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Abstract

We present an introduction into the theory of quantum graphs and prove the
corresponding trace formula. It is proven that two non-isometric graphs can be
isospectral. The distribution connected with the spectrum is computed for four
quantum graphs and it is demonstrated how the Euler characteristic of a graph
can be calculated from the spectrum. The limiting procedure when the length of
an edge tends to zero is considered and it is shown that a single vertex can replace
two vertices connected by a disappearing edge. The same procedure applied to
direct spectral problems is considered.
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1 Introduction

Quantum Graphs have been introduced to model the electron probability density
distribution of a free m-electron in conjugated molecules such as naphthalene
Ch19Hg and benzene CgHg. The model was first suggested by Ruedenberg and
Scherr in 1953 [20] as an alternative to the, at that time prevailing LCAO[
model for molecular orbitals. The model has been thoroughly studied since
then but there are still open questions. Mathematically, a Quantum Graph
consists of a geometric graph with a differential operator on the edges and
certain boundary conditions at the vertices that guarantee the self-adjointness
of the operator. The geometric graph consists of edges, considered as intervals
of the real axis that are joined together at the vertices. The operator is usually
the Schrodinger operator and that is where the name ’Quantum Graphs’ comes
from. Quantum graph problems are closely related to problems in other research
areas, for example averaging in dynamical systems, light propagation in thin
structures, antennas and more. A survey of various applications can be found
in [g].

A natural problem for Quantum Graphs is to determine the spectrum of
the operator, since the physical interpretation of this quantity is energy of an
electron in the structure. Such problems will be called direct problems. The
corresponding inverse problem is to recover the Quantum graph or some of its
properties, from the spectrum of the operator. The inverse problem does in
general not have a unique solution, which is clear from [5], and in the content of
scattering in [12]. Other articles related to the inverse problem are for example
I, (10, (LT, [14].

An overview of the theoretical results that are needed to understand our
arguments will be presented along the text. The reader might want to use
[1] for the theory of operators in Hilbert spaces, [2] [I8] for spectral theory of
operators and [21] for complex analysis.

1.1 Quantum Graphs as a model in quantum chemistry

Quantum graphs describe free electrons within thin structures. This section will
show how to do that and is based on the article that Ruedenberg and Scherr
[20] presented in 19527,

Figure 1: The molecular structure of Naphthalene.

LLCAO stands for linear combination of atomic orbits.
2This is the first article in a series of three [6] [L7].



Consider an organic molecule with conjugated bonds; say for example the
Naphthalene molecule C1gHg shown in figure [[I A mw-electron is not strongly
bounded to any specific atom and is free to move along the molecule structure or
Molecular skeleton. The full Hamiltonian for such a system is rather complicated
as the potential involves all nucleus and electrons. Under the assumption that
only the studied electron move the time independent part is:

H(r) = -5+ St = )] (o), 1)

where m is the electron mass and v; are the potentials from the nearby electrons
and protons. Even this simplified Hamiltonian is complicated enough to moti-
vate the search for a simpler model and that is what Ruedenberg and Scherr
did.

The main simplification in their article is to disregard all directions but the
one along the molecular skeleton. This was well motivated since the energies of
the states that is associated to the other directions are extremely large. Consider
the cuboid in figure 2l The eigenvalues will be

g = |(7)+ (2 4 ()] ®

where m, n and p are non-negative integers. It is clear that A associated to

n, p # 0 when € is small can be neglected. This assures that —A can be replaced
2

by —-L in ().
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Figure 2: The potential along a molecular skeleton has roughly the form of a
cuboid.

A point where two or more edges of the skeleton join together is called a
branching point. The number edges that end in a branching point is called the
valency or degree of the branching point. To define —j—; on the graph as a
self-adjoint operator we need to introduce boundary conditions on all branching
points. Ruedenberg and Scherr assumed that the functions from the domain of
the operator have to be continuous, and argued that a conservation condition
must be satisfied at each branching point. The conservation condition is that
the sum of the normal derivatives just outside the branching point is zero for

any function in the domain of the operator.

2 Mathematical Theory

This section will give an overview of the most important mathematical concepts
used in connection with quantum graphs.



