. Our purpose is to obtain an asymptotic formula
for the solutions of (9). Since α(n) �= γ(n) we cannot apply here Theorem 1
(the conditions (ii)–(iii) are also not fulfilled), but we can use similar techniques.
Namely, consider the case of odd n. Then

B(n)B(n− 1) =
(
−1 + 1

n
z
n

0 −1 + 1
n

)
+
(

0 0
z
n3 − z

n2
z2

n3

)

= −(1− 1
n

) exp(−ρ̃nP̃ )(I + S̃n),
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where ρ̃n = z
n−1 ,

P̃ =
(

0 1
0 0

)
, S̃n =

(
− z2

n2(n−1)2 + z2

n(n−1)2 − z3

n2(n−1)2

z
n(n−1) −

z
n2(n−1) − z2

n2(n−1)

)
.

Hence for odd n we have:

un+1 = B(n)B(n − 1) . . . B(2)u2 = (−1)
n−1

2
∏n−1

2
k=1 (1− 1

2k+1 )

× exp(−ρ̃nP̃ )(I + S̃n) exp(−ρ̃n−2P̃ )(I + S̃n−2) . . . exp(−ρ̃3P̃ )(I + S̃3)u2

= (−1)
n−1

2
∏n−1

2
k=1 (1 − 1

2k+1 ) exp(−
∑n−1

2
k=1 ρ̃kP̃ )

∏n−1
2

k=1 (I + R̃2k+1)u2,

where R̃3 = S̃3, and for k > 1

R̃2k+1 =exp(
k−1∑
i=1

ρ̃2i+1P̃ )S̃2k+1exp(
k−1∑
i=1

−ρ̃2i+1P̃ )

=
(

1
∑k−1

i=1
z

2i+1

0 1

)( z2

(2k)2(2k+1) −
z2

(2k)2(2k+1)2
−z3

(2k)2(2k+1)2

z
2k(2k+1) −

z
(2k)(2k+1)2

−z2
(2k)(2k+1)2

)(
1
∑k−1

i=1
−z

2i+1

0 1

)
.

Thus the elements of R̃2k+1 are of order O( ln2(k)
k2 ) and therefore {‖R̃2k+1‖} ∈ l1.

Then, using that
n−1

2∏
k=1

(1− 1
2k + 1

) ' exp(−
n−1

2∑
k=1

1
2k + 1

), P 2 = −I, (where P =
(

0 1
−1 0

)
);

n−1
2∑

k=1

1
2k + 1

=
1
2

n∑
k=2

1
k
− 1

2

n−1
2∑

k=1

(
1
2k
− 1

2k + 1
),

n−1
2∑

k=1

ρ̃2k+1 =
1
2

n∑
k=1

ρ̃k −
1
2

n−1
2∑

k=1

(ρ̃2k − ρ̃2k+1), (ρ̃1 = 0),

{
1
2k
− 1

2k + 1

}
and {ρ̃2k − ρ̃2k+1} ∈ l1,

for odd n we obtain

un+1 = Pn−1 exp(−
∑n−1

2
k=1

1
2k+1 ) exp(−

∑n−1
2

k=1 ρ̃2k+1P̃ )
∏n−1

2
k=1 (I + R̃2k+1)u2

= Pn−1 exp(− 1
2

∑n+1
k=1

1
k ) exp(− 1

2

∑n+1
k=1 ρ̃kP̃ )(e+ o(1))

= Pn+1(n+ 1)−1/2 exp(− 1
2

∑n+1
k=1 ρ̃kP̃ )(f + o(1)), n→∞,

where e and f are some vectors in C
2 and o(1) is a vector of norm o(1). Since

B(n)→ P as n→∞, the asymptotics for even n is the same.
Hence for all n

un = Pnn− 1
2

(
1 n

−z
2

0 1

)
(g + o(1)), n→∞,
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where g is a certain vector in C
2. From this, one can immediately see that for z = 0

or z = i all solutions of the equation are of order O(n−1/2) and therefore belong
to the space l2+ε for any ε > 0. However, for z = −1 there is a one-dimensional
subspace of solutions which are bounded but do not tend to zero, as n→∞. Thus
the following proposition is proved:

Proposition. The statement of the Theorem 4 is not true for p > 2.
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A Remark on Spectral Meaning of the
Symmetric Functional Model

Boris Pavlov

Abstract. The imaginary part of a dissipative operator L is weak if it is pre-

sented by a positive operator T such that the square T 2
of it is a product

of an operator with a finite trace and an operator from Macaev class. For a
dissipative operator with a weak imaginary part the families of incoming and
outgoing scattered waves form a non-orthogonal and often even over-complete
system {Ψin, Ψout} of eigenfunctions of the corresponding self-adjoint dila-
tion L . The rescription of L in the spectral representation associated with
{Ψin, Ψout} gives the Symmetric Functional Model of L, and the characteris-
tic function S of L coincides with the transmission coefficient of the outgoing
waves. A general construction based on the self-adjoint delation and an ex-
ample of the Lax-Phillips Semigroup for the 1-D wave equation on the infinite
string with a bounded non-negative potential supported by semi-axis are con-
sidered.

Mathematics Subject Classification (2000). 47A45.

Keywords. Symmetric functional model.

1. Introduction

The classical Nagy-Foias Functional Model of a dissipative operator is obtained
as an image of the dissipative operator in incoming or outgoing spectral repre-
sentation of it’s self-adjoint dilation, see [10]. The symmetric rescription of the
Nagy-Foias Functional Model (we will call it further just a Symmetric Model) was
suggested in [12, 13] and developed in [6, 8, 15, 11, 17, 18], see complete bibli-
ography in [15, 11, 18]. The symmetric rescription of the Nagy-Foias functional
model gives most simple algebraic formulae for spectral objects of the model (the
eigenfunctions, the spectral density and others) and permits to calculate directly
important spectral characteristics, see [15, 11, 18]. The Symmetric Model can be

The author recognizes support from the grant of the Russian Academy of Sciences, RFBR 03-
01-00090.
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obtained formally from the original Nagy-Foias model just by a non-degenerate
transformation of the space, see [12], which transforms the spectral density matrix
of the dilation into the spectral density matrix of the symmetric model:(

I 0
0 I − S+S

)
−→
(
S+ I
I 0

)(
I 0
0 I − S+S

)(
S I
I 0

)

=
(

I S+

S I

)
:= ρ(λ), (1.1)

where S = S(k+ i0) is the limit value of the characteristic function of the original
dissipative operator on the real axis from the upper half-plane and S+ are the limit
values of S+(k − i0) on the real axis from the lower half-plane. The above trans-
formation of the spectral data connects actually different kinds of eigenfunctions
which may be used for construction of the spectral representation. The standard
Nagy-Foias model was connected with the orthogonal system of eigenfunctions of
incoming and complementary (“radiating”) components of the dilation, see [13, 14].
We denote them by {ψ−, ψ<} respectively. An equivalent model may be connected
with outgoing {ψ+} and “absorbing” eigenfunction {ψ>} of the dilation. Then the
symmetric model is formally connected by the above formula (1.1) to the orthogo-
nal system {ψ<, ψ− − S+ψ<} or the dual system {ψ>, ψ+ − Sψ>}. Both systems
look rather ugly, and hence the recipe of the construction of the functional model
as an image of the original dissipative operator in the spectral representation
associated with this system seems neither elegant nor persuading. Besides the sug-
gested transformation of the classical Nagy-Foias model to the symmetric one is
not unique. Hence there exists an extended set of systems of eigenfunctions of the
dilation which can be used for construction of the spectral representation relevant
to the symmetric model.

We will reveal the spectral meaning of the symmetric model via finding the
most natural spectral representation of the dilation, such that the rescription of the
original dissipative operator in terms of it coincides with the symmetric functional
model, similarly to the classical case. We show that the symmetric functional
model is associated with a certain set of eigenfunctions of the absolutely-continuous
spectrum of the model: the incoming and outgoing scattered waves {ψ−, ψ+}.
Generally, this set of eigenfunctions is not orthogonal. Hence the corresponding
matrix ρ of the spectral density is non-diagonal and may degenerate. Nevertheless
the spectral representation is properly defined, up to non-essential addenda, as
stated in [13, 11].

The plan of actual paper is the following: in the second section we revisit
the construction of the functional model in [12] for the scalar wave-equation in
R1, paying a special attention to the calculation of the symmetric non-orthogonal
spectral representation. Then in the third section we study an abstract dissipa-
tive operator B with finite-dimensional defect dim (B − B+) < ∞ 1 and square
characteristic matrix-function. We obtain the corresponding eigenfunctions of the

1See the remark after Theorem 3.2.
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self-adjoint dilation as limits of the resolvent in the properly rigged space. Though
the spectral components are, generally, non-uniquelly defined, we calculate them
with the help of the wave-operators. The characteristic function is interpreted
both as a stationary transmission coefficient and as a (non-stationary) limit, in
full agreement with the classical Adamyan-Arov results.

2. Symmetric representation for Lax-Phillips semigroup

Assuming that q is a piece-wise continuous non-negative locally bounded function
supported by the left semi-axis R− = (−∞, 0), consider the wave-equation on
R = (−∞,∞)

utt − uxx + q(x)u = 0, −∞ < x <∞, (2.1)

with proper initial data with finite energy:

u(x, 0) = u0, ut(x, 0) = u1.

There exists a unique generalized solution of the above equation from the do-
main of the quadratic form of the corresponding Schrödinger operator L,Lu =
−uxx + q(x)u, defined as a Friedrichs extension of the corresponding symmetric
operator defined on smooth compactly-supported functions. The energy of the so-
lution u(x, t) is conserved in course of evolution and is equal to the energy of the
initial data:

Eu =
1
2

∫ ∞

−∞

[
| ( u0|2 + q(x)|u0|2 + |u1|

]
dx.

The evolution operator of Cauchy data
(
u0

u1

)
−→
(

u(x, t)
ut(x, t)

)
= u(t)

is unitary in the space E of all Cauchy data u supplied with the energy dot-product:

〈u, v〉E =
1
2

∫ ∞

−∞
[〈(u, (v̄〉+ q(x)uv̄ + utv̄t] dx.

The generator of the evolution of Cauchy data is a self-adjoint operator L in E
which appears in the right side of the wave-equation represented in Schrödinger
form:

1
i

∂u
∂t

= i

(
0 −1
L 0

)
u := Lu.

The incoming and outgoing subspaces Din,out ∈ E consist of all Cauchy data of
incoming and outgoing waves u(x ± t) supported by the right semi-axis and are
mutually orthogonal in E , see [7].

The spectrum of the operator L is absolutely continuous on the interval
R+ = [0,∞), possibly with varying multiplicity. We assume that the spectral
analysis of the Schrödinger operator L is done and a complete orthogonal set of
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eigenfunction of the absolutely-continuous spectrum – the scattered waves ψ± – is
constructed as

ψ+(x, k) =
{
e−ikx + Seikx if x > 0
α+χ+(x, k) if x < 0

and

ψ−(x, k) =
{
eikx + S̄e−ikx if x > 0
α−χ−(x, k) if x < 0

where α± are corresponding transmission coefficients and χ±(x, k) = ϕ(x, k) +
m±(k)θ(x, k) are the limit values (from the upper and lower half-planes) of Weyl-
solutions of the homogeneous equation Lu = k2u which are square integrable
on (−∞, 0] for k in upper or lower half-plane �k > 0,�k < 0 respectively. Here
ϕ(x, k), θ(x, k) are the standard solutions of the homogeneous equation with initial
data (0, 1), (1, 0) and m±(k) are the corresponding Weyl-Titchmarsh functions,
see [19], selected with the condition of analyticity in upper or lower half-planes
respectively. The role of the spectral parameter is played by k2 with the branch
of the square root

√
k2 = k defined for S by the condition �k > 0 and for S̄ by

�k < 0.

Theorem 2.1. The reflection coefficients on the real axis �k = 0 are defined by the
limit values of the corresponding Weyl-Titchmarsh functions on real axis k from
the upper (lower) half-planes respectively:

S(k) = −m+(k) + ik

m+(k)− ik , S̄(k) = −m−(k)− ik
m−(k) + ik

and admit an analytic continuation into the upper and lower half-planes respec-
tively. The incoming and outgoing solutions of the wave-equation on the positive
semi-axis 0 < x <∞ are parametrized by elements of the Hardy classes h± ∈ H2

±
as

uin,out(x, t) =
∫ ∞

−∞
eiktψ±(x, k)

1
ik
h±(k)dk.

The incoming and outgoing subspaces Din, Dout of the energy-normed space E are
images of the corresponding Hardy-classes in spectral representations associated
with proper eigenfunctions

Ψ±(x, k) =
(

1
ikψ±(x, k)
ψ±(x, k)

)

of the generator L:

Din =
{∫ ∞

−∞
eikt
(

1
ikψ−(x, k)
ψ−(x, k)

)
h−(k)dk, h− ∈ H2

−

}
,

Dout =
{∫ ∞

−∞
eikt
(

1
ikψ+(x, k)
ψ+(x, k)

)
h+(k)dp, h+ ∈ H2

+

}
(2.2)

and the correspondence between the functional parameters h± and the relevant
Cauchy data is isometric in energy-normed space.
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The invariant subspaces E± of the generator L of the evolution developed from
Din, out are isometrical images of L2(R) defined by the spectral map

J± : h→ 1√
2π

∫
Ψ±(x, p)h(p)dp = J±h, , h ∈ L2

E± =
{∫

Ψ±(x, k)h(k)dk, h ∈ L2(R)
}
, |J±h|E = |h|L2 .

In particular, if f ,g are elements of the energy-normed space presented as

f = J+f+ + J−f− := J
(
f+
f−

)
, g = J+g+ + J−g− := J

(
g+
g−

)
,

then

〈J
(
f+
f−

)
, J
(
g+
g−

)
〉E =

∫ ∞

−∞
〈
(

1 S̄
S 1

)(
f+
f−

)
,

(
g+
g−

)
〉

C2
. (2.3)

Each of systems of eigenfunctions Ψ± of the generator L is non-complete, if the
modulo |S| of the Scattering matrix is not equal to one identically:

E± �= E , E⊥+ = E> �= 0, E⊥− = E< �= 0,

but the joining of them {Ψ±} is complete E+ + E− = E and the corresponding
Parseval identity (2.3) is true with proper spectral density matrix.

Proof. The proof of the statement is obtained by straightforward verification of the
corresponding algebra, see, for instance [13]. The only analytical question appears
when deriving the above Parseval identity (2.3). It is actually equivalent to the
following equations:

〈J+h,J+g〉E = 〈h, g〉L2 , 〈J+h,J−g〉E = 〈S̄h, g〉L2

〈J−h,J+g〉E = 〈Sh, g〉L2 , 〈J−h,J−g〉E = 〈h, g〉L2 .
(2.4)

We will verify only one of them assuming that h = h+ ∈ H2
+ and g = eiktg−, g− ∈

H2
− , t > 0. Then the integration in the energy dot-product is extended on the

positive semi-axis 0 < x < ∞ where the eigenfunctions ψ± are presented just as
linear combinations of exponentials. Then assuming that the elements h+, g− are
smooth and rapidly decreasing we may accomplish the integration over the space
variable x, acquiring proper delta-functions. Then the integral over wave number
k is reduced, for any positive t, to:

〈J+h,J−g〉E =
1
4π

∫ ∞

0

dx

∫
dk

∫
dk̂
[
−e−ikx + S(k)eikx

]
h+(k)

[
eik̂x − S̄(k̂)e−ik̂x

]
e−ik̂th̄−(k̂)

+
1
4π

∫ ∞

0

dx

∫
dk

∫
dk̂
[
e−ikx + S(k)eikx

]
h+(k)

[
eik̂x − S̄(k̂)e−ik̂x

]
e−ik̂th̄−(k̂).
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The ultimate expression may be presented as an integral over the semi-axis 0 <
x <∞ and, after cancellation of few terms which do not contain S, results in:

1
2π

∫ ∞

0

dx

∫
dk

∫
dk̂ei(k−k̂)xS(k)h+(k)h̄−(k̂)e−ik̂t

+
1
2π

∫ ∞

0

dx

∫
dk

∫
dk̂e−i(k−k̂)xS(k)h+(k)h̄−(k̂)e−ik̂t

∫ ∞

−∞
e−ikt [Sh+ḡ−] dk =

∫ ∞

−∞

[
Sh+e

−iktḡ−
]
dk.

Note that the integral with negative t is equal to zero because of orthogonality of
incoming and outgoing subspaces.

The obtained result may be extended to the dense set of elements via con-
sidering the products h = eikt1h+, g = eikt2g− for any finite t1, t2. Taking a limit
t1, t2 → ±∞ we obtain the statement

〈J+h,J−g〉E = 〈Sh, g〉

for any h, g ∈ L2(R), that is for any elements J+h ∈ E+, J−g ∈ E− from the in-
variant subspaces of the generator L produced by the development of the incoming
and outgoing subspaces. Other announced statements may be proved in a similar
way. �

Note that the column of “symmetric” coordinates
(
f+
f−

)
of an element f =

J+f+ + J−f− in the symmetric spectral representation is not defined uniquely.
Nevertheless, one may suggest a natural procedure of recovering the symmetric
coordinates of an element (u, ut) from the energy-normed space of Cauchy data
of the wave equation based on Adamyan-Arov wave-operators.

Really, consider the non-perturbed wave equation

utt − uxx = 0

on the whole axis (−∞,∞). The corresponding unitary evolution group eiL0t in
proper “non-perturbed” energy-normed space E0 has a common pair Dout, in of
incoming and outgoing subspaces with the evolution group generated by the equa-
tion (2.1) in E . Denote by Pin, out the orthogonal projections in the energy-normed
space E onto incoming and outgoing subspaces Din, out.

Theorem 2.2. The Adamyan-Arov wave operators, see [1]

W+ = s− lim
t→∞ e−iL0tPoute

−iLt, W− = s− lim
t→−∞ e−iL0tPine

−iLt

exist as strong limits and are isometrical from the invariant subspaces Ein, out ob-
tained via development of Din, out with perturbed evolution – into the correspond-
ing invariant subspaces D0

in, out of the unitary evolution group eiL0t in the “non-
perturbed” energy-normed space E0 spanned by Cauchy data of incoming “from the



Spectral Meaning of Functional Model 169

right” and outgoing “to the right” waves

h(x± t) =
1√
2π

∫ ∞

−∞
eik(t±x)

i

k
hin, out(k) dk,

i

k
hin, out := FW∓h(0), (2.5)

where

h(0) =
(

f(x, 0)
ft(x, 0)

)

is the column of Cauchy data of the original perturbed problem and F

f(x)→ 1√
π

∫ ∞

−∞
e

ikx

dx : (Ff) (k)

is a standard Fourier transform in L2 .

Corollary. The column of coordinates
(
f−
f+

)
of an element f = J−f− + J+f+

in the symmetric spectral representation may be chosen as
(

fin
fout

)
, where the

components fin, out := −ikFW∓F (0) are defined by the initial data F (0) =
(
f0
f1

)

of the perturbed wave equation.

3. Self-adjoint dilation and symmetric model

Consider a dissipative operator in a Hilbert space K

L = A+
i

2
Γ+Γ

with a real part A = A+ and a finite-dimensional 2 positive imaginary part.
Assuming that ΓK = E contains a generating subspace of the operator A, consider
the extended space E = L2(R−, E)⊕K ⊕ L2(R+, E) of vector functions

�u =




u−
u
u+,




and the operator L in E defined on vector functions �u, u ∈ D(A), u± ∈W 1
2 (R±, E)

submitted to the condition u−(0)− u+(0) = iΓu:

L�u =




idu−
dx

Au+ Γ+

2 [u−(0) + u+(0)]
idu+
dx


 .

Without loss of generality we can assume that the operator Γ is self-adjoint Γ = Γ
+

and positive, but still we will use both Γ, Γ
+

in further formulae, if not specified
otherwise. The elements from the domain of L, which vanish on either of semi-axes

2This condition can be essentially relaxed, see the remark after Theorem 3.2.
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R±, satisfy the corresponding homogeneous boundary conditions u−(0) = iΓu,
or −u+(0) = iΓu. These conditions are fulfilled for the absorbing and radiating
eigenvectors of the dilation, see (3.4) below.