2.1 Operators in Hilbert Spaces

Since we would like to use the framework of quantum mechanics, only self-
adjoint operators in a Hilbert space 57, will be considered. The corresponding
scalar product will be denoted by (-,-). The operators that will be used are
generally not bounded. The domain of an operator T, will be denoted by D(T)
and the range by R(T'). A linear operator A is called self-adjoint if and only if

1. A is symmetric, i.e (f, Ag) = (Af,g) for all f,g € D(A).
2. R(A — AXI) = 4 for any non-real A € C\ R.

In the case of a bounded operator it is easier to use the following definition: A
linear bounded operator, A, is self-adjoint if (f, Ag) = (Af,g) for all f,g € .
Such operators are also called Hermitian.

An operator T is an extension of an operator S (or S C T) if D(S) C D(T)
and Tf = Sf for each f € D(S). On the other hand, an operator, T, can be
restricted, to Ty (Ty C T) if , D(Th) C D(T') and Ty f = T'f for any f € D(Ty).

2.2 Metric graphs

A metric graph I is an ordered pair (V, E) where E = {E1, Es, ..., En}, is a set of
edges and V = {V1,Va, ..., Vs } is a set of vertices. Every edge E,, is associated
with an interval A, = [zan_1,22,] C R with the length d,, = |zan — x2n_1].
Each vertex is an equivalence class in the set of all endpoints, {x,}Y_,. Points
from the same equivalence class are identical.
The Euler Characteristic of a graph with N edges and M vertices is defined
as
x(T) = M —N. 3)

A graph is a tree if x = 1. The relation V; ~ V; denotes that there exists an
edge E, connecting V; and V;. Information on how vertices are connected to

each other in a graph can be represented by a vertex connectivity matriz C, of
dimension MxM, which is defined by

Cf{ 0, otheruise 4

0, otherwise.

A compact graph is a graph that consists of a finite number of compact intervals.
By a connected graph we mean a graph where any two vertices may be joined
by a continuous path. All graphs that will be considered in this paper are
connected. The volume ot the total lenght £ of a metric graph is the sum of
the lengths of the edges that it is formed of. The distance between two points
in a connected graph is the length of the shortest path between them. The
diameter of a graph is the largest distance between two points in the graph. A
graph is decorated if it has at least one node with valency 2. To add a node
on an edge is called decoration. Observe that decoration does not change the
graph as a metric space.

2.3 The Schrodinger Equation

Eigenfunctions to the Schrédinger operator H, describe probability densities for
electrons. The corresponding eigenvalues are just the energies of the states.



H:@i(—dd—;—kq(x)), (5)
k=1

where ¢(z) is a real valued potential on the graph. As a first step, we may
neglect the potential ¢ and consider the Laplace operator

N 22
L=e) (-a2) ©®)
In what follows we are going to discuss this differential operator on the Hilbert
space J¢:
A = LAT) =N LA(A,) = O, L[z 1, x94], (7)

where L? denotes the space of square integrable functions.

2.4 Boundary conditions and eigenvalues.

With our new notation, we formulate the natural boundary conditions, the ones
that Ruedenberg and Scherr found, as:

{ f(xy) = flor), 5,7 € Vin,
Zggjevm 8nf(xj) =0,

Where 0,, are normal derivatives, which we define as

m=12,...M. (8)

N f'(x;), if x; is the left endpoint;
Onf(;) = { —f'(z;), if z; is the right end point. 9)

Let us denote by L(T") the Laplace operator (B)) defined on the set of functions
from the Sobolev space W3 (T \ V) satisfying boundary conditions (8). Observe
that such operator is uniquely defined by the geometric graph I'. In quantum
mechanics it is only possible to measure eigenvalues of operators, and this is
meaningful only if the operators have real eigenvalues. Symmetric operators, T',
have this property. If ¢ € D(T), then the symmetric property (T'¢, ¢) = (¢, Tp)

assures this since:
(Te,0) = Ao, 9), (10)
(@, Te) = A, @)
Thus A = ), and hence Im(\) = 0. Our operator L(T) is symmetric when the
standard boundary conditions are imposed. Take ¢, ¢ € D(L) then:

N -
(Lo0) =3 /. ¢ @it (1)
Performing partial integration twice yields:
N N
= ;[w(x)m]iiz_l - ;[so’(w)@]iéz_l + (¢, Lg). (12)

()



The term (%) is a sum over all edges, we write it as a sum over all vertices:
M _
()= > Ouplz;)d (@) (13)
m=1lz;EV,,

The boundary conditions give that ¢(z;) = ¢(zx) for all x;,z; € V,,,, so for any
x; € V,,, we further have

M
()= (@) D 0.d(z)) | =0, (14)
m=1 z; €V,

by virtue of the standard boundary conditions (), the other sum in (I2) can
be proved to be zero in the same way. The operator L(T) is also self-adjoint,
we refer to [15] for a proof.

2.5 The Trace Formula

The Trace formula relates the geometry of a graph to the spectrum of the
corresponding Laplacian and has proved to be very fruitful. It was first derived
by J.-P. Roth [19] using the heat kernel approach. This section is, however, based
on a paper by M. Nowaczyk and P. Kurasov [11] in which another approach is
used. The idea of the proof is to first solve the direct problem or to determine
the eigenvalues to an arbitrary compact quantum graph. The notation from the
previous section is used. A function, ¢ is an eigenfunction of L(I") if and only if

L)y = A, (15)
or expanded
—¢" = \p, on every edge (16)
and satisfy
{ w(xiz)f%%ﬁ% anvm, m=1,.., M. (17)

The differential equation (6] can easily be calculated and the solution on each
edge is , 4
on = Ae™® 4 Be~ ke, (18)

where k = v/A. Two other representations of (I8) are useful. One as incoming
waves and one as outgoing waves, see Figure Bl To get the basis of incoming
waves, set

A= (ng,le_ikxzj_l, B = (ngeikxgj, (19)
then

on = azjileik(wfng,l) + a2jeik(x2jfx) (20)
SO

On = a2j_1eik’|$—$2j_1| + a2jeik|x—x2j . (21)

In the basis of outgoing waves, the function is:

On = b2jefik\x7w2j| + b2j7167ik|a:79:2j,1 ) (22)

10



(a) (> T (c)
2k-1 2k 2k-1 by
A - — — — —
—_e B

Figure 3: Three different bases describe the eigenfunctions on an edge.

The relation between the coefficients in the two representations on an edges,
E,, of length d,, is:

bon—1 \ _ 0 ethdn a2j—1
()= (i S ) () (23)

S
To express this for all edges on T, let
a by
ag b2
a= , b= , (24)
an by,
and then
sto0
b= 0 S a. (25)
SE

The matrix Sg has the dimension 2Nx2N, is block-diagonal and invertible.
The standard boundary conditions (&) give another condition between the
amplitudes.

Consider an arbitrary vertex, V,,, like the
one shown in figure M with valency v,,. Let
there be an outgoing wave, a,e’*(*=%2r-1) on
each edge E, but only one incoming wave,
e~ #(@=21) on edge F,. The symmetries in
the problem suggests that all outgoing waves
on the edges F1, Eo, ..., E,  are equal since
no consideration to ordering or angle between
edges et cetera is taken. We make the follow-
ing Ansatz:

ai r t b
as t r 0
=1 . : (26)
Ay, t T 0
—— N——

11



and for simplicity, we set b = 1. The standard boundary conditions give the
following relation:
{ l+r=t (27)

(v —Dt+r—1=0.
This yields

{ t=2/vm, (28)

r=(2—vn)/vn.
Let a™ denote the vector of the amplitudes of the incoming waves and b™ the
corresponding vector of the outgoing waves. If we let S]* be the matrix that
describes the relation between these; then
an=spur, st { G, T 29
where 1 < j, k < v.
Let Sy be a matrix that holds all S]*, m =1, ..., M in the following way:

1 1
a sl oo ... b2
a v g2 b
= 0 5 . (30)
a}w : - ’ : b-IM
Sv

Theorem I: Sy is unitary.