Theorem 3.1. The operator L is a self-adjoint operator in E. Moreover, the com-
pression of the resolvent Rλ, �λ < 0 of the operator L onto the subspace K coin-
cides with the resolvent of the operator L:

P
K

[L− λI]−1
P

K
= (L− λI)

−1

, �λ < 0. (3.1)

Proof of the corresponding statement for the dissipative Schrödinger operator with
complex potential is given in [14]. Proof of the announced abstract result follows
the same pattern: to obtain the first statement we have to verify the symmetry
of L and the symmetry of the adjoint operator; to prove the second statement we
may use a simple algebra and the basic fact of existence of limits of R-function on
the real axis from the upper half-plane. Then using Riesz-integral of the resolvent
one may derive from (3.1) that for any bounded analytic function Φ(λ) in upper
half-plane �λ > −2ε

P
K

Φ(L)P
K

=

− 1
2πi

∫ ∞−iε

−∞−iε
P

K
Φ(λ) [L− λI]−1

P
K
dλ =

− 1
2πi

∫ ∞−iε

−∞−iε
Φ(λ)[L − λI]−1dλ = Φ(L)

which means, in particular, that for t > 0: eiLt = P
K
eiLtP

K
. �

The unitary group eiLt is a unitary dilation [10] of the contracting semigroup
eiLt and the operator L is the self-adjoint dilation of the dissipative operator L.
The constructed dilation is minimal – i.e., it does not have proper self-adjoint
parts – if the subspace E is a generating subspace of the operator A.

We can construct the symmetric spectral representation for the original dis-
sipative operator following the pattern of the previous section. We begin with
description of eigenfunctions of the dilation.

The space E of the dilation L may be decomposed into orthogonal sum of
invariant subspaces generated by incoming and outgoing waves and corresponding
complementary (“radiating” and “absorbing” ) components E = E− ⊕ E< = E+ ⊕
E>. The spectrum of L± in each of components E± is absolutely continuous with
the constant multiplicity dim Γ on the whole real axis R. The spectrum of the
“absorbing” and “radiating” components L>, L< in subspaces E>, E< consists
of intervals of real axis where nonzero generalized solutions of the homogeneous
equation Lψ−λψ = 0 exist which vanish on L2(R+) (for ψ>) or vanish on L2(R−)
(for ψ<). The corresponding eigen-functions of the dilation in each component E±
can be found, according to philosophy developed in [5, 4, 3] as elements of some
rigged space constructed with a help of some Hilbert-Schmidt operator T which
has a dense range, i.e., with all non-zero eigenvalues. This general statement can
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be specified in our case by selection of a special class of eigenfunctions which
play a role of Scattered waves. This result can be obtained via selection of a
special rigging (i.e., the operator T ) correlated with the imaginary part of the
considered dissipative operator. Without loss of generality we can assume that the
operator Γ = Γ

+
is a part of the positive Hilbert-Schmidt operator T acting in

K, 〈Ku, u〉 > 0. Moreover we can assume that the operator T 2
> 0 is presented

as a product of an operator of the trace class and an operator from Matsaev class,
so that its eigenvalues are sn(T

2
) = O(αn βn) with

∑
n |αn| <∞,

∑
n βn/n <∞

and βn tend to zero monotonically. Consider the Gelfand triple [5] associated with
the operator T as TK = K1 ⊂ K ⊂ K1

= T −1
K. Then the following statement

is true:

Theorem 3.2. The incoming and outgoing eigen-functions of the ditation L can be
presented as generalized solutions of the corresponding homogeneous equation with
exponential behavior in L2(R±, E):

ψ−(e) =





e−ikxe, e ∈ E, x ∈ R−,
u−(e) in K1

,
e−ikxS+e, e ∈ E, x ∈ R+,

ψ+(e) =





e−ikxSe, e ∈ E, x ∈ R−,
u+(e) in K1

,
e−ikxe, e ∈ E, x ∈ R+.

(3.2)

These eigenfunctions are labelled by the “direction vectors” 3 e ∈ E . The mid-
components u∓ are generalized solutions of the non-homogeneous equation in com-
plex plane and are uniquely defined by the direction vectors e ∈ E, see (3.4) below,
as T −1

images of strong limits of properly framed resolvent of the self-adjoint opera-
tor A or the resolvent of L, L

+
on the real axis from the lower (upper) half-planes.

The transmission coefficients S, S+ are also uniquely defined from the homoge-
neous equation. In particular, S, S+ are analytic matrix-function in upper and
lower half-planes �k > 0, �k < 0

S+(k − i0) = I − i lim
λ→k−i0

Γ
I

L− λI Γ+ = lim
λ→k−i0

I − i
2Γ I

A−λIΓ
+

I + i
2Γ I

A−λIΓ
+
,

S(k + i0) = I + i lim
λ→k+i0

Γ
I

L+ − λI Γ+. (3.3)

u−(e) = −1
2

1
A− (k − i0)

(
I + S+(k − i0)

)
e = − I

L− (k − i0)
Γ+e, e ∈ E.

u+(e) = −1
2

I

A− (k + i0)
(I + S(k + i0)) e = − I

L+ − (k + i0)
Γ+e, e ∈ E. (3.4)

3The term is borrowed from [2].
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The eigenfunctions ψ>, ψ< of components of the dilation in complementary sub-
spaces E ) E− = E< and E ) E+ = E> have a form:

ψ< =




0
u<

e−ikxe<


 , ψ> =




e−ikxe>

u>

0


 , (3.5)

when choosing vectors e>, e< as eigenvectors of operators ∆> = I − S+S, ∆< =
I − SS+ with non-zero eigenvalues δ>, δ< respectively, we obtain:

u>(e>) =
1
δ>
[
u−(e>)− u+(S+e>)

]
,

u<(e<) =
1
δ<
[
u+(e<)− u−(Se<)

]
.

Proof. It is easy to verify the above formulae for the eigenfunctions on a formal
level, see for instance [14]. Note that analysis of the absolutely-continuous spectrum
of the symmetric model in the rigged space is presented in [17, 18, 15]. We suggest
below only the sketch of the proof of existence of the scattered wave of the dilation
(actually, the proof of existence of their mid-components) based on the Theorem 7
from [9]. It is proved in that theorem, in particular, that the non-tangential limits
exist on the real axis for the operator-valued R-function presented by the properly
framed resolvent of a self-adjoint operator. The remark attached to the theorem
shows that the statement remains true for the limit of the R-function

T P
K

I

L − λI PK
T =

T I

L+ − λI T

from the upper half-plane λ→ k+ i0 and for the adjoint function T I
L−λI T from

the lower half-plane, λ → k − i0. Now it is easy to verify the existence of the
mid-component u+ of the outgoing scattered wave. Really, the limit

lim
λ→k−i0

T I

L+ − λI
T

exists in the trace class, hence the mid-component can be presented as

u+ = T −1
lim

λ→k−i0
T I

L+ − λI
T e ∈ K1

.

Similarly the mid-component of the scattered wave ψ− can be obtained.The mid-
components u<, u> of the eigenfunctions in the complementary subspaces can
be obtained as linear combinations of them with proper coefficients and properly
chosen direction vectors. �
Remark. One can see that the above calculation can be applied to the situation
when the imaginary part of the dissipative operator is a positive operator pre-
sented as a part in E of the positive operator T such that the square T 2

of it is
product of an operator with a finite trace and an operator from Macaev class. This
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is actually the natural class of dissipative operators for which the symmetric func-
tional model may be obtained by the procedure described above. This class can
be extended via considering the corresponding relative classes with the imaginary
part subordinated to the real part. It will be done elsewhere.

Based on the explicit formulae for the eigenfunctions one can prove that the
characteristic function obtained above as a stationary transmission coefficient can
be also interpreted in non-stationary terms.

Considering the non-perturbed shift generator in the space Din ⊕ Dout =
L2(R−, E)⊕ L2(R+, E):

L0 = i
d

dx
.

Then the characteristic function of the original dissipative operator as Adamjan-
Arov scattering matrix, see [1] for the pair L, L0 is

s− lim
t→∞J0e

−iL0tP+e
2iLtP−e−iL0tJ+

0 .

Theorem 3.3. The Adamjan-Arov scattering matrix for the pair L, L0 coincides
with the transmission coefficient4:

S+(k − i0) = I − i lim
λ→k−i0

Γ
I

L− λI Γ+ =

= lim
λ→k−i0

I − i
2Γ I

A−λIΓ
+

I + i
2Γ I

A−λIΓ
+
, (3.6)

Proof is obtained by the straightforward calculation using the fact that the spectral
representation J0 for the non-perturbed operator is defined by Fourier transform.
Hence the scattering matrix coincides with the transmission coefficient S in front
of the exponential e−ikx in the formula for the scattered wave ψ− in the outgoing
subspace. �

We construct now the symmetric functional model for the original operator
L based on eigenfunctions ψ± of its self-adjoint dilation, see (3.2).

Theorem 3.4. Consider the maps J± of the spaces L2(E) into E±:

J+h+ =
1√
2π

∫ ∞

−∞
ψ+ (h+(p)) dp, h+ ∈ L2(E),

J−h− =
1√
2π

∫ ∞

−∞
ψ− (h−(p)) dp, h− ∈ L2(E),

and the map J of the column
(
h+

h−

)
:= h into E:

Jh = J+h+ + J−h−.

4The numerator and denominator of the announced representation for the Scattering matrix are
commuting, so the order of them is not important.
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Then the following Parseval identity is true:

〈J f , J g〉 = 〈f+, g+〉+ 〈S+f−, g+〉+ 〈Sf+, g−〉+ 〈f−, g−〉 =
∫
〈
(

I S+

S I

)
f , g〉

E⊕E
dk (3.7)

Proof. Note that for h− ∈ H2−(E)

J
(
h−
0

)
=




h−(x)
0
0




with h−(x) =
∫∞
−∞ e−ikxh−(k)dk non equal to zero identically if x ∈ R−. Similarly

for h+ ∈ H2
+(E)

J
(

0
h+

)
=




0
0

h+(x)




with h+(x) =
∫∞
−∞ e−ikxh+(k)dk �= 0 if x ∈ R+. Hence incoming and outgo-

ing subspacesDin, out = L2(R±) are mutually orthogonal. The invariant subspaces
E± ∈ E of the dilation developed from the incoming and outgoing subspaces,

E± =
t=∞∨
t=−∞

∫ ∞

−∞
eiktψ± (h±) dk, h± ∈ H2

±,

are represented as

E+ = J
(

0
L2

)
, E− = J

(
L2

0

)
.

Then for f+ ∈ H2
+, g− ∈ H2

− we obtain:

〈J
(

0
f+

)
,J
(
eiktg−

0

)
〉

=
∫ 0

−∞
〈Sf+, eiktg−〉L2dx

for any finite t. Following the pattern of the previous section one may derive from
it that for any f+, g− ∈ L2

〈J
(

0
f+

)
,J
(
g−
0

)
〉

=
1
2π

∫ 0

−∞
dx

∫
dk

∫
dk̂e−ikxeik̂xS(k)f+ḡ−

+
1
2π

∫ ∞

0

dx

∫
dk

∫
dk̂e−ikxeik̂xf+S+(k̂)g−

+〈u+(f+), u−(g−)〉K = 〈Sf+, g−〉L2 ,
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since 〈u+(f+), u−(g−)〉K = 0, and remaining integrals over semi-axes should be
combined to the delta-function δ(k − k̂). This way the announced statement is
verified for special elements

(
0
f+

)
,

(
g−
0

)
.

The proof is accomplished based on similar arguments for various choice of special
elements and linearity of the map J . �

Consider the non-perturbed operator E0 = L0 ⊕ L0 in L2(R,E)⊕ L2(R,E).
The corresponding evolution group Ut : u(x) → u(x − t) has unilateral invariant
subspaces L2(R−, E) := Din, L2(R+, E) := Dout. We denote by Pin, out the or-
thogonal projections onto Din ,out respectively. Similarly to the above reasoning in
section 2 we calculate the symmetric spectral representation via Arov-Adamyan
wave operators, see [1].

Theorem 3.5. The wave-operators

W− = s− lim
t→−∞ e−iL0tPine

iLt

W+ = s− lim
t→∞ e−iL0tPoute

iLt

exist as strong limits and are isometric operators from the invariant subspaces
Ein, out ⊂ E obtained by development of the incoming and outgoing subspaces
L2(R− , E) and L2(R+ , E) with evolution generated by L. The column

(
fin
fout

)
:= f

defines the symmetric spectral map as

J f = J−fin + J+fout

which is calculated from the column of Cauchy data as
(
f0
f1

)
= f(0) as

(
fin
fout

)
=
(
FW−f(0)
FW+f(0)

)

where F is the standard Fourier transform in L2 :

f(x)→ 1√
2π

∫
eikxf(x)dx = f(k).

Note that we suggested a unique recipe of construction of coordinates of
the symmetric spectral representation of the dilation, but, once constructed, the
column of coordinates may be a subject to change within proper limits caused
by possible presence of intervals where the scattering matrix is unitary, see the
discussion in [14].
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Remark. Note that the eigenfunctions of the complementary component are found
uniquely, up to the parametrization with the direction vectors. Their mid-compo-
nents u<, u> E<, E> may serve a canonic system of eigenfunctions of the abso-
lutely continuous spectrum of the original dissipative operator and adjoint opera-
tor, respectively. The corresponding spectral expansion

u =
1
2π

∫

σa

|S(k)|2 − 1
S+(k)

u<(k)〈u, u>(k)〉dk, (3.8)

is converging for elements u represented as orthogonal projections of elements of
the complementary subspace E< onto K. This set is dense in the absolutely con-
tinuous subspace of the operator L, see [10] and the detailed discussion of the
eigenfunction expansion of the dissipative Schrödinger operator with complex po-
tential in [14, 18]. Thus the incoming-outgoing eigenfunctions of the dilation and
eigenfunctions in the complementary subspaces E<, E> play essentially different
roles in spectral problem for the dissipative operator. The above formula (3.8)
shows that the problem of proper choice of the canonic system of eigenfunction
of the absolutely-continuous spectrum for dissipative operators is naturally re-
solved. Note that similar question about a canonic system of eigenfunctions of
absolutely continuous spectrum of a self-adjoint operator remains obscure. The
only bridge between the General Spectral Theorem for self-adjoint operators and
the expansion theorem is formed by classical results of I. Gelfand-A. Kostyuchenko
[3] on differentiation of the spectral measure of a self-adjoint operator in properly
rigged spaces. We hope to discuss the important question of the construction of
the canonic system of eigenvectors of the abstract self-adjoint operator somewhere.
For discussion of choice of the canonic system of eigenfunctions of the absolutely
continuous spectrum in case of spectral multiplicity one for a unitary operator and
a canonic system of eigenfunction of its contracting perturbation see [16].
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c© 2004 Birkhäuser Verlag Basel/Switzerland

A Remark on Equivalence of Weak and Strong
Definitions of the Absolutely Continuous
Subspace for Nonself-adjoint Operators

Roman Romanov

Abstract. We prove the equivalence of weak and strong definitions of the
absolutely continuous subspace for nonself-adjoint dissipative operators.

Mathematics Subject Classification (2000). 47B44.

Keywords. absolutely continuous spectrum, dissipative operators.

In this note we analyze two known natural definitions of the absolutely continuous
(a.c.) subspace for an abstract nonself-adjoint operator. So far, their equivalence
has been proved [1] under certain strong assumptions about boundary behavior of
the resolvent. Here we establish the equivalence without any additional assump-
tions in the case of dissipative operators.

Throughout the paper, L is a closed operator in a Hilbert space H such
that σess(L) ⊂ R. In particular, the resolvent of L is defined for all z /∈ R ex-
cept for at most countably many points as a bounded operator in H . The vector
Hardy classes H2

± are the collections of analytic functions f : C± → H satisfying
supε>0

∫
R
‖f(k ± iε)‖2 dk <∞, respectively.

Definition 1. The subspace

Hw
ac(L)

def
= clos H̃w

ac(L),

H̃w
ac(L)

def
=




u ∈ H : (i) (L− z)−1

u is analytic in C \R

(ii)
〈
(L− z)−1 u, v

〉∣∣∣
C±
∈ H2

± for all v ∈ H



 ,

is called the weak a.c. subspace of the operator L. Elements of the linear set H̃w
ac(L)

are called weak smooth vectors of L.

This work was supported in part by EPSRC Grant GR/ R20885 and by RFBR Grant 03-01-
00090.
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The weak a.c. subspace has first been introduced and studied by A. Tikhonov
[2]. In the case of a self-adjoint L, it is well known, see, e.g., [3], that the definition
above agrees with the standard one.

Another, historically first, definition of the a.c. subspace suggested by
L. Sakhnovich [4] initially referred to the case when L is dissipative. A conve-
nient equivalent formulation and an extension of it to general nonself-adjoint case
was given in [5]. For clarity, we first restrict our consideration to the situation of
the perturbation theory and discuss the general case afterwards. Namely, except
for two remarks following Theorem 2 it is assumed throughout that

• The operator L is a completely nonself-adjoint operator1 of the form L =
A+ iV , A = A∗, V = V ∗, D(L) : = D(A) ⊂ D(V ), and V is A-bounded with
a relative bound less than 1, that is, ‖V u‖2 ≤ a ‖Au‖2 + b ‖u‖2, a < 1, for
all u ∈ D(A).

Definition 2. The subspace

Hac(L)
def
= clos H̃ac(L),

H̃ac(L)
def
=




u ∈ H : (i) (L− z)−1

u is analytic in C \ R

(ii) |V |1/2 (L− z)−1
u
∣∣∣
C±
∈ H2

±



 ,

is called the (strong) a.c. subspace of the operator L. Elements of the linear set
H̃ac(L) are called (strong) smooth vectors of L.

In the dissipative case the subspace Hac(L) coincides with the invariant sub-
space corresponding to the canonical factorization of the characteristic function of
the operator L in the sense of the Szökefalvi-Nagy-Foias functional model [5, 6].

It is easy to see that (L − λ)−1Hw
ac ⊂ Hw

ac, (L − λ)−1Hac ⊂ Hac for all
λ ∈ ρ(L). An important property of strong smooth vectors is expressed by the
following

Proposition [5]. There exists a Hilbert space N , an a.c. self-adjoint operator A0

in N , and a bounded operator P : N → H, RanP = H̃ac, such that for all g ∈ N
and z /∈ R, z ∈ ρ(L)

(L− z)−1
Pg = P (A0 − z)−1

g.

Corollary 1. Hw
ac(L) ⊃ Hac(L).

Proof. Let g ∈ N satisfy dµg

dt ∈ L∞(R) where the measure dµg is the matrix
element of the spectral measure of A0 on the vector g (an L∞-vector of A0), and
let u = Pg. The spectral theorem for operator A0 gives

〈
(L− z)−1

u, v
〉

=
〈
(A0 − z)−1

g, P ∗v
〉

=
∫

1
k − z ρ(k)dk,

1That is, L has no reducing subspaces on which it induces a self-adjoint operator.
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where ρ ∈ L2, by the choice of g. This shows that the restrictions of the left-hand
side are in H2

± in the respective half-planes for all v, that is, u ∈ H̃w
ac. The result

follows since the set of L∞-vectors is dense in N by absolute continuity of A0. �

Theorem 2. If L is dissipative (V ≥ 0), then Hw
ac(L) = Hac(L).

Using a functional model for nonself-adjoint operators due to Naboko [5],
Ryzhov has proved [1] the equality Hw

ac = Hac assuming that the characteristic
function, Θ(z), of L has weak non-tangential boundary values, Θ(k ± i0), a.e. on
the real axis. In the dissipative case, this condition is equivalent to the requirement
that the inverse characteristic function has weak boundary values from above. It
appears to have not been noticed so far that in the dissipative case the inclusion
Hw
ac(L) ⊂ Hac(L) holds unconditionally. Our proof of it is elementary and is based

on the following simple property of weak smooth vectors.

Lemma 3. Let B be a closed operator such that σess(B) ⊂ R. Then

sup
z∈C±

|Im z|
∥∥∥(B − z)−1

w
∥∥∥

2

<∞ (1)

for any w ∈ H̃w
ac(B).

Proof. From the Riesz integral representation and Schwartz inequality we have
(signs ± refer to z ∈ C±, respectively)

∣∣∣
〈
(B − z)−1

w, v
〉∣∣∣ =

∣∣∣∣
∫

1
k − z µ±(k)dk

∣∣∣∣ ≤ ‖µ±‖L2(R)

π1/2

|Im z|1/2
,

where µ± ∈ L2(R) satisfy ‖µ±‖L2 ≤ Cw ‖v‖ in view of the uniform boundedness
principle. By arbitrariness of v, (1) follows. �

Proof of the theorem. We have to show that Hw
ac(L) ⊂ Hac(L). Define

u = (L− z0)−1
w, w ∈ H̃w

ac, z0 ∈ C−, then u ∈ H̃w
ac.