Proof: A matrix, A, is unitary if A* = A~'. This condition transforms
to Sy = 5;1 since the matrix is both real and symmetric. We will therefore
verify that the equality Sy Sy = I holds. Sy is defined by it’s diagonal blocks
S 82 ..., SM o it is enough to verify that (S¥)2 =1 for 1 <k < M. Let S, ;

be the row (or column) 4 in any S,. From (28) follows that

4 o (v—Dt2 412 =1, i=j,
< Sy Sog >= { (v=2)t2+2rt =0, i+#j. (8
Thus S,S, = and S;;' = S5,. O
From (28) and (B0) follows that
a= Ssta (32)

is satisfied for every vector a that represents an eigenfuction to L(F)ﬁ. We define
the total scattering matrix, S(k), as

S(k) = Sy Sx (k). (33)

Non-trivial solutions to (82), i.e. eigenvectors a with eigenvalues 1 to S(k) can
be found, only for such k:s that

f(k) =det(S(k)—1I)=0. (34)

3Observe that Sg and Sy are, in general, block diagonal in different bases.

12



Denote the spectral multiplicity of an eigenvalue A to L(T'), by ms, and let
mg denote the algebraic multiplicity i.e. the dimension of the linear space of
solutions to (34). M. Nowaczyk and P. Kurasov [11] has shown that E = 0 has
spectral multiplicity 1 and algebraic multiplicity N — M + 2. The algebraic and
spectral multiplicities are equal for other eigenvalues.

Let u be a distribution that contain information about the spectrum in the
following way:

u=28(k) + i (6(k — k) + 6(k + k), (35)

where k,, are the zeros to ([34), i.e. k2 are eigenvalues of L(I'). Since k,, are the
zeros of det(S(k) — I), the integral

e
omi I 7o)

that equals the sum of the orders of the zeros to the function f(z) within the
contour of the integral, can be used to construct ([B3). The value of the distri-
bution can then be calculated for any test function ¢ € C§°, as
1 [ [ f(k—ie) f’(k+ie))
- k)dk — (N — M)p(0) (37

T = B == JCC SIS EUNCY
where the term —(N — M)(0) corrects that ko = 0 has algebraic multiplicity
N — M + 1. We use a few identities, for example In(f) = f’/f ; Liouvilles
theorem: 4 (log|det A|) = Tr(£A~1); geometric sum expansions and, the
matrix

(36)

— 00

d 0 0 O
0 d 0 0
D=| 90 0 d 0 | (38)
0O 0 0
which is introduced from the relation
d d .
Finally, we get:
1
u o= =T [(..+ S5 (k) +I+S(k)+..)iD] — (N — M)é(k) (40)
_ 1 Ay
= 55T KS-ZOOS )m] (N — M)§(k). (41)

We will now show that (@I can be calculated using the set of all periodic orbits
on the graph. Let:

e p be a periodic orbit i.e. an oriented and closed path on the graph.

e prim(p) be the primitive periodic orbit of p, i.e. the periodic orbit without
any repetitions such that p = ¢ - prim(p) where g € A4\ {0}. We call ¢
the degree of p.

13



I(p) be the geometric length of a periodic orbit.
T'(p) be the set of all scattering coefficients along the orbit p.
P be the set of all periodic orbits for a graph, T'.

P be a subset of P, consisting of all periodic orbits of discrete length n,
that start in a certain vertex and goes into the interval A[ mi1), where the

subscript [z] denotes the integer part of .

The first term from (@I)) is when

s =0, then

1 1
5o TliD) = 5= > dy = (42)

When s > 0, let e be an orthonormal basis for the incoming waves. e =
{e1 =[1,0,..]7,ea = [0,1,0,...]T,...exy = [0, ...,0,1]7} then

2N
1
%Tr(S%D) = 5 Y < 8°Dey,e, > (43)
1 2N
= Zd[n+1 (SySE)%en, en >, (45)

where < -,- > is the vector scalar product. Define L; as the space of am-
plitudes of incoming waves and L, as the space of amplitudes of outgoing
waves. Then

SE : Li — Lo,
{ Sy,: L, — L, (46)
and thus
SDSE : Li — Li. (47)