Let us integrate the identity (z = k + iε)
∥∥∥V 1/2 (L− z)−1 u

∥∥∥
2

= ε
∥∥∥(L− z)−1 u

∥∥∥
2

− Im
〈
(L− z)−1 u, u

〉

in k from −N to N ,
∫ N

−N

∥∥∥V 1/2 (L− z)−1
u
∥∥∥

2

dk = ε

∫ N

−N

∥∥∥(L− z)−1
u
∥∥∥

2

dk (2)

−Im
∫ N

−N

〈
(L− z)−1

u, u
〉
dk.
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Consider first the case when ε > 0. The first term in the r.h.s., denoted by (I), is
estimated as follows

(I) = ε

∫ N

−N

∥∥∥(L− z)−1 (L− z0)−1 w
∥∥∥

2

dk ≤
∫ N

−N

1

|z − z0|2
ε
∥∥∥(L− z)−1 w

∥∥∥
2

dk

+ε
∥∥∥(L− z0)−1

w
∥∥∥

2
∫ N

−N

dk

|z − z0|2
≤ Cw

1 + ε

|ε− Im z0|
≤ Cw.

Here we have taken (1) into account. We conclude that (I) is bounded uniformly
in N and ε. In a similar way, we have
∫ N

−N

〈
(L− z)−1

u, u
〉
dk =

∫ N

−N

1
z − z0

(
〈(L− z)−1

w, u〉 − 〈u, u〉
)
dk

=
∫ N

−N

1
z − z0

〈
(L− z)−1

w, u
〉
dk − ln

N + iε− z0
−N + iε− z0

‖u‖2.

When N →∞, the first term in the right-hand side vanishes, the second tends to
−iπ‖u‖2, hence the left-hand side has a finite limit, and this limit is independent of
ε. Combining these, we find that the limit N →∞ of the left-hand side in (2) exists
and is bounded in ε. This and a similar consideration for the case2 ε < 0 yield
that u ∈ H̃ac. It remains to notice that

∨
z0∈C− (L− z0)−1

H̃w
ac = Hw

ac because

iτ (L+ iτ)−1 s−→ I, τ → +∞. (3)

The latter easily follows from dissipativity of L [7]. �
Remark. Let L be an arbitrary maximal dissipative completely nonself-adjoint op-
erator. The definition of the strong a.c. subspace of L is obtained [1] by substituting
the condition (ii) in definition 2 with the following one (see (2))

sup
ε>0

∫

R

(
ε
∥∥∥(L− k − iε)−1

u
∥∥∥

2

− Im
〈
(L− k − iε)−1

u, u
〉)

dk <∞.

With this definition, Theorem 2 holds in the general case, with the same proof.

Remark. The proof of Theorem 2 shows that the linear sets of smooth and weak
smooth vectors of a maximal dissipative operator L satisfy (L− z0)−1

H̃w
ac(L) ⊂

H̃ac(L) for all non-real z0 ∈ ρ(L).

In the situation of the perturbation theory, the following simple sufficient
condition of triviality of the subspace Hw

ac(L) is useful.

Proposition 4. Hw
ac(L) = {0} if for a. e. k ∈ R we have (z = k + iε)

D(z) ≡
√
ε (L∗ − z)−1 |V |1/2 s−→ 0 (4)

as ε ↓ 0.

2Because of the dissipativity of L, it actually suffices to consider the case ε > 0 only, for the
function V 1/2 (L − z)−1 u restricted to C− is in H2− for all u ∈ H [5]. In order to keep the

elementary nature of the proof, we prefer not to use this fact, since the proof of it in [5] is based
on the existence of a self-adjoint dilation of L.
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In the case when L is dissipative the condition (4) is also necessary, see [8]. It
was used in [9] to establish triviality of the a.c. subspace for dissipative Schrödinger
operators with slowly decaying imaginary part of the potential.

Proof. Given a w ∈ H̃w
ac and v ∈ D(V ), define the functions F±(z) to be the

restrictions of the function
〈
(L− z)−1 w, |V |1/2 v

〉
to C±, respectively. We shall

show that if (4) is satisfied, then F± vanish identically for all v ∈ H . Let us
first derive the result from this assertion. We have,

〈
w, (L∗ − z)−1 |V |1/2 v

〉
=〈

(L− z)−1
w, |V |1/2 v

〉
= 0 for all non-real z ∈ ρ(L) and v ∈ D(V ). On the other

hand, the closed linear hull of the linear sets (L∗ − z)−1 RanV , z /∈ R, z ∈ ρ(L),
coincides with H , since L is a completely nonself-adjoint operator [5]. Hence,
w = 0, as required.

Since F± ∈ H2
± by the choice of w, it suffices to show that the boundary

values F+(k) = F−(k) for a.e. k ∈ R. Indeed, we have (z = k + iε, ε > 0),

F+(z)− F−(z) = 2iε
〈
(L− z)−1 (L− z)−1

w, |V |1/2 v
〉

= 2i
〈√

ε (L− z)−1
w,D(z)v

〉
−→
ε↓0

0

for a.e. k ∈ R. �
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On a Transformation of the Sturm-Liouville
Equation with Slowly Decaying Potentials
and the Titchmarsh-Weyl m-function
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Abstract. We put forward a new transformation of the half-line Sturm-Liou-
ville equation with non-smooth potentials from Lp with p ≥ 2. This trans-
formation yields existence of the Weyl solution with higher order WKB-type
asymptotic behavior (spatial and spectral parameter). We apply our approach
to the study of high-energy asymptotics for the Titchmarsh-Weyl m-function,
improving on some relevant results of others.
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Keywords. Sturm-Liouville problem, Schrödinger operator, long-range poten-
tials, WKB-type asymptotics, Titchmarsh-Weyl m-function.

1. Introduction

We will be concerned with the Sturm-Liouville equation

−u′′ + q (x) u = λ2u for x ∈ R+ := (0,∞) (1.1)

with real potentials q essentially bounded on R+. With applications to the spectral
analysis in mind we will be especially interested in the behavior of the solutions
to (1.1) at infinity. By variation of parameters (1.1) formally transforms to the
integral equation

y (x, λ) = 1 +
∫ ∞

x

K (x, s, λ) y (s, λ) ds, (1.2)

where y := e−iλxu and

K (x, s, λ) :=
e−2iλ(s−x) − 1

2iλ
q (s) . (1.3)
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If q ∈ L1 (R+) then (1.2) can be solved by iteration and hence the original equation
(1.1) has the unique solution u (x, λ) such that

u (x, λ) ∼ eiλx, x→∞, (1.4)

for all λ ∈ R. Such a solution is referred to as Jost and its existence is the main
feature of the short-range scattering. Unfortunately if we go beyond the condition
q ∈ L1 (R+) the transformation from (1.1) to (1.2) becomes singular and in general
one has to look for some other transformations. Eq. (1.1) with non-smooth poten-
tials from Lp (R+) with some p < 2 was the main object of the recent research
due to Christ-Kiselev (see, e.g., [7]). They found a sequence of transformations for
(1.1) that, combined with some subtle results on almost everywhere convergence
of certain integral, yields a series solution u (x, λ) to (1.1), which is absolutely
convergent for a.e. real λ and has the WKB-type asymptotic behavior

u (x, λ) ∼ exp
{
iλx+

1
2iλ

∫ x

0

q (s) ds
}
, x→∞, (1.5)

for a.e. λ ∈ R. By the Gilbert-Pearson subordinacy theory [12] the existence of
asymptotics (1.5) implies that the absolutely continuous spectrum of the Schrödin-
ger operators defined by (1.1) is R+. Note that if q is merely L2 then it is still an
open question if (1.5) holds for a.e. λ ∈ R. In the general case of q ∈ Lp (R+) , p > 2,
we can only claim that R+ is the essential spectrum and hence solutions with
behavior (1.5) for real λ need not exist.

Of course, if we assume some smoothness of q then the situation may con-
siderably improve. For instance, the Green-Liouville transformation of (1.1) (see,
e.g., [25])

y′′ + y +

[
1
4

q′′ (x)
{λ2 − q (x)}2

+
5
16

q′2 (x)
{λ2 − q (x)}3

]
y = 0, (1.6)

where y =
{
λ2 − q (x)

}1/4
u, may come into play. Transformation (1.1)⇒ (1.6) is

a crucial ingredient in the WKB-analysis and serves a very wide range of potentials
(even growing at infinity) but requires the existence of q′ and q′′ which appears to
be too much in the setting of slowly decaying non-smooth and random potentials.
Even for smooth potentials like q (x) = x−α sinxβ , 0 < α ≤ β ≤ 1, the transforma-
tion is not of much help since q′ and q′′ unboundedly oscillate at ∞. Note, that,
as it was shown by Buslaev-Matveev [5], the Green-Liouville transformation (1.6)
works for slowly decaying potentials subject to∣∣∣q(n) (x)

∣∣∣ ≤ Cx−α−n, α > 0, n = 0, 1, 2. (1.7)

In the present paper we are going to deal with the case of potentials q ∈
Lp (R+), p ≥ 2, without any smoothness assumptions. We put forward a transfor-
mation of the original equation (1.1) that yields solutions with higher-order WKB-
type asymptotic for every complex λ. We then use it to study the Titchmarsh-Weyl
m-function. We leave the background information and a discussion of the intensive
literature for Section 4.
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Notation. Lp, 1 ≤ p ≤ ∞, as usual, stands for the Lebesgue class of functions f
with the finite norm1

‖f‖pp :=
∫

R

|f (x)|p dx, p <∞; ‖f‖∞ := ess- sup {|f (x)| , x ∈ R} .

Cn, n ∈ N, is a set of functions on R such that
∥∥f (j)
∥∥
∞ < ∞, j = 0, 1, . . . , n. We

write f ∈ X0 if f ∈ X and lim
x→±∞ f (x) = 0. The class lp (L1) , 1 ≤ p ≤ ∞, with

the norm

‖f‖plp(L1)
:=

∞∑
n=−∞

(∫ n+1

n

|f (x)|dx
)p

, p <∞;

‖f‖l∞(L1)
:= sup

{∫ n+1

n

|f (x)|dx, n ∈ R

}
.

We write f ∈ c0 (L1) if f ∈ l∞ (L1) and lim
n→±∞

∫ n+1

n |f (x)| dx = 0. It is clear that

l1 (L1) = L1, Lp + L1 ⊂ lp (L1) but Lp + L1 �= lp (L1). With compactness of our
exposition in mind and whenever it leads to no confusion, we write

∫ b

a

f :=
∫ b

a

f (x) dx.

2. A Fourier-type transform and a Riemann-Lebesgue-type lemma

Let f be a measurable function on R+ which class will be specified later. Fixed
λ ∈ C+ consider the following Fourier-type transform

f̃ (x, λ) :=
∫ ∞

0

eiλsf (s+ x) ds. (2.1)

For every λ ∈ C+, the decaying exponential under the integral sign in (2.1) makes
the “transformed function” f̃ (x, λ) well defined for a broad class of functions.

Lemma 1. If f ∈ lp (L1) , 1 ≤ p ≤ ∞. Then
∥∥∥f̃ (·, λ)

∥∥∥
p
≤ 2
(

1 +
1

Imλ

)
‖f‖lp(L1)

. (2.2)

Proof. Assume p ∈ [1,∞). By Jensen’s inequality

∣∣∣f̃ (x, λ)
∣∣∣
p

=

∣∣∣∣∣∣
∑
n≥0

∫ n+1

n

eiλsf (s+ x) ds

∣∣∣∣∣∣

p

≤



∑
n≥0

e− Imλn

(∫ n+1

n

|f (s+ x)| ds
)


p

(2.3)

1If a function f is initially defined only on a subset of R we continue it to the whole R as zero.
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≤


∑
n≥0

e− Imλn



p−1∑

n≥0

e− Imλn

(∫ n+1

n

|f (s+ x)| ds
)p

=
(

1
1− e− Imλ

)p−1∑
n≥0

e− Imλn

(∫ n+1

n

|f (s+ x)| ds
)p

.

Integrating (2.3) with respect to x, one has
∥∥∥f̃ (·, λ)

∥∥∥
p

p
≤
(

1 +
1

Imλ

)p−1∑
n≥0

e− Imλn

∫

R

(∫ n+1

n

|f (s+ x)| ds
)p

dx. (2.4)

Observe now that
∫

R

(∫ n+1

n

|f (s+ x)| ds
)p

dx =
∑
m∈Z

∫ m+1

m

(∫ x+1

x

|f |
)p

dx

≤
∑
m∈Z

(∫ m+2

m

|f |
)p
≤ 2p−1

∑
m∈Z

{(∫ m+1

m

|f |
)p

+
(∫ m+2

m+1

|f |
)p}

= 2p
∑
m∈Z

(∫ m+1

m

|f |
)p

= 2p ‖f‖plp(L1)
. (2.5)

Plugging (2.5) into (2.4), one has
∥∥∥f̃ (·, λ)

∥∥∥
p

p
≤
(

1 +
1

Imλ

)p−1∑
n≥0

e− Imλn · 2p ‖f‖plp(L1)

≤ 2p
(

1 +
1

Imλ

)p
‖f‖plp(L1)

that yields (2.2). Similarly one proves (2.2) for p =∞. �

Given a function ϕ (x) ≥ 0, x ∈ R+, set Λ (ϕ) := {λ : Imλ ≥ ϕ (|λ|)} . The
following statement will play an important role in our consideration.

Proposition 1. Let f ∈ C1 + c0 (L1) then
∥∥∥f̃ (·, λ)

∥∥∥
∞
→ 0, |λ| → ∞, λ ∈ Λ (ϕ) . (2.6)

where ϕ is monotonically decreasing function (depending on f) such that

lim
x→∞ϕ (x) = 0.

The function ϕ will be specified in the proof.

Proof. By Lemma 2 every function f ∈ C1 + c0 (L1) can be represented as

f = f1 + f2,where f1 ∈ C1 and ‖f2‖l∞(L1)
< ε. (2.7)
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Consider f̃1 and f̃2 separately. Integrating (2.1) by parts and taking into account
that f1 ∈ C1 yield

f̃1 (x, λ) = − 1
iλ
f1 (x)− 1

iλ

∫ ∞

0

eiλsf ′
1 (s+ x) ds (2.8)

and hence ∥∥∥f̃1 (·, λ)
∥∥∥
∞
≤ ‖f1‖∞|λ| +

‖f ′
1‖∞
|λ|

∫ ∞

0

e− Imλsds

=
‖f1‖∞
|λ| +

‖f ′
1‖∞

|λ| Imλ
≤
(

1
|λ| +

1
|λ| Imλ

)
‖f1‖C1 . (2.9)

For f̃2 we have: ∣∣∣f̃2 (x, λ)
∣∣∣ ≤
∫ ∞

0

e− Imλs |f2 (s+ x)| ds

=
∑
n≥0

∫ n+1

n

e− Imλs |f2 (s+ x)| ds ≤
∑
n≥0

e− Imλn

∫ n+1

n

|f2 (s+ x)|ds (2.10)

≤ 1
1− e− Imλ

‖f2‖l∞(L1)
<

(
1 +

1
Imλ

)
ε.

Combining (2.9) and (2.10) , one has
∥∥∥f̃ (·, λ)

∥∥∥
∞
≤
(

1
|λ| +

1
|λ| Imλ

)
‖f1‖C1 +

(
1 +

1
Imλ

)
ε. (2.11)

Setting Λ1 := {λ : Imλ ≥ 1} and letting in (2.11) |λ| → ∞, λ ∈ Λ1, we obtain that
for any ε > 0

lim
∥∥∥f̃ (·, λ)

∥∥∥
∞
≤ 2ε.

That is
lim
∥∥∥f̃ (·, λ)

∥∥∥
∞

= 0, |λ| → ∞, λ ∈ Λ1. (2.12)

Consider now the case when Imλ→ 0. Assuming Imλ < 1, (2.11) implies
∥∥∥f̃ (·, λ)

∥∥∥
∞
≤ 1

Imλ

{
Imλ+ 1
|λ| ‖f1‖C1 + (1 + Imλ) ε

}
(2.13)

≤ 2
Imλ

(
1
|λ| ‖f1‖C1 + ε

)

Define now a function g (t) , t > 0, as follows

g (t) := inf
ε>0

inf
(
t−1 ‖f1‖C1 + ε

)
,

where the first inf is taken over all representations (2.7) with fixed ε > 0. It is a
monotonically decreasing function and g (t)→ 0, t→∞. Take now any continuous
non-negative function ϕ such that ϕ (t)→ 0, t→∞, and

g (t) = o (ϕ (t)) , t→∞,
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(e.g., ϕ =
√
g) and set Λ2 (ϕ) := {λ : ϕ (|λ|) ≤ Imλ < 1} . It follows then from

(2.13) that
∥∥∥f̃ (·, λ)

∥∥∥
∞
≤ 2

Imλ
g (|λ|) ≤ o (ϕ (|λ|))

ϕ (|λ|) = O (ϕ (|λ|))

and hence

lim
∥∥∥f̃ (·, λ)

∥∥∥
∞

= 0, |λ| → ∞, λ ∈ Λ2 (ϕ) . (2.14)

Combining (2.12) and (2.14) proves the proposition with Λ (ϕ) = Λ1 ∪Λ2 (ϕ). �

Remark 1. The standard Riemann-Lebesgue Lemma follows from the proof of
Proposition 1. Indeed, every f ∈ L1 admits representation (2.7) with f1 ∈ C∞

0

and f2 such that ‖f2‖1 < ε. Estimate (2.11) for real λ can be improved to read
∣∣∣f̃ (x, λ)

∣∣∣ ≤ |λ|−1 (|f1 (x)|+ ‖f1‖1) + ε, ∀λ, Im λ = 0. (2.15)

It follows from (2.1) that (Imλ = 0)

lim
x→−∞

∣∣∣f̃ (x, λ)
∣∣∣ =
∣∣∣f̃ (λ)

∣∣∣ ,

where f̃ (λ) is the usual Fourier transform and (2.15) implies the Riemann-Le-
besgue Lemma.

Remark 2. If we suppose that f ∈ lp (L1) , p > 1, then the conclusion of Proposi-
tion 1 can be improved to read

∥∥∥f̃ (·, λ)
∥∥∥
p
→ 0, |λ| → ∞, λ ∈ Λ (ϕp) , (2.16)

with some monotonic function ϕp (x) → 0, x → ∞. Moreover, if p1 < p2 then

ϕp1 ≤ ϕp2 and lim
x→∞

ϕp1 (x)
ϕp2 (x)

= 0, in particular, ϕp ≤ ϕ∞ ≤ ϕ where ϕ is as in

Proposition 1.

Remark 3. If f ∈ Cn then similarly to (2.9) one has

‖F (·, λ)‖∞ ≤ (|λ|n Imλ)−1 ‖f‖Cn

and (2.6) holds with ϕ (t) = o
(
1/tn−1

)
, t→∞.

3. A transformation of the original equation

Given potential q (x) and fixed λ ∈ C+ consider the following chain of transfor-
mations

q1 (x, λ) = −
∫ ∞

0

e2iλsq (s+ x) ds = −q̃ (x, 2λ) . (3.1)
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qn+1 (x, λ) =
∫ ∞

0

Θ2
n (x, s, λ) q2n (s+ x, λ) ds, n ∈ N (3.2)

Θn (x, s, λ) := exp

{
iλs+

∫ s+x

x

n∑
m=1

qm (t, λ) dt

}
,

Θn (s, λ) := Θn (0, s, λ) .

This way we get the sequence of functions {qn (·, λ)}n≥1 which can be viewed as
“momentum dependent” transformations of the original potential q. Note that for
n ≥ 2 these transformations are highly nonlinear and were previously considered
by many authors (see, e.g., [15], [17], [18]). The main feature of the transformation
qn (·, λ)→ qn+1 (·, λ) is that in a way it improves the rate of decay at infinity.

The following theorem is our main result.

Theorem 1. Let q ∈ lp (L1) , p = 2n with some n ∈ N, then for any λ from

Λ :=
{
λ ∈ C+ :

∥∥∥∥
∫ ∞

0

e2iλsq (s+ x) ds
∥∥∥∥
∞
<

1
4

Imλ

}

the equation
−u′′ + q (x) u = λ2u, x ∈ R+, (3.3)

can be transformed into the Volterra type integral equation:

y (x, λ) = 1 +
∫ ∞

x

Kn (x, s, λ) y (s, λ) ds, (3.4)

u (x, λ) = Θn (x, λ) y (x, λ) ,

with the kernel

Kn (x, s, λ) := (qnΘn)
2 (s, λ)

∫ s

x

Θ−2
n (t, λ) dt. (3.5)

The kernel Kn (x, s, λ) satisfies the bound (λ ∈ Λ)
∫ ∞

x

|Kn (x, s, λ)| ds ≤
(

1
Imλ

)p−1(
2 +

1
Imλ

)p
‖qχx‖plp(L1)

, (3.6)

where χx is the characteristic function of (x,∞) , and therefore equation (3.4) is
solvable by iteration.

Proof. Observe that for any n ∈ N

Θn (x, λ) = exp

{
iλx+

∫ x

0

n∑
m=1

qm (s, λ) ds

}

is a solution to
−u′′ +

(
q (x) + q2n (x, λ)

)
u = λ2u (3.7)

for any x ≥ 0 and λ ∈ C+. Indeed, assume that (3.7) holds for n− 1, n ≥ 2. Then

Θn = Θn−1 exp
∫ x

0

qn. (3.8)
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Note that qn is differentiable and

q′n = −q2n−1 − 2Λn−1qn, (3.9)

where

Λn (x, λ) := iλx+
∫ x

0

n∑
m=1

qm (s, λ) ds.

Differentiating (3.8) twice and using (3.9) one has

Θ′′
n =
{
Θ′′
n−1 + 2Θ′

n−1qn +
(
q2n + q′n

)
Θn−1

}
exp
∫ x

0

qn

=
(
q2n−1 + q − λ2 + 2Λn−1qn + q2n − q2n−1 − 2Λn−1qn

)
Θn

=
(
q + q2n − λ2

)
Θn,

which is (3.7) for n ≥ 2. By a straightforward computation one verifies (3.7) for
n = 1 and by induction (3.7) holds for any n ∈ N.

If u1 (x, λ) = Θn (x, λ) is a solution to (3.7) then as the other solution we
choose

u2 (x, λ) = Θn (x, λ)
∫ x

0

Θ−2
n (s, λ) ds.

Rewriting the original equation (3.3) as

−u′′ +
(
q (x) + q2n (x, λ)

)
u− λ2u = q2n (x, λ) u (3.10)

and by variation of parameters one easily verifies (formally) that (3.10) implies
(3.4). To justify this formal computation it is enough to show that Kn (x, s, λ) ∈
L1 (R+, ds) for every x ∈ R+, λ ∈ Λ and, by choosing x large enough, we can
achieve ‖Kn (x, ·, λ)‖1 < 1. Let us prove first that for any p ≥ 1 and natural m

qm ∈ L2p =⇒ qm+1 ∈ Lp. (3.11)

Since lp (L1) ⊂ c0 (L1) , by Proposition 1 we can achieve

δ :=
1

Imλ
‖q1 (·, λ)‖∞ =

1
Imλ

‖q̃ (·, 2λ)‖∞ <
1
4

and by Lemma 3 of Appendix

1
Imλ

m∑
j=1

‖qj (·, λ)‖∞ <

m∑
j=1

δj < 2δ <
1
2

and hence it follows from (3.2) that

|Θm+1 (x, s, λ)|2 ≤ exp



−2 Imλs


1− 1

Imλ

m∑
j=1

‖qj (·, λ)‖∞





 (3.12)

≤ exp {−2 (1− 2δ) Imλs} < exp (− Imλs) .
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By Jensen’s inequality then
|qm+1 (x, λ)|p (3.13)

≤
∫ ∞

0

|Θm+1 (x, s, λ)|2 |qm (s+ x, λ)|2p ds ·
(∫ ∞

0

|Θm+1 (x, s, λ)|2 ds
)p−1

≤ (Imλ)−p+1
∫ ∞

0

exp (− Imλs) |qm (s+ x, λ)|2p ds.

Integrating (3.13) with respect to x, one has

‖qm+1 (·, λ)‖pp ≤
(

1
Imλ

)p−1 ∫ ∞

0

exp (− Imλs)
(∫ ∞

s

|qm (x, λ)|2p dx

)
ds

≤
(

1
Imλ

)p
‖qm (·, λ)‖2p2p

and finally

‖qm+1 (·, λ)‖p ≤
1

Imλ
‖qm (·, λ)‖22p , p ≥ 1, n ∈ N, (3.14)

that proves (3.11). By induction, (3.14) yields

‖qn (·, λ)‖22 ≤
(

1
Imλ

)p−2

‖q1 (·, λ)‖pp , p = 2n,

and by Lemma 1:

‖qn (·, λ)‖22 ≤
(

1
Imλ

)p−2

2p
(

1 +
1

2 Imλ

)p
‖q‖plp(L1)

=
(

1
Imλ

)p−2(
2 +

1
Imλ

)p
‖q‖plp(L1)

,

that is
∥∥q2n (·, λ)

∥∥
1
≤
(

1
Imλ

)p−2(
2 +

1
Imλ

)p
‖q‖plp(L1)

, p = 2n. (3.15)

By (3.15), q2n(·,λ)∈L1 and it is only left to demonstrate that Θ2
n(s,λ)

∫ s
x Θ−2

n (t,λ)dt
is bounded. Indeed,
∣∣∣∣Θ2

n (s, λ)
∫ s

x

Θ−2
n (t, λ) dt

∣∣∣∣ =
∣∣∣∣∣
∫ s

x

exp2

{
iλ (s− t) +

∫ s

t

n∑
m=1

qm (·, λ)

}
dt

∣∣∣∣∣

≤
∣∣∣∣∣
∫ s−x

0

exp2

{
− Imλt

(
1− 1

Imλ

n∑
m=1

‖qm (·, λ)‖∞

)}∣∣∣∣∣

≤
∫ ∞

0

exp (− Imλt) dt =
1

Imλ
.

Estimate now
∫∞
x |Kn (x, s, λ)|ds. It immediately follows from (3.1) and (3.2) that

q1 (x, λ) = −q̃χx (x, 2λ) , (qχx)n (x, λ) = qn (x, λ) ,
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and hence∫ ∞

x

|Kn (x, s, λ)|ds ≤ 1
Imλ

∫ ∞

x

∣∣q2n (s, λ)
∣∣ ds =

1
Imλ

∫ ∞

x

∣∣∣(qχs)2n (s, λ)
∣∣∣ ds

≤
(

1
Imλ

)p−1(
2 +

1
Imλ

)p
‖qχx‖plp(L1)

.

that proves (3.6). The theorem is proven. �

Remark 4. The domain Λ ⊂ C+ but it follows from Proposition 1 that

lim
k→∞

dist (Λ, k) = 0,

that is Λ approaches the real line.

Remark 5. The conditions of Theorem 1 are clearly not optimal. Using arguments
of Proposition 1 one can achieve the contractive property of the integral operator
in (3.4) for any Imλ > 0 and x > 0 by choosing |λ| large enough.

Remark 6. We do not assume potentials q in Theorem 1 real.

Corollary 1. Under conditions of Theorem 1, equation (3.3) has the Weyl solution
Ψ (that is Ψ (x, λ) ∈ L2 (R+) , λ ∈ C+) satisfying the following asymptotics

Ψ (x, λ) ∼ exp

{
iλx+

∫ x

0

n∑
m=1

qm (s, λ) ds

}
, x→∞, (3.16)

for every λ ∈ C+. This immediately follows from Theorem 1 if λ ∈ Λ. However
with some additional effort (see Remark 5) (3.16) can be proven as stated.

Remark 7. The structure of {qn} is very messy. One can prove though that if
λ→∞ in some sector in the upper half-plane then

q1 (x, λ) ∼ (2iλ)−1 q (x) , qn (x, λ) ∼ − (2iλ)−p+1 qp/2 (x) , p = 2n.

If we call exp
{
iλx+

1
2iλ
∫ x
0
q (s) ds

}
the WKB-type asymptotics then (3.16) can

be referred as to higher-order WKB-type asymptotics.

Remark 8. It is natural to ask when (3.16) holds for real λ. As we have already
mentioned in Introduction, in general there is no answer to this question even
for q ∈ L2. The best-known result here belongs to Christ-Kiselev [7] (see also the
extensive literature cited therein) saying that if q ∈ lp (L1) , p < 2, then equation
(3.3) has a bounded solution u (x, λ) for almost all λ ∈ R with the WKB-type
asymptotics

u (x, λ) ∼ exp
{
iλx+

1
2iλ

∫ x

0

q (s) ds
}
, x→∞. (3.17)

On the other hand it is proven that under the only condition q ∈ Lp, p > 2, the
spectrum of H = −d2/dx2 + q (x) , u (0) = 0,2 may be purely singular. In such

2Or any other self-adjoint boundary condition
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situations (3.16) holds for real λ only on a set of Lebesgue measure zero. As it
was recently proven by the author [22] that q ∈ l2 (L1) implies that the absolutely
continuous spectrum is R+. However, the existence of the asymptotics (3.17) is
still an open problem related to some difficult issues of harmonic analysis (see,
e.g., [21])

In the conclusion of this section we note that in the setting of Schrödinger
operators with long-range potentials solutions of type (3.16) play a role of the
Jost solution in the short-range scattering. It can be proven (see also [22] in this
context) that if q ∈ l2 (L1) then the perturbation 2-determinant ∆2 of the pair
(H,H0), (where H0 = H with q = 0) defined by

∆2 (z) := det2
{
I + (H0 − z)−1/2

q (H0 − z)−1/2
}

exists and admits the representation:

∆2

(
λ2
)

= Ψ (0, λ) , λ ∈ C+, (3.18)

where Ψ is the Weyl solution to (3.3) subject to

Ψ (x, λ) ∼ exp
{
iλx+

∫ x

0

q1 (s, λ) ds
}
, x→∞. (3.19)

This will be discussed in detail elsewhere. Note that (3.18) was first proven by
Koplienko [20] under conditions (1.7) .

Theorem 1 type assertions are important tools in the study of perturbation
p-determinants ∆p

(
λ2
)

with p > 2 for which similar to (3.18) relations hold.
Theorem 1 for p = 2 was a crucial argument in [22] (see Remark 8). Note however,
that (3.18) does not hold for ∆p

(
λ2
)

with p > 2 – one should consider some
different (but quite similar) from (3.1)–(3.2) transformations resulting in a different
expression for the phase in (3.19). We hope to return to these important issues
elsewhere.

4. Applications to the Weyl-Titchmarsh m-function

Let us consider
−u′′ + q (x) u = λ2u (4.1)

on the half-line R+ with q ∈ L1,loc (R+). Assume that q is real and in the limit
point case at∞ (see, e.g., [25]). Then the Weyl solution Ψ (x, λ) of (4.1) is unique
up to a multiplicative constant and one can define the (Dirichlet) Titchmarsh-Weyl
m-function

m
(
λ2
)

=
Ψ′ (0, λ)
Ψ (0, λ)

, λ2 ∈ C+. (4.2)

It is well known that the Titchmarsh-Weyl m-function is analytic from C+ to C+

and plays a crucial role in spectral analysis of the one-dimensional Schrödinger op-
erator. Since there is no explicit formula for m in terms of q, it becomes important
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to study m for large λ. The research in this direction was originated by Everitt
[11] in 1972 who proved that

m
(
λ2
)

= iλ+ o (1) , λ→∞, λ ∈ Sε := {λ : ε ≤ argλ ≤ π/2− ε, ε > 0} . (4.3)

In 1981 Atkinson [1] improved (4.3) to read (a is any positive)

m
(
λ2
)

= iλ+
∫ a

0

e2iλxq (x) dx+O
(
|λ|−1
)
, (4.4)

as λ→∞ in Sε (or some parabolic domains allowing Imλ→ 0). Atkinson’s repre-
sentation (4.4) received much of attention and has been improved and generalized
in many directions by Bennewitz [4], Brown-Knowles-Weikard [6], Clark-Gesztesy
[8], [9], Gesztesy-Simon [13], Harris [14], [15], [16], Hinton-Klaus-Shaw [17], Kaper-
Kwong [18], [19], Rybkin [23], [24] and many others (see the extensive literature
cited therein). Note that one of the last papers by Atkinson [2] was also devoted
to generalization of (4.4) for potentials with strong singularities at the origin.

The result below is not new and in different forms has been discussed by
many authors but our statement appears to be optimal and its proof comes as a
simple corollary of Theorem 1 and the following proposition.

Proposition 2. Assume q to be real and from L1,loc (R+) , q̃ = qχ[0,a], a > 0. Let
m, m̃ be the Titchmarsh-Weyl m-functions corresponding to q, q̃ respectively. If
Imλ2 > 0 and Imλ > max

{
4
∫ a
0 |q| , a−1 ln 6

}
, then

∣∣m (λ2
)
− m̃
(
λ2
)∣∣ ≤ 864

5
|λ| exp (−2a Imλ) . (4.5)

In an implicit form, Proposition 2 is due to Atkinson [1]. In the present form,
it was recently found by Simon and studied in great detail in Gesztesy-Simon [13].
Note that in [13] Gesztesy-Simon established that the converse for Proposition 2
is also true generalizing the Borg-Marchenko uniqueness result. (See also [3] for a
simpler proof.)

Theorem 2. Assume q ∈ L1,loc (R+), real and in the limit point case at ∞. Let
(qa)n (λ) = (qa)n (0, λ) be as before defined for qa = qχ[0,a], a > 0. Then for
λ2 ∈ C+

m
(
λ2
)

= iλ+
∑
n≥1

(qa)n (λ) + r (λ) , (4.6)

where the remainder r (λ) admits the estimate

|r (λ)| ≤ 864
5
|λ| e−2a Imλ

holding uniformly in Λ =
{
λ2 ∈ C+ : Imλ ≥ max

{
4
∫ a
0
|q| , a−1 ln 6

}}
.

Proof. Let ma be the Titchmarsh-Weyl m-function corresponding to qa. Since
qa ∈ L1, Theorem 1 applies with any n ∈ N and equation (4.1) can be solved by
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iteration. By Proposition 1, for any fixed Imλ > 0 by choosing |λ| large enough
one can make (Imλ)−1 ‖q̃a (·, λ)‖∞ < 1/2 and by Lemma 3 then∣∣∣∣∣∣

∑
n≥1

(qa)n (λ)

∣∣∣∣∣∣
≤
∑
n≥1

‖(qa)n (·, λ)‖∞ ≤
‖q̃a (·, λ)‖∞

1− (Imλ)−1 ‖q̃a (·, λ)‖∞
.

Corollary 1 applies with any n and one has

m̃
(
λ2
)

= iλ+
∑
n≥1

(qa)n (λ) , (4.7)

where the series on the right converges at least in the domain ‖q̃a (·, λ) (·, λ)‖∞ <
1/2 Imλ. Applying Proposition 2 completes the proof. �
Remark 9. Our representation (4.6) is not asymptotic: the series in (4.6) is abso-
lutely convergent in C+. In the previous literature cited above the series in (4.6) is
usually considered as asymptotic in sectorial domains

Sε = {λ : ε ≤ argλ ≤ π/2− ε, ε > 0} .

The next assertion says when the error term in (4.6) can be dropped and
appears to be new.

Theorem 3. If q is real and from C1 + c0 (L1) then

m
(
λ2
)

= iλ+
∑
n≥1

qn (λ) , (4.8)

for any λ subject to the condition
2

Imλ

∥∥∥∥
∫ ∞

0

e2iλsq (s+ x) ds
∥∥∥∥
∞
< 1. (4.9)

Proof. By Proposition 1, condition (4.9) is satisfied for some domain Λ asymp-
totically approaching the real line. Consider (4.7). By Lemma 2,

∑
n≥1 qn (0, λ)

converges absolutely for any λ ∈ Λ and it is clear from the proof of the same
lemma that (qa)n → qn, a→∞, and the right-hand side of (4.7) converges to that
of (4.8) . Since by our condition on q guarantees the limit point case at ∞, one
concludes [25] that ma

(
λ2
)
→ m

(
λ2
)
, a → ∞, on any compact set in C+ and a

passage to the limit in (4.7) yields (4.8). �
Remark 10. The question when representation of type (4.8) holds was a focus of
[15] where representation (4.8) was proven for λ from sectorial domains Sε under
the condition ∣∣∣∣

∫ ∞

0

e2iλsq (s+ x) ds
∣∣∣∣ ≤ a (x) b (λ) , (4.10)

with a (x) ∈ L1 (R+) and b (λ) → 0, |λ| → ∞, λ ∈ Sε. Condition (4.10), as ap-
posed to ours, assumes a strong decay of q at infinity (for instance,

(∫∞
x |q|

p)1/p ∈
L1 (R+) , p > 1). Note in this connection, that the conclusion of Theorem 3 holds
even for periodic potentials q integrable on the periods.
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Remark 11. Since the spectrum of the operator −d2/dx2 + q (x) , u (0) = 0, coin-
cides with the complement of the set {t ∈ R : Imm (t+ i0) = 0}, representations
of type (4.8) can be used in spectral analysis of Schrödinger operators on the line.
However, to make substantial assertions about the spectrum one needs to improve
condition (4.9) allowing λ2 in (4.8) to approach the real line (or at least be paral-
lel to it). In view of Remark 3, one of the trivial ways to achieve it is to require
uniform boundedness of q, q′, and q′′. We have a strong reason to believe that a
more suibtle analysis of qn and a proper refinement of Proposition 1 should yield
in Theorem 3 a much stronger result on the domain of convergence of the series
in (4.8) . We hope to address this issue elsewhere.

5. Appendix. Some auxiliary facts

We give here two known facts which we have used in the previous sections. For
the reader convenience we provide their simple proofs.

Lemma 2. c0 (L1) is a Banach space with respect to the norm

‖f‖ :=
∥∥∥∥
∫ x+1

x

|f |
∥∥∥∥
∞
.

Proof. We are going to show that for any ε > 0 a function f ∈ c0 (L1) can be
represented as

f = f1 + f2, f1 ∈ C∞
0 , ‖f2‖ < ε.

Let χ[a,b] be the characteristic function of a compact interval [a, b] . We have

f = fχ[a,b] + fχR\[a,b]. (5.1)

Choose now a, b ∈ R so that
∥∥fχR\[a,b]

∥∥ = sup
{∫ x+1

x

|f | : x+ 1 < a, x > b

}
=
ε

2
. (5.2)

Since clearly fχ[a,b] ∈ L1 (a− 1, b+ 1) and fχ[a,b] = 0, x /∈ [a, b] , the function
fχ[a,b] can be represented as

fχ[a,b] = f1 + g,

where f1 ∈ C∞
0 [a− 1, b+ 1] and f1 = 0 on [a− 1, b+ 1]\ (a, b), and g is such that

b∫

a

|g| = ε
2 . Set now

f2 = fχR\[a,b] + g.

By (5.1) and (5.2), we have

‖f2‖ ≤
∥∥fχR\[a,b]

∥∥+ ‖g‖ ≤ ε

2
+

b∫

a

|g| = ε

and the lemma is proven. �
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Lemma 3. Let qn be defined by (3.2) and

δn :=
1

Imλ
‖qn (·, λ)‖∞ , n ∈ N. (5.3)

If δ1 = δ < 1/2 then
δn < δn. (5.4)

Proof. We conduct our proof by induction. It follows from (3.2) with n = 1 that
(α := Imλ)

δ2 =
1
α
‖q2 (·, λ)‖∞ ≤

1
α

sup
x∈R

∫ ∞

x

∣∣∣∣exp
{
iλ (s− x) +

∫ s

x

q1 (·, λ)
}∣∣∣∣

2

|qn (s, λ)|2 ds

≤ 1
α
‖q1 (·, λ)‖2∞ ·

∫ ∞

x

exp2 {(−α+ ‖q1 (·, λ)‖∞) (s− x)} ds

= αδ21 ·
∫ ∞

0

exp {−2α (1− δ1) s} ds =
δ21

2 (1− δ1)
< δ2. (5.5)

Assume that (5.4) holds for some n, then
n∑

m=1

δm <

n∑
m=1

δm <

n∑
m≥1

(
1
2

)m
= 1−

(
1
2

)n

and similarly to (5.5) one has

δn+1 =
1
α
‖qn+1 (·, λ)‖∞

≤ 1
α
‖qn (·, λ)‖2∞ ·

∫ ∞

0

exp

{
−2αs

(
1− 1

α

n∑
m=1

‖qm (·, λ)‖∞

)}
ds

=
1
α
‖qn (·, λ)‖2∞

{
2α

(
1− 1

α

n∑
m=1

‖qm (·, λ)‖∞

)}−1

=
1
2
δ2n

(
1−

n∑
m=1

δm

)−1

<
2n

2
δ2n = 2n−1

(
1
2

)n−1

δn+1 < δn+1. �
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1. Introduction

The Levinson theorem, in its discrete version, describes the asymptotic behavior
as n → ∞ of the sequence of d-dimensional vectors {�xn}n≥n0 being a solution of
the linear system

�xn+1 = An�xn for n ≥ n0 , (1)

where the sequence of d × d matrices {An}n≥n0 satisfies certain conditions be-
ginning at some n1 ≥ n0. If, for instance, (1) is a diagonal system, that is,
An = diag{ν(k)

n }dk=1 for all n ≥ n0, then a fundamental system of solutions of (1)
is given by the sequences {�x(k)

n }n≥n0 (k = 1, . . . , d), such that �x(k)
n =

∏n−1
i=n0

ν
(k)
i �ek,

where {�en}dn=1 is the canonical basis in C
d ( �ek is the vector with all components

zero except the k-th, which is one). Therefore, in this case, a basis in the space of
solutions of (1) behaves asymptotically, as n → ∞, as

∏n−1
i=n0

ν
(k)
i �ek. The discrete

Levinson theorem asserts that a similar asymptotic behavior takes place when
{An}n≥n0 is perturbed by a sequence of matrices whose norms form a summable
series, and even when An is not diagonal, but diagonalizable in a specific sense (see
below). This assertion is the discrete analogue of the well-known Levinson theorem
on the asymptotics of solutions of a system of ordinary differential equations [2].
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The asymptotic analysis of solutions of discrete linear systems has already
a long history. Important results on the asymptotics of the solutions of (1), in-
cluding the discrete Levinson theorem, are in [1] and [3]. A modern approach to
the asymptotic analysis of solutions of difference equations is in [7], where various
discrete Levinson type theorems are proved.

In 1992 the theory of subordinacy, developed some years earlier as a tool in
the spectral analysis of ordinary differential operators by Gilbert and Pearson [5]
[4], was successfully carried over into the discrete domain [11]. Since then, various
asymptotic methods have been used to study the spectral properties of difference
operators, in particular, Jacobi matrices. One of these techniques has been the
discrete Levinson theorem (cf. [8], [7] and [13]).

It is well known that the three term recurrence equation for determining the
generalized eigenvectors of a Jacobi matrix is equivalent to a discrete linear system
similar to (1), which depends on the parameter λ ∈ R, i.e.,

�xn+1(λ) = An(λ)�xn(λ) for n ≥ n0 , (2)

where, ∀λ ∈ R, {An(λ)}n≥n0 is a sequence of 2 × 2 matrices and {�xn(λ)}n≥n0

is a sequence of two-dimensional vectors (see [9], [10] and [7]). Since we are most
interested in applications to general difference operators, we shall consider systems
of the form (2), but in a broader setting, namely, we regard {An(λ)}n≥n0 to be a
sequence of d × d complex matrices for every λ in some interval I ⊂ R. Besides,
in order to avoid trivial cases, we always assume that

detAn(λ) �= 0 ∀n ≥ n0, ∀λ ∈ I .

Notice that, under this assumption, the solutions of the system (2) form a d-
dimensional space and any solution {�xn(λ)}n≥n0 is uniquely determined by

�xn(λ) =
n−1∏
i=n0

Ai(λ)�xn0 (λ) , �xn0 ∈ C
d . (3)

Here, and later on in this paper, the product of matrices is considered in “chrono-
logical” order, i.e.,

∏n−1
i=n0

Ai(λ) = An−1 . . . An0 . The simplicity of (3) is delusive,
since it generally does not give direct information about the asymptotic behavior
of the solutions.

Traditionally, equation (2) has been studied pointwise with respect to λ.
However, in many cases, there is a uniform behavior of the system with respect to
this parameter ([7] and [13]). Making use of this uniformity to obtain a uniform
estimate of the remainder in the asymptotic expansion of the solutions as n→∞
turns out to be important in the spectral analysis of Jacobi matrices.

Recent developments [13] have shown that, when studying Jacobi matrices, a
complete spectral analysis requires an extension of the discrete Levinson theorem
to deal with the parametric recurrence systems that arise from the equation for
determining the generalized eigenvectors of operators associated with Jacobi ma-
trices. The point is that the spectral analysis given by the theory of subordinacy
is not complete in the sense that it left unanswered the question of whether pure
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point parts of the spectrum have points of accumulation on any finite interval.
The method used to answer this question requires, among other things, a uniform
estimate of the asymptotic remainder of the solutions of (2) with respect to λ.
Peculiarities of this method are its wide applicability and that it is based on the
asymptotic behavior of solutions, i.e., it is in the spirit of subordinacy theory. In
this paper we develop the first “ingredient” of this method, the discrete uniform
Levinson theorem. The other parts are planned to be the material of other papers.
It was decided to present the uniform Levinson theorem separately because the
author thinks that it may have other applications besides the one described in this
introduction.

2. Preliminaries

For the definitions below, we consider a sequence V = {Vn(λ)}n≥n0 , such that,
for every λ in some interval I ⊂ R, Vn(λ) is a complex d × d matrix with the
eigenvalues {ν(k)

n (λ)}dk=1.

Definition 2.1. We shall say that the sequence V = {Vn(λ)}n≥n0 satisfies the
Levinson condition for k (L.c.(k)) when there exist an N ≥ n0 and a constant
number M > 1 such that, k being fixed, each j (1 ≤ j ≤ d) falls into one and only
one of the two classes I1 or I2, where

(a) j ∈ I1 if ∀λ ∈ I

|
∏n−1
i=N ν

(k)
i (λ)|

|
∏n−1
i=N ν

(j)
i (λ)|

→ ∞ as n→∞ , and

|
∏n2−1
i=n1

ν
(k)
i (λ)|

|
∏n2−1
i=n1

ν
(j)
i (λ)|

>
1
M

, ∀n2 , n1 such that n2 > n1 ≥ N .

(b) j ∈ I2 if ∀λ ∈ I

|
∏n2−1
i=n1

ν
(k)
i (λ)|

|
∏n2−1
i=n1

ν
(j)
i (λ)|

< M , ∀n2 , n1 such that n2 > n1 ≥ N .

Remark 1. It is easy to show that when the sequence V = {Vn(λ)}n≥n0 is such
that

Vn(λ)
λ∈I

⇒ V∞,

where V∞ is a matrix whose eigenvalues are different from zero and have pair-
wise distinct absolute values, the sequence V satisfies the (L.c.(k)) for every
k = 1, . . . , d.

Definition 2.2. Assuming that ν(k)
n (λ) �= 0 ∀ k, n, λ, we define for each k the normed

space Xk(n0) that consists of all sequences �ϕ = {�ϕn(λ)}∞n=n0
of functions defined
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on some interval I ⊂ R and with range in C
d, such that

sup
n≥n0

sup
λ∈I
{‖�ϕn(λ)‖Cd

1

|
∏n−1
i=n0

ν
(k)
i (λ)|

} <∞

and where the norm is defined by

‖�ϕ‖Xk(n0) = sup
n≥n0

sup
λ∈I
{‖�ϕn(λ)‖Cd

1

|
∏n−1
i=n0

ν
(k)
i (λ)|

} . (4)

Clearly, this space is complete.
In the space Xk(n0) we shall also consider the subspace1 X0

k(n0) which con-
tains all functions of Xk(n0) such that

sup
λ∈I
{‖�ϕn(λ)‖Cd

1

|
∏n−1
i=n0

ν
(k)
i (λ)|

} → 0 as n→∞ (5)

Consider now the linear space of sequences V = {Vn(λ)}∞n=n0
. In this space

we define the operator ∆ by

(∆V )n = Vn+1(λ) − Vn(λ) . (6)

Definition 2.3. The sequence V = {Vn}∞n=n0
is said to be in the class D̃1 iff

{sup
λ∈I
‖(∆V )n‖}∞n=n0

∈ l1 .

This class is just the uniform analogue of one of the classes defined in [14]

In addition to these notations and concepts, we also shall need the following
projectors acting in the linear space C

d. Consider again the canonical orthonormal
basis in C

d, {�ek}dk=1. Let Pk be the projector to the one-dimensional space gener-
ated by �ek, i.e., Pk is the d×d diagonal matrix whose diagonal has the coordinates
of �ek as its elements:

Pk = diag{(�ek)l}dl=1 k = 1, . . . , d. (7)

Using these projectors and the classes I1, I2 from the definition of (L.c.(k)), we
define

P (i) =
∑
j∈Ii

Pj i = 1, 2 . (8)

3. Auxiliary results

In the following lemma we introduce, with the help of two sequences of matri-
ces satisfying certain conditions, an operator in Xk(n0) and establish some of its
properties.

1That is a closed subset with norm induced from Xk(n0).
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Lemma 3.1. Consider the sequences {Λn(λ)}∞n=n0
and {Rn(λ)}∞n=n0

, such that,
for every λ in some interval I ⊂ R, Λn(λ) and Rn(λ) are d× d complex matrices
and Λn(λ) has the eigenvalues {ν(k)

n (λ)}dk=1, such that ν(k)
n (λ) �= 0 ∀ k, n, λ. If the

following conditions hold

i. the sequence {Λn(λ)}∞n=n0
satisfies (L.c.(k)) for k = 1, . . . , d.

ii. there exists an N1 ≥ n0 such that for all n > N1, and all λ ∈ I, the matrices
Λn(λ) are diagonal matrices.

iii. there exists a C > 0 such that supλ∈I

∞∑
n=n0

‖Rn(λ)‖
|ν(k)

n (λ)| < C

iv. for any ε > 0 there exists an Nε (which depends only on ε) such that ∀λ ∈ I
we have

∞∑
n=Nε

‖Rn(λ)‖
|ν(k)
n (λ)|

< ε ,

then there exists a natural number N0 ≥ N1 such that the operator Tk defined for
every �ϕ = {�ϕn(λ)}∞n=N0

in Xk(N0) (k = 1, . . . , d) by the following expression

(Tk �ϕ)n(λ) =
n−1∑
m=N0

P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)

−
∞∑
m=n

P (2)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ) ,

(9)

where Ψn(λ) =
∏n−1
i=N0

Λi(λ), has the following properties:

1. Tk is a correctly defined operator on Xk(N0), that is, the series in (9) con-
verges, provided that �ϕ is in Xk(N0).

2. ‖Tk‖ < 1
3. TkXk(N0) ⊂ X0

k(N0)

Proof. We begin by choosing a natural number N0 ≥ max{N1, N}, where N1 is
from condition ii and N is from i (see definition of L.c.(k)) and such that

M sup
λ∈I

∞∑
n=N0

‖Rn(λ)‖
|ν(k)
n (λ)|

< 1 . (10)

Firstly we show that Tk is correctly defined on the space Xk(N0). Let us begin by
estimating the series in (9).

P (2)Ψn(λ)Ψ−1
m+1(λ) = diag{h(l)

n,m(λ)}dl=1 ,

where

h(l)
n,m(λ) =





∏n−1
i=N0

ν
(l)
i (λ)

∏
m
i=N0

ν
(l)
i (λ)

l ∈ I2,

0, else .
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Therefore, taking into account that m ≥ n,

|h(l)
n,m|= |

∏n−1
i=N0

ν
(l)
i (λ)

∏m
i=N0

ν
(l)
i (λ)

|= 1

|ν(l)
n ν

(l)
n+1 ...ν

(l)
m |

=
1

|ν(k)
n ν

(k)
n+1 ...ν

(k)
m |
|ν(k)
n ν

(k)
n+1 ...ν

(k)
m |

|ν(l)
n ν

(l)
n+1 ...ν

(l)
m |

≤M 1

|ν(k)
n ν

(k)
n+1 ...ν

(k)
m |

=M |
∏n−1
i=N0

ν
(k)
i (λ)

∏m
i=N0

ν
(k)
i (λ)

|.

Here, we have used (b). Thus, from (4) and condition iii, it is thus clear that for
any sequence �ϕ = {�ϕn(λ)}∞n=N0

in Xk(N0) we have convergence of the series in (9).
Let us now study the first term of the equation

P (1)Ψn(λ)Ψ−1
m+1(λ) = diag{f (l)

n,m(λ)}dl=1,

where

f (l)
n,m(λ) =




∏n−1
i=N0

ν
(l)
i (λ)

∏m
i=N0

ν
(l)
i (λ)

l ∈ I1,

0, else.
Hence, taking into account that in this case m ≤ n and using (a), we have

|f (l)
n,m| = |

∏n−1
i=N0

ν
(l)
i (λ)

∏m
i=N0

ν
(l)
i (λ)

| = |ν(l)
m+1ν

(l)
m+2 . . . ν

(l)
n−1|

= |ν(k)
m+1ν

(k)
m+2 . . . ν

(k)
n−1|
|ν(l)
m+1ν

(l)
m+2 . . . ν

(l)
n−1|

|ν(k)
m+1ν

(k)
m+2 . . . ν

(k)
n−1|

≤M |ν(k)
m+1ν

(k)
m+2 . . . ν

(k)
n−1| = M |

∏n−1
i=N0

ν
(k)
i (λ)

∏m
i=N0

ν
(k)
i (λ)

| .

We now show that operator Tk is a contraction.

‖Tk�ϕ‖Xk(N0) = sup
n≥N0

sup
λ∈I
{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

×
n−1∑
m=N0

P (1)ΨnΨ−1
m+1Rm(λ)�ϕm(λ)−

∞∑
m=n

P (2)ΨnΨ−1
m+1Rm(λ)�ϕm(λ)‖}

≤ sup
n≥N0

sup
λ∈I
{ M

|
n−1∏
i=N0

ν
(k)
i (λ)|

( n−1∑
m=N0

+
∞∑
m=n

)
‖Rm(λ)‖

|
n−1∏
i=N0

ν
(k)
i (λ)|

|
m∏

i=N0

ν
(k)
i (λ)|

‖�ϕm(λ)‖}

≤ sup
λ∈I
{M

∞∑
m=N0

‖Rm(λ)‖
|ν(k)
m (λ)|

‖�ϕm(λ)‖

|
m−1∏
i=N0

ν
(k)
i (λ)|

} ≤ ‖�ϕ‖Xk(N0) .

Note that in the second line we have written Ψn instead of Ψn(λ) to simplify the
writing of the formula.
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It remains to prove property 3. We must show that if �ϕ ∈ Xk(N0) then (5)
holds for {(Tk�ϕ)n(λ)}n≥N0 . Using the definition of Tk (see (9)) we obtain

sup
λ∈I
{‖(Tk�ϕ)n(λ)‖Cd

1

|
∏n−1
i=N0

ν
(k)
i (λ)|

}

≤ sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

‖
n−1∑
m=N0

P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

+ sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

‖
∞∑
m=n

P (2)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}
.

(11)

Since �ϕ is in Xk(N0) it follows at once from (b) that the second term on the
right-hand side of the last expression can be done as little as we want if we take n
sufficiently big.

Consider now the first term on the right-hand side of (11).

sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

‖
n−1∑
m=N0

P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

≤ sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

s−1∑
m=N0

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

+ sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

∞∑
m=s

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}
.

Provided that s > N0 this inequality holds for every n ≥ N0 no matter how big it
is. Now, since

sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

∞∑
m=s

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

≤M‖�ϕ‖Xk(s) sup
λ∈I

∞∑
m=s

‖Rm(λ)‖
|ν(k)
n (λ)|

,

and taking into account that {�ϕn(λ)}n≥N0 ∈ Xk(N0) implies {�ϕn(λ)}n≥s ∈ Xk(s),
there exists an s > N0, such that for every ε1 > 0

sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

∞∑
m=s

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}
≤ ε1 .
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Thus, we have shown that the first term on the right-hand side of (11) is estimated
as follows

sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

‖
n−1∑
m=N0

P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

≤ sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

s−1∑
m=N0

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}
+ ε1 .

But

sup
λ∈I

{ 1

|
∏n−1
i=N0

ν
(k)
i (λ)|

s−1∑
m=N0

‖P (1)Ψn(λ)Ψ−1
m+1(λ)Rm(λ)�ϕm(λ)‖

}

≤ C sup
λ∈I

{ ‖P (1)Ψn(λ)‖
|
∏n−1
i=N0

ν
(k)
i (λ)|

}
,

where C is a positive constant. Now, as a consequence of (a) we know that

sup
λ∈I

{ ‖P (1)Ψn(λ)‖
|
∏n−1
i=N0

ν
(k)
i (λ)|

}
= sup

λ∈I

{ |∏n−1
i=N0

ν
(l)
i (λ)|

|
∏n−1
i=N0

ν
(k)
i (λ)|

}
→ 0 as n→∞ .

This completes the proof of the lemma. �

Now we show that, using the operator introduced in the previous lemma,
we can write an equation which turns out to be equivalent to a recurrence linear
system of the form (2) defined by the sequences {Λn(λ)}n≥n0 and {Rn(λ)}n≥n0 .

Lemma 3.2. Let the sequences of function matrices {Λn(λ)}n≥n0 and {Rn(λ)}n≥n0

satisfy the conditions of the previous lemma. Let N0 ≥ n0 be such that Tk given
by (9) is correctly defined2. The sequence of function vectors �ϕ = {�ϕ(k)

n (λ)}n≥N0

in Xk(N0) is a solution of the recurrence equation

�ϕn+1(λ) = (Λn(λ) +Rn(λ))�ϕn(λ) n ≥ N0 (12)

iff �ϕ satisfies equation
�ϕ = �ψ(k) + Tk�ϕ (13)

where the sequence �ψ(k) = {�ψ(k)
n (λ)}n≥N0 is defined by

�ψ(k)
n = Ψn(λ)�ek =

n−1∏
i=N0

ν
(k)
i (λ)�ek

Proof. The proof is straightforward. Using the definition of Tk in (13) and substi-
tuting this into (12) one obtains an identity (it has to be taken into account that
Λn(λ)Ψn(λ) = Ψn+1(λ) and that P (1) + P (2) = I, where I is the d × d-identity
matrix). �

2The existence of N0 is guaranteed by Lemma 3.1.
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Remark 2. A straightforward consequence of Tk’s property 3, stated in Lemma
3.1, is that if �ϕ ∈ Xk(N0) satisfies equation (13) then

�ϕ− �ψ(k) ∈ X0
k(N0) . (14)

It is of practical importance to deal with systems such as (12), but when
the sequence {Λn(λ)}n≥n0 is not necessarily diagonal. The following lemma gives
sufficient conditions for a sequence of matrices to be diagonalizable in a specific
sense.

Lemma 3.3. Let {Vn(λ)}n≥n0 be a sequence of function matrices defined on every
λ in some interval I ⊂ R, such that

i. {Vn(λ)}n≥n0 is in D̃1

ii. Vn(λ)
λ∈I

⇒ V∞ as n→ ∞, where V∞ is a d× d matrix with pairwise distinct
eigenvalues {ν(k)}dk=1

Then we can find an m ≥ n0 such that there exists a sequence of diagonal matrices
{Λn(λ)}n≥m and a sequence of invertible matrices {Gn(λ)}n≥m such that

1. {Λn(λ)}n≥m ∈ D̃1

2. {Gn(λ)}n≥m ∈ D̃1

3. Vn(λ) = Gn(λ)Λn(λ)G−1
n (λ) for n ≥ m for all λ ∈ I

4. Λn(λ)
λ∈I

⇒ Λ as n→∞, where Λ = diag{ν(k)}dk=1

5. Gn(λ)
λ∈I

⇒ G as n→∞, where G is invertible and V∞ = GΛG−1

Proof. The proof is very similar to the one in [6] for the non-parametric analogous
assertion.

As we have done before, let us denote by {ν(k)
n (λ)}dk=1 the set of eigenvalues

of Vn(λ). Since the matrix V∞ has pairwise distinct eigenvalues, by choosing ε > 0
small enough, the operators

P(k) =
∮

|z−ν(k)|=ε

(V∞ − zI)−1dz k = 1, . . . , d (15)

are projectors onto the eigenspaces of V∞ corresponding to ν(k) (k = 1, . . . , d).
Now, taking ε even smaller if necessary, it is clear that there exists some N ≥ n0,
such that the operators, defined for all λ ∈ I and each n ≥ N by

P(k)
n (λ) =

∮

|z−ν(k)
n (λ)|=ε

(Vn(λ) − zI)−1dz k = 1, . . . , d (16)

are projectors onto the eigenspaces of Vn(λ) corresponding to the eigenvalue ν(k)
n (λ)

(k = 1, . . . , d). From the conditions of the lemma it is clear that ν(k)
n (λ)

λ∈I

⇒ ν(k)

and, therefore, k �= j implies

ν(k)
n (λ) �= ν(j)

n (λ) ∀n ≥ N, and ∀λ ∈ I . (17)
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We define the matrices
Λn(λ) = diag{ν(k)

n (λ)}dk=1

From (17) we have property 4. Furthermore, using (17) and ii, from (15), (16) we
have

P(k)
n (λ)

λ∈I
⇒ P(k) and {P(k)

n (λ)}n≥N ∈ D̃1

Now, for k = 1, . . . , d we choose an arbitrary non-zero vector �vk in Ran(Pk) and
construct the function matrix Gn(λ) with columns

P(1)
n (λ)�v1, . . . ,P(d)

n (λ)�vd .

Therefore
Vn(λ)Gn(λ) = Gn(λ)Λn(λ) for n ≥ N, ∀λ ∈ I .

Now, since P(k)
n (λ)�vk

λ∈I

⇒ P(k)�vk = �vk �= 0 as n → ∞, we can find an m ≥ N
such that Gn(λ) are invertible for n ≥ m. Thus property 3 holds. Moreover,
{P(k)

n (λ)}n≥m ∈ D̃1 implies 2. Now, let us consider the matrix G with columns
given by the vectors �v1, . . . , �vd. Clearly

Gn(λ)
λ∈I

⇒ G (18)

and G is invertible. Thus 5 holds. So this, together with 2, implies

{Gn(λ)−1}n≥m ∈ D̃1 .

Finally property 1 takes place since D̃1 is an algebra. �

Remark 3. It is not difficult to understand that if the sequence {Vn(λ)}n≥m satis-
fies the Levinson condition (L.c.(k)) for a certain k, then the diagonalized sequence
{Λn(λ)}n≥m also satisfies this condition for the same k.

4. The asymptotic behavior of solutions

In this section we obtain Levinson type assertions that give a uniform estimate of
the remainder in the asymptotic expansion.

Theorem 4.1. Let the sequences {Λn(λ)}n≥n0 and {Rn(λ)}n≥n0 satisfy the condi-
tions of Lemma 3.1. Then we can find an N0 ∈ N such that there exists a basis
{�ϕ(k)

n (λ)}dk=1 in the space of solutions of (12) satisfying

sup
λ∈I
‖ �ϕ

(k)
n (λ)∏n−1

i=m ν
(k)
i (λ)

− �ek‖ → 0, as n→∞ , for k = 1, . . . , d . (19)

Proof. The statement of the theorem easily follows from Lemmas 3.1 and 3.2.
Note that property 2 implies that (13) yields linearly independent solutions for
k = 1, . . . , d. Equation (19) follows directly from (14). �
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Now we use Lemma 3.3 to replace the restricting condition of diagonality
that in Theorem 4.1 is imposed on {Λn(λ)}n≥n0 by a weaker assumption, viz.,
that a sequence is diagonalizable in the sense specified in Lemma 3.3.

Theorem 4.2. Let V∞ be a d×d matrix whose non-zero eigenvalues ν(k) are pairwise
distinct. Consider the sequences {Vn(λ)}∞n=n0

and {Rn(λ)}∞n=n0
, such that, for

every λ in some interval I ⊂ R, Vn(λ) and Rn(λ) are d × d complex matrices
and Vn(λ) has the eigenvalues {ν(k)

n (λ)}dk=1, such that ν(k)
n (λ) �= 0 ∀ k, n, λ. If the

following conditions hold

i. Vn(λ)
λ∈I

⇒ V∞ as n→∞.
ii. the sequence {Vn(λ)}∞n=n0

satisfies (L.c.(k)) for k = 1, . . . , d.
iii. {Vn(λ)}∞n=n0

∈ D̃1

iv. there exists a C > 0 such that supλ∈I

∑∞
n=n0

‖Rn(λ)‖ < C.
v. for any ε > 0 there exists a Nε (which depends only on ε) such that ∀λ ∈ I

we have
∞∑

n=Nε

‖Rn(λ)‖ < ε ,

then we can find an m ∈ N such that there exists a basis {�x(k)
n (λ)}dk=1 in the space

of solutions of the recurrence relation

�x
(k)
n+1(λ) = (Vn(λ) +Rn(λ))�x(k)

n (λ) for n ≥ m (20)

such that

sup
λ∈I
‖ �x

(k)
n (λ)∏n−1

i=m ν
(k)
i (λ)

− �pk‖ → 0, as n→∞ ,

where �pk is the eigenvector of V∞ corresponding to ν(k).

Proof. Since {Vn(λ)}∞n=n0
satisfies here the conditions of Lemma 3.3 we can find

an m1 ≥ n0 such that ∀λ ∈ I

Vn(λ) = G−1
n (λ)Λn(λ)Gn(λ) for n ≥ m1 .

Therefore, letting �ϕ
(k)
n (λ) = Gn(λ)�x(k)

n (λ) in (20), considered for n ≥ m1, we have

�ϕ
(k)
n+1(λ) = Gn+1(λ)

(
Vn(λ) +Rn(λ)

)
G−1
n (λ)�ϕ(k)

n (λ) for n ≥ m1

This recurrence system can be rewritten as follows

�ϕ
(k)
n+1 =

(
Λn(λ) + R̃n(λ)

)
�ϕ(k)
n , (21)

where R̃n(λ) = (∆G)n(λ)Vn(λ)G−1
n (λ) + Gn+1(λ)Rn(λ)G−1

n (λ) (recall the oper-
ator ∆ introduced in Sec. 2). Clearly the sequence {Λn(λ)}∞n=m1

, by Lemma 3.3,
satisfies the conditions of Lemma 3.1, in particular (L.c.(k)) for k = 1, . . . , d.
Next we show that the sequence {R̃n(λ)}n≥m1 satisfies the conditions iii and iv of
Lemma 3.1. Indeed, considering condition i and property 5 of Lemma 3.3, it is not
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difficult to show that we can find an m2 ≥ m1, such that there exist C1, C2, C3 > 0
for which the following estimates hold

‖R̃n(λ)‖ ≤ C1‖(∆G)n(λ)‖ + C2‖Rn(λ)‖ ∀λ ∈ I , ∀n ≥ m2

|ν(k)
n (λ)| ≥ C3 ∀λ ∈ I , ∀n ≥ m2 (k = 1, . . . , d) .

(22)

Now, since {Gn(λ)}∞n=m1
is in D̃1, there exist a C > 0 such that

∞∑
n=m1

sup
λ∈I
‖(∆G)n(λ)‖ < C .

This last estimate, together with (22) and conditions iv and v, yields the bound-
edness of

sup
λ∈I

∞∑
n=m2

‖R̃n(λ)‖
|ν(k)
n (λ)|

and the uniform tail’s estimate

sup
λ∈I

∞∑
n=l

‖R̃n(λ)‖
|ν(k)
n (λ)|

→ 0 as l →∞

Hence the conditions of Lemmas 3.1 and 3.2 are satisfied. This means that we can
apply Theorem 4.1 to the system (21). Therefore for an m ≥ m2 there exists a
basis {�ϕ(k)(λ)}dk=1 in the space of solutions of (21) such that

sup
λ∈I
‖�ϕ(k)

n (λ)/
n−1∏
i=m

ν
(k)
i (λ) − �ek‖ → 0, as n→∞ ,

Thus, (20) has the linearly independent solutions �x(k)
n (λ) = G−1

n (λ)�ϕ(k)
n (λ) for

k = 1, . . . , d. It is also not difficult to show that

sup
λ∈I
‖�x(k)

n (λ)/
n−1∏
i=m

ν
(k)
i (λ) − �pk‖ → 0, as n→∞ ,

where �pk = G−1�ek is the eigenvector of V∞ corresponding to ν(k). �

Remark 4. If in Theorem 4.2 we consider the sequences {Vn(λ)}n≥n0 and V∞
defined as in Remark 1, then V∞ satisfies the conditions of the theorem and i and
ii are fulfilled. In this case we have the “classical” discrete Levinson theorem [7],
but in its uniform variant.
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5. Asymptotics of the generalized eigenvectors of
a Jacobi matrix with rapidly increasing weights

Let us consider an operator J in l2(N) whose matrix representation with respect
to the canonical basis in l2(N) is a Jacobi matrix of the form




0 b1 0 0 · · ·
b1 0 b2 0 · · ·
0 b2 0 b3 · · ·
...

...
...


 , (23)

where b = {bn}n∈N is a sequence of positive numbers. By means of the subordinacy
theory, the spectral characterization of J can be done by analyzing the asymptotic
behavior, as n→∞, of the solutions of the following equation

bn−1un−1 + bnun+1 = λun n > 1 , λ ∈ R . (24)

The solutions u = {un(λ)}∞n=1 of (24) are called the generalized eigenvectors of J
corresponding to λ. Equation (24) can be written as follows

�un+1 = Bn(λ)�un , n > 1 , λ ∈ R . (25)

where �un(λ) =
(
un−1(λ)

un(λ)

)
and Bn(λ) =

(
0 1

− bn−1
bn

λ
bn

)
is the so-called transfer

matrix. It turns out that it is possible to group the transfer matrices Bn(λ) in
such a way that the resulting system satisfies the conditions of Theorem 4.2 or, at
least Theorem 4.1. Let us illustrate this for the case when the sequence b = {bn}∞n=1

is defined by
bn = nα

(
1 +

cn
n

)
, n ∈ N , (26)

where 1 < α < 2 and {cn}n∈N is a positive periodic sequence of even period,
i.e., cn+T = cn for all n ∈ N and a fixed even natural number T = 2L. This
class of Jacobi matrices with rapidly growing weights is based on an example
suggested by A.G. Kostyuchenko and K.A. Mirzoev [12]3. The asymptotics of
the generalized eigenvectors for this class, has been studied in [7] and [13] with
different approaches. We use here mainly the same reasoning as in [7], but applying
our uniform version of the Levinson theorem.

First we define how we should group the transfer matrices in order to apply
the main result of this paper. Consider the following recurrence equation for the
sequences of two-dimensional vectors �x(λ) = {�xn(λ)}∞n=1

�xn+1(λ) = An(λ)�xn(λ) , n ∈ N , λ ∈ R . (27)

where An(λ) =
∏T−1
k=0 BnT+k(λ). It is clear that for any solution �x(λ) of (27) there

exists a unique sequence u being a solution of (24) whose elements are determined
by the second component of the vector �unT (λ) = �xn(λ). Moreover, there is an

3Actually, this class is not restricted to the case α < 2. This restriction is not important for this
example, but simplifies some formulas.
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isomorphism �x �→ u of the space of solutions of (27) to the space of solutions of
(24) and we have for every n ∈ N and the integers s = 1, . . . , T

unT+s(λ) =

(
s−1∏
k=0

BnT+k�xn(λ) , �e2

)

C2

, (28)

where �e2 = ( 0
1 ) (�e1 = ( 1

0 )) and (·, ·)C2 is the inner product in C
2, which is used to

single out the second component of the vector.
Let us calculate An(λ) for our particular matrix. Simple algebraic computa-

tions give us

BnT+k(λ) = E +
1
n
Mk +

1
nα
Nk(n, λ) +

1
n2
Qk(n) , (29)

where

E =
(

0 1
−1 0

)
, Mk =

(
0 0

α+ck−ck−1
T 0

)
, Nk(n, λ) =

(
0 0
0 λ

Tα(1+O( 1
n ))

)
,

and Qk(n) is a matrix which does not depend on λ and tends to a constant matrix
when n→∞. Thus,

An(λ) = (−1)LI +
1
n

T−1∑
k=0

ET−1−kMkEk +
1
nα
Rn(λ) , (30)

where I is the 2×2-identity matrix and where the sequence of matrices {Rn(λ)}n∈N

tends, uniformly with respect to λ in any finite interval I of R, to a constant
matrix. Indeed, from (29) it straightforwardly follows that each element of Rn(λ)
is a product of a polynomial of λ and a function of n which does not depend on λ
and tends to a constant as n→∞. As regards the second term of the right-hand
side of (30) we have

1
n

T−1∑
k=0

ET−1−kMkEk =
(−1)L−1

n

(
α
2 +

∑2L
j=1(−1)jcj

T 0

0 α
2 −

∑ 2L
j=1(−1)jcj

T

)
. (31)

Now, assuming that

Vn(λ) := (−1)L
(
I − 1

n

(
α
2 +

∑ 2L
j=1(−1)jcj

T 0

0 α
2 −

∑2L
j=1(−1)jcj

T

))

and

Rn(λ) :=
1
nα
Rn(λ)

it is easy to show that the sequences {Vn(λ)}n∈N and {Rn(λ)}n∈N satisfy the
conditions of Theorem 4.1 for the system (27). Thus, there exists an m ∈ N such
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that, as n→∞,

sup
λ∈I
‖x(k)

n (λ)− (−1)nL
n−1∏
l=m

(
1− l−1

(
α

2
+ (−1)k+1

∑2L
j=1(−1)jcj

T

))
�ek‖ → 0 ,

where k = 1, 2.
Now, reasoning as in [7], one can obtain a basis u(k) = {u(k)

n }n≥m, k = 1, 2,
in the space of solutions of (24) such that, for s = 1, . . . , T ,

u
(k)
nT+s(λ) = (−1)nL

n−1∏
l=m

(
1− l−1

(
α

2
+ (−1)k+1

∑2L
j=1(−1)jcj

T

))
w

(k)
nT+s(λ) ,

where
sup
λ∈I
‖w(k)

n (λ) − (En�ek, �e2)C2‖ → 0 , as n→∞ , k = 1, 2 .

Hence we have obtained uniform estimates of the asymptotic remainder term for
the generalized eigenvectors of J .

References

[1] Z. Benzaid and D. A. Lutz. Asymptotic representation of solutions of perturbed
systems of linear difference equations. Studies Appl. Math., 77(1987) 195–221.

[2] E. Coddington and N. Levinson. Theory of Ordinary Differential Equations. Mc-
Graw-Hill, New York, 1955.

[3] S. N. Elaydi. An Introduction to Difference Equations. Springer-Verlag, New York,
1999.

[4] D. Gilbert. On subordinacy and analysis of the spectrum of Schrödinger operators
with two singular end points. Proc. Roy. Soc. Edinb., 112A(1989) 213–229.

[5] D. Gilbert and D. Pearson. On subordinacy and analysis of the spectrum of one-
dimensional Schrödinger operators. J. Math. Anal. Appl., 128(1987) 30–56.
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Introduction

The functional model of S.-Nagy-Foiaş [1] of contractive (dissipative) operators is
well known and has many important and useful applications. It was generalized
many times and in various directions. Here we single out three of them: 1) models
of unitary nodes [2]; 2) models of operators those are analogous of contractive
operators [3, 4]; 3) models of operators those are close to unitary (self-adjoint)
operators but are not contractive (dissipative) [5, 6].

On the other hand, trace class perturbations of normal operators with spec-
trum on a curve is an important object to study. In [7] the author revealed that
such operators can be represented in the form ϕ(T0) + N0κM0 , where ϕ is a
conformal map of the unit disk, T0, N0,M0 are entries of an unitary operator-
matrix A0 , and κ is a bounded operator. This representation enables us to
extend scheme from [5, 6] to the trace class perturbations of normal operators
provided that we have a suitable functional model for the triple of operators
(ϕ(T0), M0, N0) . Problems, which are studied in [7], impose some requirements
on this model. For instance, the definition of spectral components yields that the
Hardy-Smirnov spaces E2(G±) [8] and the corresponding (non-orthogonal) projec-
tions P± (RanP± = E2(G±), KerP± = E2(G∓)) should be important ingredients
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of the model (here G+ = intC , G− = extC are the interior and exterior do-
mains for a closed curve C, respectively). Besides, it is desirable that we be able to
work with a “dilation” space and with a projection of it onto the model subspace.
Both of them should be consistent with Hardy-Smirnov spaces. Note that models
from [3, 4] do not meet all our requirements on a model.

In the present paper we construct linearly similar functional model for triples
of operators

(T,M,N) = (ϕ(T0), M0χ+(T0), χ−(T0)N0) (∗)
where ϕ ∈ CM(D, G+), the operators T0, N0,M0 are entries of an unitary node

A0 =
(

T0 N0

M0 L0

)
∈ [H ⊕N] , A∗

0A0 = I, A0A
∗
0 = I ,

and χ+ =
√
ϕ′/(ψ+ ◦ ϕ), χ− =

√
ϕ′ (ψ− ◦ ϕ). We assume that the curve C

is simple closed C1+ε-smooth, the unitary node A0 is simple (that is, the con-
traction T0 is completely nonunitary), and ψ±, 1/ψ± ∈ H∞(G+) . (Note that
C1+ε−smoothness of the curve C implies ϕ′, 1/ϕ′ ∈ H∞(G+) [9]). In the paper
the class of all conformal maps of G1 onto G2 is denoted by CM(G1, G2), the set
of all bounded operators acting in a Hilbert space H is denoted by [H ]. A lin-
early similar model of triple (T,M,N) is understood to be a triple of operators
( T̂ , M̂ , N̂ ) such that there exists bounded invertible operator W and

T̂W = WT , M̂W = M , N̂ = WN .

Basic requirements for our variant of a functional model are: 1) possibility
to work with the “dilation” space and the projection onto the model subspace;
2) possibility to work with the dual model; 3) possibility to treat the absolutely
continuous subspace; 4) existence of simple explicit transformations between a
model of an operator and a model of a function of it; 5) possibility to construct
a model for a basic operator T and channel operators M , N simultaneously. Note
that, although these requirements arose in the process of solving of the duality
problem for spectral components [7], they are not specific for this problem only.
At the same time they are quite general and natural. Possibility to construct such
model and, of course, the construction itself is a matter of this paper.

The paper is organized as follows. In Section 1 we review the known construc-
tion of the S.-Nagy-Foiaş functional model [1] for which we use the coordinate-free
approach from [10]. In so doing, we consider features of the model that are essen-
tial for our generalization. In Section 2 the construction of the model is extended
to the case of a closed smooth curve. We employ certain “change of variable” from
the model for a curve to the model for the unit circle. Next, we consider the model
subspace KΘ and the projection PΘ onto this subspace and study their relation-
ships to the dual model and the “change of variable”. In Section 3 we introduce
model operators T̂ , M̂ , N̂ and find the transformations of them when we do the
“change of variable”. Using these transformations we establish the main result of
the paper: triple ( T̂ , M̂ , N̂ ) is a linearly similar model for certain triple (T,M,N )
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of the form (∗) and, conversely, for any triple (T,M,N ) of the form (∗) there ex-
ists a linearly similar model ( T̂ , M̂ , N̂ ). The most part of presenting results was
announced without proofs in [7].

1. Model for the unit circle

Let N, H be separable Hilbert spaces and let π0± ∈ [L2(T,N), H] be mappings
satisfying the conditions:

(i)0 π∗
0±π0± = I ;

(ii)01 (π∗
0−π0+)z = z(π∗

0−π0+) ; (ii)02 P−π∗
0−π0+P+ = 0 ;

(iii)0 Ranπ0+ ∨ Ranπ0− = H ,
where P+ and P− are orthogonal projections on the Hardy spaces H2(N) and
H2

−(N), respectively. We set Θ±
0 = π∗

0∓π0± and ∆±
0 = (I − Θ±

0 Θ∓
0 )1/2 . It is

easy to show that Θ±
0 , ∆±

0 ∈ L∞(T, [N]) . (Usually, we employ one and the same
symbol for an operator-valued function and for the operator of multiplication by
it.) Moreover, operator-valued functions Θ±

0 admit analytic continuation to D±
and have contractive values there. This follows from (ii)0 and the self-adjointness
of projections P± . Isometries τ0± : closRan∆±

0 �→ H are uniquely determined
by the relations τ0±∆±

0 = (I − π0±π∗
0±)π0∓ . We extend them to (Ran ∆±

0 )⊥ by
0. For them, we have τ0± = ((∆±

0 )−1(π∗
0∓ − Θ±

0 π
∗
0±))∗ ∈ [L2(T,N),H] and the

following identities hold:

1)
(
π∗

0±
τ∗0±

)
(π0±, τ0±) =

(
I 0
0 Pclos Ran ∆±

0

)
;

2)
(
π∗

0±
τ∗0±

)
(π0∓, τ0∓) =

(
Θ∓

0 ∆∓
0

∆±
0 −Θ±

0 PclosRan ∆∓
0

)
;

3) π0±π∗
0± + τ0±τ∗0± = I .

We define also the dual mappings π∗0± = −iπ0∓C1/z , where (C1/zf(·))(z) =
(i/z)f(1/z) . It is easy to check that the maps π∗0± satisfy conditions (i)0, (ii)0,
(iii)0 and we have also Θ±

∗0 = (Θ±
0 )∼, ∆±

∗0 = (∆∓
0 )∼ , where A∼(z) = A(z̄)∗ .

The following duality relations hold

(f, g)H =< π∗
0±f, π

∗
∗0∓g >T + < τ∗0±f, τ

∗
∗0∓g >T, f, g ∈ H ,

where

< u, v >T=
1

2πi

∫

T

(u(z), v(z̄))N dz, u ∈ L2(T,N), v ∈ L2(T,N) .

Further, from the identity ||π0+zu+ + π0−zu− || = ||π0+u+ + π0−u− || and the
condition (iii)0 it follows that there exists a unique unitary operator U0 ∈ [H]
with absolutely continuous spectrum such that U0π0± = π0±z . It is easy to check
the following identities U0τ0± = τ0±z , π∗

0±U0 = zπ∗
0± , τ

∗
0±U0 = zτ∗0± .
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Define the orthogonal projections Q0± = π0±P±π∗
0± and subspaces D0± =

RanQ0± . It is easy to check that Q0±Q0∓ = 0 and that the subspaces D0±
are invariant under operators U±1

0 . Then we arrive at the Lax-Phillips-Adamyan-
Arov scheme [11] :

D0+⊥D0−,
⋂
n∈N

U±n
0 D0± = {0},

⋃
n∈Z

Un0 D0+

∨ ⋃
n∈Z

Un0 D0− = H.

It is clear that, conversely, one can easily construct operators π0± that satisfy
conditions (i)0, (ii)0, and (iii)0 whenever the corresponding outgoing and incoming
subspaces D0± are given.

As is well known [11], the generalized Lax-Phillips scheme is equivalent to
the functional model of S.-Nagy-Foiaş [1]. For this model, the original Nikolski-
Vasyunin [10] properties of operators π0± are:

π∗
0±π0± = I ; π0±z = U0π0± ;
π0±H2(D±) = D0± ; Ranπ0+ ∨ Ranπ0− = H ,

where U0 ∈ [H] is a minimal unitary dilation of some completely nonunitary
contraction T0 ∈ [H ], D0+ = (∨n≥0U

n
0 H))H , D0− = H) (∨n≥0U

n
0 H).

Therefore our set of axioms (i)0, (ii)0, (iii)0 and Nikolski-Vasyunin’s axioms
are equivalent. But in our settings we use neither a unitary dilation nor orthogonal
complements. This reformulation enables us to extend the functional model to the
case of a closed curve. We present this generalization in the next section.

Now we define model operators T̂0 ∈ [K0] , M̂0 ∈ [K0,N] , N̂0 ∈ [N,K0] :

T̂0f = U0f − π0+M̂0f, M̂0f = (π∗
0+U0f)(∞), N̂0n = (I − π0+P+π

∗
0+)π0−n,

where f ∈ K0, n ∈ N, K0 = RanP0, P0 = I − Q0+ −Q0−. Note that operators
M̂0 and N̂0 are (up to unitary factor) the defect operators [1, 2] of the contraction
T̂0 , the operator P0 is an orthogonal projection and

Â0 =

(
T̂0 N̂0

M̂0 Θ+
0 (0)∗

)

is a simple unitary node.

The inverse is also true. If A0 ∈ [H⊕N] is a simple unitary node, then there
exists a pair Π0 = (π0+, π0−) satisfying conditions (i)0, (ii)0, (iii)0, and a unitary
operator W0 ∈ [H,K0] such that

T̂0W0 = W0T0, M̂0W0 = M0, N̂0 = W0N0, Θ+
0 (0)∗ = L0 .

Note also that for dual objects we have the following relations

P∗0 = P0, K∗0 = K0, T̂∗0 = T̂ ∗
0 , M̂∗0 = N̂∗

0 , N̂∗0 = M̂∗
0 .
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2. Model for a curve (geometry)

Since the curve C is C1+ε-smooth, there exist (non-orthogonal) projections P± ∈
[L2(C,N)] such that RanP± = E2(G±,N), KerP± = E2(G∓,N). Let mappings
π± ∈ [L2(C,N),H] satisfy conditions:

(i)1 ∀ψ ∈ L∞(C, [N]) (π∗±π±)ψ = ψ(π∗±π±); (i)2 (π∗±π±)−1 ∈ [L2(C,N)];
(ii)1 (π†

−π+)z = z(π†
−π+); (ii)2 P−(π†

−π+)P+ = 0;
(iii) Ranπ+ ∨ Ranπ− = H.

Here π†
− is the Moore-Penrose inverse operator for π−: π†

−f = (π−|(Kerπ−)⊥)−1f ,
f ∈ Ranπ−; π†

−f = 0, f⊥Ranπ−.
Conditions (i), (ii), and (iii) are generalization of (i)0, (ii)0, and (iii)0 to

the case of a curve. Indeed, we have π†
0− = π∗

0− . On the other hand, there ex-
ists a transformation (“change of variable”) between Π = (π+, π−) and Π0 =
(π0+, π0−), which we are going to describe.

First, note that from conditions (i)1 and (i)2 it follows that π∗
±π± = δ±I ,

where δ±, 1/δ± ∈ L∞(C) . Then there exist [1, 12] outer analytic scalar func-
tions ψ± ∈ H∞(G+) such that for their boundary values |ψ±|2 = δ± . Clearly,
1/ψ± ∈ H∞(G+). Note also that, since δ± do not vanish on T, we have ψ± ∈
C1+ε(closG+) ⇔ δ± ∈ C1+ε(C) (see, e.g., [13]). Define the unitary operator
Cϕ21 ∈ [L2(C2,N), L2(C1,N)] by formula

(Cϕ21f(· ))(z1) =
√
ϕ′

21(z1)f(ϕ21(z1)), z1 ∈ C1 , f ∈ L2(C2,N) ,

where ϕ21 ∈ CM(G1+, G2+) . Let ϕ ∈ CM(D, G+). Put π0± = π±1/ψ±Cϕ−1 .
We will check that Π0 = (π0+, π0−) satisfy conditions (i)0, (ii)0, and (iii)0.

It is easy to show that operators π±1/ψ± are isometries. Hence, π0± sat-
isfy the condition (i)0. Obviously, π± = π0±Cϕψ± . Since Kerπ± = Kerπ0± =
{0} , we have π†

± = 1/ψ±C−1
ϕ π†

0± = 1/ψ±Cϕ−1π∗
0± ∈ [H, L2(C,N)] . Whence,

π∗
0± = Cϕψ±π

†
± and π∗

0−π0+ = Cϕψ−π
†
−π+1/ψ+Cϕ−1 . Taking into account the

conditions (ii)1 and (ii)2 we can regard the operator π†
−π+ as an operator

of multiplication by boundary values of bounded analytic operator-valued func-
tion Θ+(z), z ∈ G+. Since ψ±, 1/ψ± ∈ H∞(G+) , the operator-valued function
Θ+

0 = (ψ−/ψ+Θ±) ◦ ϕ is bounded and analytic in the unit disk. Then the con-
ditions (ii)01 and (ii)02 are fulfilled for the operator π∗

0−π0+ of multiplication by
boundary values of Θ+

0 (z0), z0 ∈ D . The condition (iii)0 follows from the identity
Ranπ0± = Ranπ± .

Note that one can consider slightly more general “change of variable” π2± =
π1±Cϕ21η± , where ϕ21 ∈ CM(G1+, G2+), η±, 1/η± ∈ H∞(G2+) . Then the pair
Π2 = (π2+, π2−) satisfy conditions (i), (ii), (iii) ⇔ the pair Π1 = (π1+, π1−)
satisfy the same conditions.

We set Θ± = π†
∓π±, ∆± = (I−Θ±Θ∓)1/2 . It is easy to show that Θ±, ∆± ∈

L∞(C, [N]) . As we already know, Θ+ ∈ H∞(G+, [N]) . However, now we cannot
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assert that the operator-valued function Θ− = π†
+π− admits analytic continuation

to G− .
Further, put τ± = ((∆±)−1(π†

∓ − Θ±π†
±))† . It is easy to check that τ± =

τ0±Cϕψ∓, τ
†
± = 1/ψ∓Cϕ−1τ†0± . Combining this with the corresponding relations

for π0±, τ0± from Section 1, we obtain

Proposition 1. One has

1)
(
π†
±
τ†±

)
(π±, τ±) =

(
I 0
0 PclosRan ∆±

)
;

2)
(
π†
±
τ†±

)
(π∓, τ∓) =

(
Θ∓ ∆∓

∆± −Θ±Pclos Ran ∆∓

)
;

3) π±π
†
± + τ±τ

†
± = I .

We set π∗± = π∗0±Cϕ∼1/ψ∼∓ . It is clear that Π∗ = (π∗+, π∗−) satisfy conditions
(i), (ii), (iii) and Θ±∗ = (Θ±)∼, ∆±∗ = (∆∓)∼ . Here again A∼(z) = A(z̄)∗ .

Proposition 2. One has

(f, g)H = 〈π†
±f, π

†
∗∓g〉C + 〈τ†±f, τ

†
∗∓g〉C , f, g ∈ H ,

where

〈u, v〉C =
1

2πi

∫

C

(u(z), v(z̄))N dz, u ∈ L2(C,N), v ∈ L2(C̄,N) .

Proof. Using obvious properties of the pairing, we obtain

〈π∗
0±f, π

∗
∗0∓g〉T = 〈Cϕψ±π

†
±f, Cϕ∼1/ψ∼

±π
†
∗∓g〉T

= 〈ψ±π
†
±f, 1/ψ

∼
±π

†
∗∓g〉C = 〈(1/ψ±)ψ±π

†
±f, π

†
∗∓g〉C = 〈π†

±f, π
†
∗∓g〉C .

Similarly, we get the corresponding identity for τ±, τ∗∓ . It remains to make use
of the relations of duality for the unit circle. �
Proposition 3. Conditions Uπ± = π±z uniquely determine the normal operator U .
The spectrum of U is absolutely continuous and lies on the curve C .

Proof. Since π±z = π0±Cϕψ±z = π0±ϕ(z0)Cϕψ± = ϕ(U0)π0±Cϕψ± = ϕ(U0)π±,
we have U = ϕ(U0). �
In the same way, we get Uτ± = τ±z , π†

±U = zπ†
± , τ†±U = zτ†± . From the duality

relations we obtain U∗ = U∗ .
We pass to the model subspace and the projection onto it. To this end we con-
sider auxiliary projections q± = π±P±π

†
± . These operators have the following

properties.

Lemma 4. 1) q2± = q± ; 2) Ker q± = KerP±π
†
± ; 3) Ran q± = π±E2(G±) =

KerP∓π
†
±∩Ker τ†± ; 4) q∗± = q∗∓ ; 5) q2−q1+ = q2−(I− q1−) = (I− q2+)q1+ = 0 ,

where π2± = π1±Cϕ21η± , ϕ21 ∈ CM(G1+, G2+), η±, 1/η± ∈ H∞(G2+) .
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Proof. This technical lemma bases mainly on the condition (ii)2 . We have

1) q2± = π±P±π
†
±π±P±π

†
± = π±P±P±π

†
± = π±P±π

†
± = q±.

2) This follows from identities q± = π±(P±π
†
±), P±π

†
± = π†

±q± .

3) Let f ∈ Ran q± . Then f = q±g = π±u±, u± = P±π
†
±g . Conversely, let

P∓u± = 0 . Then π±u± = π±(P± + P∓)u± = π±P±u± = (π±P±π
†
±)π±u± .

Whence, Ran q± = π±E2(G±) .

Next, since P∓π
†
±π± = P∓, τ

†
±π± = 0 , we have π±E2(G±) ⊂ KerP∓π

†
±∩Ker τ†± .

Conversely, let f ∈ KerP∓π
†
± ∩ Ker τ†± . Then f = (π±π

†
± + τ±τ

†
±)f = π±π

†
±f =

π±(P± + P∓)π†
±f = π±u±, u± = P±π

†
±f ∈ E2(G±) . Whence, π±E2(G±) =

KerP∓π
†
± ∩Ker τ†± .

4) Let f ∈ Ran q±, g ∈ Ker q∗∓ . Then, by Proposition 2, we have (f, g) =<
π†
±f, π

†
∗∓g >C , where π†

±f ∈ E2(G±), π†
∗∓g ∈ E2(G∗±) . Taking into ac-

count that E2(G±)<⊥> = E2(G∗±) , we get (f, g) = 0 .

Conversely, let g⊥Ran q± . If we take f = π±u±, u± ∈ E2(G±) , then 0 =
(f, g) =< π†

±f, π
†
∗∓g >C=< u±, π

†
∗∓g >C . Whence, π†

∗∓g ∈ E2(G∗±) , i.e.,
g ∈ Ker q∗∓ . Therefore, (Ran q±)⊥ = Ker q∗∓ . Similarly, (Ker q±)⊥ = Ran q∗∓ .

On the other hand, for any linear operator (Ker q±)⊥ = Ran q∗± and (Ran q±)⊥ =
Ker q∗± . Since q∗∓ and q∗± are projections with the same ranges and kernels, we
obtain q∗∓ = q∗± .

5) Let A± = 1/η±C−1
ϕ21

. Then we have π1± = π2±A± and P2−A±P1+ = 0 .
Using the latter observation and the obvious identity q1−q1+ = 0 , we get

q2−(I − q1−) = π2−P2−π
†
2−(I − π1−P1−π

†
1−)

= π2−P2−A−π
†
1−(I − π1−P1−π

†
1−)

= π2−P2−A−(I − P1−)π†
1− = π2−(P2−A−P1+)π†

1− = 0,

(I − q2+)q1+ = (I − π2+P2+π
†
2+)π1+P1+π

†
1+

= (I − π1+A
−1
+ P2+A+π

†
1+)π1+P1+π

†
1+

= π1+(I −A−1
+ P2+A+)P1+π

†
1+

= π1+A
−1
+ (P2−A+P1+)π†

1+ = 0 ,

q2−q1+ = q2−q1−q1+ + q2−(I − q1−)q1+ = 0 + 0 = 0 . �

We set Q+ = q+(I − q−), Q− = q− and D± = RanQ± . Since Q+q+ = q+ , we
have RanQ± = Ran q± . It is easy to check that Q2

± = Q±, Q±Q∓ = 0 . Now we
can define the projection PΘ onto the model subspace KΘ = RanPΘ :

PΘ = I −Q+ −Q− = (1−Q+)(1−Q−) = (1− q+)(1 − q−).

This projection plays a central role in the paper and have the following properties:
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Theorem 5. 1) P 2
Θ = PΘ ; 2) P∗Θ = P ∗

Θ ; 3) P3ΘP2ΘP1Θ = P3ΘP1Θ , where
π3± = π2±Cϕ32η3± , π2± = π1±Cϕ21η2± .

Proof. 1) This follows from the properties of Q± .
2) Using Lemma 4(4), we get

P∗Θ = (1− q∗+)(1− q∗−) = (1 − q∗−)(1− q∗+) = ((1 − q+)(1 − q−))∗ = P ∗
Θ.

3) Using Lemma 4(5), we get

(1− q2−)(1 − q1+)(1 − q1−) = (1− q2− − q1+)(1 − q1−)
= ((1 − q1+)− q2−)(1− q1−) = (1− q1+)(1 − q1−),

(1− q3+)(1 − q3−)(1 − q2+) = (1− q3+)(1 − q3− − q2+)
= (1− q3+)((1− q3−)− q2+) = (1− q3+)(1 − q3−). �

Remark. We can rewrite statement 3) in the form Z31 = Z32Z21 , where Zij =
PiΘ|KjΘ ∈ [KjΘ,KiΘ] . In particular, we have Z−1

21 = Z12 . Note that the model
subspace KΘ varies depending on “change of variable”. In general, K1Θ �= K2Θ .

Remark. In contrast to the case of the unit circle, we have P ∗
Θ �= PΘ, Q+ �= q+ ,

and PΘ = (1− q+)(1− q−) �= (1 − q−)(1− q+) = (1 − q+ − q−) .

Remark. Besides, we have ∀ψ ∈ H∞(G±) : (I − Q±)ψ(U))Q± = 0 . That
means, the subspaces D± are invariant under operators ψ(U) . But, on the other
hand, we have only ∀ψ ∈ H∞(G+) : Q−ψ(U)(I −Q−) = 0 . Thus we have some
asymmetry here as well as in the previous remark.

Remark. Nevertheless, the model subspace KΘ admits the following symmetric
description:

KΘ = { f ∈ H : π†
+f ∈ E2(G−,N), π†

−f ∈ E2(G+,N) } = KerP+π
†
+ ∩KerP−π

†
−.

Indeed, let π†
+f ∈ E2(G−,N), π†

−f ∈ E2(G+,N) . Then we get PΘf = (I −
π+P+π

†
+)(I−π−P−π

†
−)f = (I−π+P+π

†
+)f = f and f ∈ KΘ. Conversely, we have

P+π
†
+PΘ = P+π

†
+(I − π+P+π

†
+)(I − π−P−π

†
−) = P+P−π

†
+(I − π−P−π

†
−) = 0

and P−π
†
−PΘ = P−π

†
−(I − π+P+π

†
+)(I − π−P−π

†
−) = P−π

†
−(I − π−P−π

†
−) =

P−P+π
†
− = 0 .

Example. Let Θ ∈ H∞(G+, [N]), sup
z∈C
||Θ(z)−1|| < ∞ . Then, for the space

H = L2(C,N) and the mappings π+ = I, π− = Θ−1 , we have

KΘ = { f ∈ L2(C,N) : f ∈ E2(G−,N), Θf ∈ E2(G+,N) }
= { f ∈ E2(G−,N) : Θf ∈ E2(G+,N) } = KerP+ ∩KerP−Θ.

Thus we arrive at Yakubovich’s model [4] for the class of C00 operators. In [4]
Yakubovich considers a more general case where the domain G+ is multiply con-
nected and the curve C is less smooth. Note that the most part of presenting
above results can be extended to this case. But, in contrast to [4], we do not
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restrict ourself to the case of C00 operators and allow them to have absolutely
continuous spectrum. Another difference is the presence of the projection PΘ in
our model. This projection enables us to lift various objects (e.g., spectral compo-
nents, commutant, etc.) from the model space KΘ up to the level of the dilation
space H.

Our triples of operators correspond to Yakubovich’s 3-systems. In [4] Yaku-
bovich studies the problem: how to construct a model for a given 3-system. He has
solved this problem, but under the assumption that a characteristic function is
known (more precisely, it must belong to some family of operator-valued functions
corresponding to the transfer function of a 3-system). In the next section we also
study this problem for the case of simple connected domains. We do not assume
that the characteristic function Θ+ is given. But we suppose instead that the
functions χ± are known. Such a statement of the problem justifies in applications
of this result to the study trace class perturbations of normal operators [7].

3. Model for a curve (operators)

First we introduce model operators:

T̂ f = Uf − π+M̂f, M̂f =
1

2πi

∫

C

(π†
+f)(z) dz = (π†

+Uf)(∞),

N̂n = PΘπ−n = (I − π+P+π
†
+)π−n, where f ∈ KΘ, n ∈ N .

Theorem 6. The mapping Φ : ψ �→ PΘψ(U)|KΘ, ψ ∈ H∞(G+) is a homomor-
phism from the algebra H∞(G+) into the algebra [KΘ] . This homomorphism has
the following properties: 1) Φ(1) = I, Φ(z) = T̂ ; 2) ||Φ|| <∞ ;
3) ||ψn|| < K, lim

n→∞ψn(z) = 0 a.e. z ∈ C =⇒ s− lim
n→∞Φ(ψn) = 0 .

Proof. Using notation ψ(T̂ ) = Φ(ψ), we check multiplicativity:

ψ1(T̂ )ψ2(T̂ )f = PΘψ1(U)PΘψ2(U)f = PΘψ1(U)ψ2(U)f
− PΘψ1(U)(I − PΘ)ψ2(U)f = PΘψ1(U)ψ2(U)f
− (I −Q−)(I −Q+)ψ1(U)(Q+ +Q−)ψ2(U)(I −Q−)(I −Q+)f

= PΘ(ψ1ψ2)(U)f = (ψ1ψ2)(T̂ )f, f ∈ KΘ.

Above we have exploited identities (I−Q+)ψ1(U)Q+ = 0 , Q−ψ2(U)(I−Q−) = 0 .
Now we pass to calculation of Φ(z) :

Φ(z)f = PΘUf = (I − π+P+π
†
+)(I − π−P−π

†
−)Uf

= (I − π+P+π
†
+)(Uf − π−P−zπ

†
−f) = (I − π+P+π

†
+)Uf

= Uf − π+(zπ†
+f)(∞) = T̂ f, f ∈ KΘ.

Properties 2) and 3) follow from the corresponding properties of the functional
calculus for normal operators. �
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The following assertion answers how the model operators depend on “change of
variable”.

Proposition 7. Let π2± = π1±Cϕη± , ϕ ∈ CM(G1+, G2+), η±, 1/η± ∈ H∞(G2+) .
Then

1) T̂2 = Zϕ(T̂1)Z−1 ; 2) M̂2 = M̂1χ+(T̂1)Z−1 ; 3) N̂2 = Zχ−(T̂1)N̂1 ,

where Z = P2Θ|K1Θ, χ+ =
√
ϕ′/(η+ ◦ ϕ), χ− =

√
ϕ′ (η− ◦ ϕ) .

Proof. First we note that Z−1 = P1Θ|K2Θ . We shall also use the identities
P2ΘQ1+ = 0, Q2−P1Θ = 0 , which follow easily from Lemma 4(5).
1) By Theorem 6 and Proposition 3, we have

T̂2ZP1Θ − Zϕ(T̂1)P1Θ = P2Θ(U2P2Θ − P1Θϕ(U1))P1Θ =
P2Θ(ϕ(U1)(I −Q2+ −Q2−)− (I −Q1+ −Q1−)ϕ(U1))P1Θ =
P2Θ((Q1+ +Q1−)ϕ(U1)− ϕ(U1)(Q2+ +Q2−))P1Θ.

Since (I −Q2+)U2Q2+ = 0 , Q1−ϕ(U1)(I −Q1−) = 0 , we get

T̂2ZP1Θ − Zϕ(T̂1)P1Θ = P2Θ(Q1+ϕ(U1)− ϕ(U1)Q2−)P1Θ.

Finally, using above mentioned identities we obtain T̂2Z − Zϕ(T̂1) = 0 .
2) Let f ∈ K2Θ . Then

M̂2f =
1

2πi

∫

C2

(π†
2+f)(z2) dz2 =

1
2πi

∫

C2

1
η+(z2)

(π†
1+f)(ϕ−1(z2))

√
ϕ−1(z2)′ dz2

=
1

2πi

∫

C1

√
ϕ′(z1)

η+(ϕ(z1))
(π†

1+f)(z1) dz1 =
1

2πi

∫

C1

χ+(z1)(π
†
1+f)(z1) dz1

=
1

2πi

∫

C1

(π†
1+χ+(U1)f)(z1) dz1 =

1
2πi

∫

C1

(π†
1+P1Θχ+(U1)P1Θf)(z1) dz1

+
1

2πi

∫

C1

(π†
1+((I − P1Θ)χ+(U1)P1Θf + χ+(U1)(I − P1Θ)f))(z1) dz1.

Taking into account that Q1−χ+(U1)(I−Q1−) = 0 and P1Θ = (I−Q1−)(I−Q1+) ,
we get

(I − P1Θ)χ+(U1)P1Θ = (Q1+ +Q1−)χ+(U1)P1Θ = Q1+χ+(U1)P1Θ .

Whence, by the Cauchy theorem,∫

C1

(π†
1+(I − P1Θ)χ+(U1)P1Θf)(z1) dz1 = 0 .

Next, since Q2−P1Θ = 0 and (I −Q1+)χ+(U1)Q1+ = 0 , we get

χ+(U1)(I − P1Θ)f = χ+(U1)(Q1+ +Q1−)P2Θf
= χ+(U1)Q1+P2Θf = Q1+χ+(U1)Q1+P2Θf .
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Then, again by the Cauchy theorem, we have∫

C1

(π†
1+χ+(U1)(I − P1Θ)f)(z1) dz1 = 0 .

Therefore,

M̂2f =
1

2πi

∫

C1

(π†
1+P1Θχ+(U1)P1Θf)(z1) dz1 = M̂1χ+(T̂1)Z−1f .

3) Let n ∈ N . Then

N̂2n = P2Θπ2−n = P2Θπ1−χ−(z1)n = P2Θχ−(U1)π1−n
= P2Θ(P1Θχ−(U1)P1Θ + P1Θχ−(U1)(I − P1Θ) + (I − P1Θ)χ−(U1))π1−n .

Taking into account that (I −Q1+)χ−(U1)Q1+ = 0 , we get

P1Θχ−(U1)(I − P1Θ) = (I −Q1−)(I −Q1+)χ−(U1)(Q1+ +Q1−)
= P1Θχ−(U1)Q1−.

Since Q1−π1−n = 0 , we get P1Θχ−(U1)(I − P1Θ)π1−n = 0 .
Further, since P2ΘQ1+ = 0 and Q1−χ−(U1)(I −Q1−) = 0 , we obtain

P2Θ(I − P1Θ)χ−(U1) = P2Θ(Q1+ +Q1−)χ−(U1)
= P2ΘQ1−χ−(U1) = P2ΘQ1−χ−(U1)Q1− .

Again, since Q1−π1−n = 0 , we get P2Θ(I − P1Θ)χ−(U1)π1−n = 0 . Therefore,

N̂2n = P2ΘP1Θχ−(U1)P1Θπ1−n = Zχ−(T̂1)N̂1n . �

Applying this proposition for “change of variable” π± = π0±Cϕψ± , we get that
the triple (T̂ , M̂ , N̂) is a linearly similar model for a triple (T, M, N) of the
form (∗). So, we have proved the following

Theorem 8. For any pair Π = (π+, π−) satisfying conditions (i), (ii), (iii) there
exist an operator W ∈ [H,KΘ] and a triple (T, M, N) of the form (∗) such that
W−1 ∈ [KΘ, H ] and T̂W = WT, M̂W = M, N̂ = WN .

Inverse is also true.

Theorem 9. Let (T,M,N) be a triple of operators of the form (∗). Then there
exist pair Π = (π+, π−) satisfying conditions (i), (ii), (iii) and operators W,W∗ ∈
[H,H] such that WW ∗

∗ = PΘ, W
∗
∗W = I and T̂W = WT, M̂W = M, N̂ = WN ;

T̂∗W∗ = W∗T ∗, M̂∗W∗ = N∗, N̂∗ = W∗M∗.

Remark. Here the triple (T̂∗, M̂∗, N̂∗) corresponds to the dual pair Π∗ = (π∗+, π∗−).
Note that the following identities hold

(T̂ f, g) = (f, T̂∗g) , (M̂f, n) = (f, N̂∗n) , (N̂n, g) = (n, M̂∗g) ,

where f ∈ KΘ, g ∈ K∗Θ, n ∈ N .
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Proof. Since (T, M, N) is a triple of the form (∗), there exists a simple unitary
node A0 such that (T,M,N) = (ϕ(T0), M0χ+(T0), χ−(T0)N0) . For A0 , there
exists (see Section 1) a pair Π0 = (π0+, π0−) such that the node Â0 is unitarly
equivalent to the node A0 . Let W0 be a unitary operator that realizes this equiv-
alence. We take “change of variable” π± = π0±Cϕψ± and π∗± = π∗0±Cϕ∼1/ψ∼

∓ .
Applying Proposition 7, we have

(T̂ , M̂ , N̂) = (Zϕ(T̂0)Z−1, M̂0χ+(T̂0)Z−1, Zχ−(T̂0)N̂0),

(T̂∗, M̂∗, N̂∗) = (Z∗ϕ∼(T̂∗0)Z−1
∗ , M̂∗0χ∼

−(T̂∗0)Z−1
∗ , Z∗χ∼

+(T̂∗0)N̂∗0),

where Z = PΘ|K0, Z∗ = P ∗
Θ|K0 , and K0 is the model subspace for Π0 . Using

relations from Section 1, we get

(T̂∗, M̂∗, N̂∗) = (Z∗ϕ(T̂0)∗Z−1∗ , N̂∗
0χ−(T̂0)∗Z−1∗ , Z∗χ+(T̂0)∗M̂∗

0 ).

Let W = PΘVW0, W∗ = P ∗
ΘVW0, where V ∈ [K0,H] is embedding: V f =

f, f ∈ K0 . Then it is easy to check that T̂W = WT, M̂W = M, N̂ = WN ;
T̂∗W∗ = W∗T ∗, M̂∗W∗ = N∗, N̂∗ = W∗M∗. Next, we have W ∗

∗ = W ∗
0 V

∗PΘ .
Whence, using Theorem 5(3), we get

W ∗
∗W = W ∗

0 V
∗P0PΘP0VW0 = W ∗

0 V
∗P0VW0 = W ∗

0 V
∗VW0 = I,

WW ∗
∗ = PΘVW0W

∗
0 V

∗PΘ = PΘV V
∗PΘ = PΘP0PΘ = PΘ. �

Remark. The relation W ∗
∗W = I can be rewritten in the form (W∗f,Wg) =

(f, g) . Thus here we have the same type of the duality as in [4, 14].

Remark. One can also consider the transfer function Υ(z) = M(T − z)−1N . It
is interesting to note that the transfer function Υ(z) uniquely determines the pure
part of the characteristic function Θ+(z) provided the functions χ± are known.
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[1] Szökefalvi-Nagy B., Foiaş C., Harmonic analysis of operators on Hilbert space. North-
Holland, Amsterdam-London, 1970.

[2] Brodskiy M.S., Unitary operator nodes and their characteristic functions, Uspehi
mat. nauk 33 (1978), no. 4, 141–168.

[3] Abrahamse M.B., Douglas R.G., Operators on multiply-connected domains. Proc.
Royal Irish Acad., 74 A (1974), 135–141.

[4] Yakubovich D.V. Linearly similar model of Sz.-Nagy – Foias type in a domain.
Algebra i Analiz, 15 (2003), no.2, 180–227.

[5] Naboko S.N., Functional model for perturbation theory and its applications to scat-
tering theory. Trudy Mat. Inst. Steklov 147 (1980), 86–114.

[6] Makarov N.G., Vasyunin V.I., A model for noncontraction and stability of the con-
tinuous spectrum. Lect. Notes in Math., 864 (1981), 365–412.

[7] Tikhonov A.S., Functional model and duality of spectral components for operators
with continuous spectrum on a curve. Algebra i Analiz, 14 (2002), no.4, 158–195.



Free Functional Model for Domains 231

[8] Duren P.L., Theory of Hp spaces, Pure Appl. Math., vol. 38, Academic Press, New
York–London, 1970.

[9] Pommerenke C., Univalent functions. Vandenhoek and Ruprecht, Göttingen, 1975.

[10] Nikolski N.K., Vasyunin V.I., Elements of spectral theory in terms of the free func-
tional model. Part I: Basic constructions, Holomorphic spaces (eds. Sh. Axler, J. Mc-
Carthy, D. Sarason), MSRI Publications 33 (1998), 211–302.

[11] Adamyan V.M., Arov D.Z., Unitary couplings of semi-unitary operators. Mat. Issled.,
1 (1966), no.2, 3–64.

[12] Garnett J.B., Bounded analytic functions, Pure Appl. Math., vol. 96, Academic
Press, New York-London, 1981.

[13] Shirokov N.A., Properties of modulus for analytic functions smooth up to the bound-
ary. Dokl. Akad. Nauk SSSR, 269 (1966), no.6, 1320–1323.

[14] Yakubovich D. V., Dual piecewise analytic bundle shift models of linear operators.
J. Func. Anal., 136 (1996), no.2, 294–330.

Alexey Tikhonov
Mathematical analysis division
Taurida National University
Yaltinskaya str., 4
Simferopol 95007 Crimea
Ukraine
e-mail: tikhonov@club.cris.net





Operator Theory:
Advances and Applications, Vol. 154, 233–238
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Jacobi Block Matrices with
Constant Matrix Terms

Marcin J. Zygmunt

Abstract. We investigate a solution of the difference equation

tUA,B
n (t) = AUA,B

n+1 (t) + BUA,B
n (t) + AUA,B

n−1(t)

with the boundary conditions UA,B
0 = I , UA,B

−1 = 0, where A, B are hermit-

ian matrices. UA,B
n are usually called matrix Chebyshev polynomials of the

second kind. The above equation cannot be easily simplified as in scalar case
because A and B do not need to commute. However we are able to compute
spectrum of the corresponding orthogonality measure which is very important
to investigate discrete Schrödinger operator related to UA,B

n .

Mathematics Subject Classification (2000). Primary: 47B36 secondary: 39A70,
39B42.

Keywords. Chebyshev polynomials, discrete Schrödinger operator, Jacobi
block-matrices, matrix orthogonal polynomials.

Let C
N×N denote a space of all quadratic N×N matrices. We will write A ≥ 0

(or A > 0 respectively) if A is a positive definite (or strictly positive respectively)
Hermitian matrix. In the following the inequality A ≥ B (or A > B respectively)
will be equivalent to A−B ≥ 0 (or A−B > 0 respectively) for A,B ∈ C

N×N .
Denote by �2(CN×N) a space of sequences X = (X0, X1, . . . ) of matrices from

C
N×N , for which the series

∞∑
n=0

Xn
∗Xn converges.

We introduce an “N×N -matrix” product on �2(CN×N ):

〈〈X |Y 〉〉�2 =
∞∑
n=0

Yn
∗Xn ∈ C

N×N .

We have 〈〈X |X〉〉�2 ≥ 0 in the sense stating before. Then a system

En = (0, . . . , 0, I, 0, . . . ),

The author was supported by KBN’s grant 2P03A00723 and RTN network: HPRN-CT-2002-
00279.
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where I denotes the identity of C
N×N , appears only in the nth position, forms an

“orthonormal” basis of �2(CN×N).
In a similar way we can define an L2-space of square integrable matrix-valued

functions. Let Σ be a positive matrix-valued Borel measure, i.e., Σ(∆) is positive
definite (Σ(∆) ≥ 0) for all Borel subsets ∆ ⊂ R. For matrix-valued functions F (x)
and G(x) we define an “N×N -matrix” product

〈〈F |G〉〉Σ =
∫

R

F (x)dΣ(x)G(x)∗ ∈ C
N×N .

Now the space L2(Σ) consists of all matrix-valued functions F (x) for which
〈〈F |F 〉〉Σ is convergent. More details can be found in [AN], [B], [D1-3], [DV]
and [Z2].

Let A,B ∈ �2(CN×N ) be Hermitian matrices and let JA,B be an operator on
�2(CN×N) acting as follows:

(JA,BX)0 = BX0 +AX1, (JA,BX)n = AXn−1 +BXn +AXn+1 .

Hence JA,B = BI + A(S + S∗), where S denotes the “shift” on �2(CN×N) and I
– the identity operator. With JA,B there are associated matrix-valued Chebyshev
polynomials of the second kind UA,Bn (x), i.e., polynomials satisfying the recurrence
formula

xUA,Bn (x) = AUA,Bn+1 (x) +BUA,Bn (x) +AUA,Bn−1(x) .

Denote by Mn the n-th moment of WA,B

Mn =
∫

R

xndWA,B(x) = 〈〈xnI|I〉〉WA,B .

Theorem 1. Let WA,B be an matrix-valued measure which orthogonalizes polyno-
mials UA,Bn , i.e.,

〈〈
UA,Bn |UA,Bm

〉〉
WA,B =

∫

R

UA,Bn (x)dWA,B(x)UA,Bm (x)
∗

= δn,mI .

Then the moments Mn of the measure WA,B are equal to

Mn =
1
2π

2∫

−2

√
4− x2(At+B)ndt

Moreover
suppWA,B =

⋃
t∈[−2,2]

σ(At+B) .

Proof. We have
〈〈xnI|I〉〉WA,B = 〈〈(JA,B)nE0|E0〉〉�2 .
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Let

(B +Ax)n =
n∑
k=0

Ck,nx
n .

Then
〈〈(JA,B)nE0|E0〉〉�2 = 〈〈(BI +A(S + S∗))nE0|E0〉〉�2

=
n∑
k=0

Ck,n
〈〈

(S + S∗)kE0|E0

〉〉
�2
.

On the other hand SEn = En+1, hence the behavior of S is the same as of the
shift operator S on �2(N). Hence 〈〈En|E0〉〉�2 = δn,0I = 〈en|e0〉I, where {en}n∈N

so
〈〈(S + S∗)nE0|E0〉〉�2 = 〈(S + S∗)ne0|e0〉I .

The operator S+S∗ is a well-known discrete Schrödinger operator (related to
the classical Chebyshev polynomials of the second kind), which spectrum is equal
to [−2, 2] and its spectral measure w is equal to dw(x) = 1

2π

√
4− x2 dx. Hence

〈(S + S∗)ne0|e0〉 =
2∫

−2

xnw(x)dx .

Thus

Mn =
2∫

−2

w(t)
n∑
k=0

Ck,nt
n dt

=
2∫

−2

w(t)(At +B)ndt

which proves the first part of the theorem.
To prove the second part note that we have the equality

∫

R

p(x)dWA,B(x) =

2∫

−2

w(t)p(At +B)dt (1)

for every polynomial p ∈ C[x]. Let now ∆ =
⋃

t∈[−2,2]

σ(At + B). ∆ is a compact

subset of the real line R. By polynomial approximation we have

∫

R

f(x)dWA,B(x) =

2∫

−2

w(t)f(At +B)dt (2)

for every continuous function f ∈ C(∆). Now it is not to hard to see that the
support of WA,B is equal to ∆. �

Corollary 1.1. The support of the measure WA,B is equal to

supp WA,B =
⋃

t∈[−2,2]

σ(At +B) .
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Moreover if the matrix A has non-zero determinant (i.e., it is invertible), the mea-
sure WA,B is absolutely continuous with respect to the Lebesgue measure multiplied
by the identity matrix I.

Corollary 1.2. The spectrum of JA,B is equal to σ (JA,B) = supp WA,B and con-
sists of at most N non-degenerate intervals of the real line R.

Proof. By Theorem 2.4, Ch. VII, [Ber], the spectrum of the operator JA,B is equal
to the support of the measure WA,B. The second statement of the corollary holds
because of the continuity of spectrum. �
Theorem 2. Let U(t)Λ(t)U(t)∗, where U(t) is unitary and Λ(t) diagonal matrix,
be the spectral decomposition of At+B. Then

WA,B(E) =

2∫

−2

w(t)U(t)χE (Λ(t))U(t)∗dt

for every Borel subset E ⊂ R.

Proof. Let
At+B = U(t)Λ(t)U(t)∗ . (3)

Putting (3) into (1) gives
∫

R

p(x)dWA,B(x) =

2∫

−2

w(t)p(U(t)Λ(t)U(t)∗)dt =

2∫

−2

w(t)U(t)p(Λ(t))U(t)∗dt

for every polynomial p ∈ C[x]. Now by approximation of the characteristic func-
tions of given Borel subset E ⊂ R we get the thesis. �
Example 3. This example shows that the assumption on hermitianity of A cannot
be omitted if we want to save the absolutely continuity of the orthogonalizing
measure.

Let us consider the polynomials Pn(x) which satisfy the recurrence formula:

tPk(t) = APk+1(t) +A∗Pk−1(t),

where

A =
(

0 b
a 0

)
,

and a > b > 0. Let

V = V ∗ =
(

0 1
1 0

)
.

Define now P̃k(t) = V kPk(t). Polynomials P̃k are still orthonormal with respect to
the same matrix-valued measure as polynomials Pk, moreover P̃0 = id, P̃−1 = 0. It
can be easily verified that polynomials P̃k satisfy the following recurrence formula:

tP2k(t) = A1P2k+1(t) +A2P2k−1(t)

tP2k+1(t) = A2P2k+2(t) +A1P2k(t)
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where

A1 = V 2kAV 2k+1 =
(
a 0
0 b

)
, A2 = V 2kAV 2k−1 =

(
b 0
0 a

)
.

Hence

P̃k =
(
pk 0
0 qk

)

where polynomials pk, qk satisfy

tp2k(t) = bp2k+1(t) + ap2k−1(t), tp2k+1(t) = ap2k+2(t) + bp2k(t),

tq2k(t) = aq2k+1(t) + bq2k−1(t), tq2k+1(t) = bq2k+2(t) + aq2k(t).
Thus, the orthogonality measure for polynomials P̃k (and so for Pk) is diago-
nal, where entries on the diagonal are scalar measures µp and µq orthogonaliz-
ing polynomials pk and qk respectively. It was shown in [Ch] that in the case
a > b the support of the measures µp and µq consists of the union of the intervals
[−(a+ b),−(a− b)] ∪ [a− b; a+ b], where both measures are absolutely continu-
ous. Moreover, µp has a non-zero atom at 0 with the weight 1− b2/a2. This shows
that the matrix-valued measure orthogonalizing polynomials Pk has a non-zero
atom at 0, with the weight equal to

(
1−
(
b
a

)2
0

0 0

)
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