The vector e, has only one non-zero component at index n. Then the
vector Sge,, has a non-zero component at index n + (—1)"*1. The vector
Sy Sgen has non-zero components at the endpoints equivalent to z,, { (_qyn+1,
say at the points x;, , ;,, ..., i, . Then the vector SgSy Sge, has non-zero
components at indexes iy + (—1)H1 iy + (=1)2HL i, + (=1)% T We
see that < SZ%e,,e, > is different from zero only if there exist a closed
path of discrete length 2 that starts at e,, and ends at e, . Take all powers
of S and we finally get:

oo 2N
2—Tr (S%iD) sz["“] Z H ol eRUP) - (48)
s=1n=1 peEPS a;{?eT(p)

For a periodic orbit, p of degree g and with discrete length of the primitive
orbit ¢ then p will occur ¢ times in the right sum. Once for each e, that
is a part of p and thus

14



2—Tr (S%iD) Zl prim(p H o etklp), (49)
peP o €T (p)

e k < 0 For the negative powers, Sj;=S,,", since Sy is unitary according to
Theorem () and Sy = S;l. Sg" is almost equal S%, with the difference
that the exponents have opposite signs. So, the terms with negative k
sums up to:

Zl(prim(p)) H ol e ikP), (50)

peEP o €T (p)

Proposition I:  (Theorem 1 from [11] ) Let H(I") be the Laplace operator on a
finite connected metric graph T', then the following two trace formulae establish
the relation between the spectrum {k?} of H(T') and the set of periodic orbits P,
the number of edges N, the number of vertices, M and the total length £ :

u )+ ) (6( )+ 0(k + k) (51)
n=1
<z 1 , ,
—(N = M)3(k) + =+ 5= 3 (Ape™) 4 Ape= @) (52)
peP

and -
a(l) =2+ Z (e—iknl + ez’knl) (53)

n=1

—(N = M) +2.25(1) + > (4,00 —U(p)) + Ad(L +1(p))),  (54)

peEP

where A, is independent of energy and given by ([53).

A, =lprim(p) [ ] o% (55)

15



3 Two non-isometric but isospectral graphs

An interesting question, not only from a mathematical point of view but also
for say a musician, is whether one can decide the shape of a drum from the
tones that it produces, or if there for the Laplace operator with Dirichlet b.c.
exists a one to one correspondence between the set of all possible domains and
the set of eigenvalues to the operator. Kac posed this question in 1966 [7] and
it is now known that the answer to the question is in general 'no’, but under
certain regularity conditions on the domain, the inverse problem has essentially
unique solutions. Here we are going to show that the answer is in general 'no’,
also for graph Laplacians.

a) Vi b) E
v b E) '@ E3
Vo gt Va 2a+3b E42ab
Es | B
a b
2a+2b
7] a+2b
Vg Ve v
a+2b . 2a+b !

Vg

Figure 5: Two isospectral but non-isometric graphs, constructed with the
lengths a and b. Vi,...,Vg are vertices and F1,..., F; are edges. Every edge,
E,, have an associated interval [zo,_1,z2,] € R. The graphs are trees with
x=8-7=1

In 1995 Chapman demonstrated how to produce isospectral domains for the
Laplace operator [3]. Two graphs that are constructed with this method are
illustrated in figure[Bl These graphs were presented in [5], but the authors were
not able to prove that the Laplace operators on the graphs are isospectral. This
was later proved in [I5] in the case of Dirichlet b.c. at the loose endpoints.
Henceforth, we consider Laplacians with standard b.c. at all vertices.

Theorem II: The length spectra, i.e. the set of all possible lengths of the
periodic orbits are equal for the graphs in figure[d and given by

2an + 2bk, n,ke N (56)

Proof: Start from the vertex Vs. An arbitrary number of orbits of length 2a
and 2b can be added from there, and thus, periodic orbits of length 2an + 2bk
can be constructed on either graph, where n and k are natural numbers. These
are all possible periodic orbits since, every periodic orbit on either graph have
to contain an even number of a’s and b’s. O

16



According to the trace formula, (54)), the sums

> Apet) (57)

peP

have to be equal for both graphs, in order to be isospectral. Thus, Theorem
can not guarantee that the Laplacians to the graphs in figure Bh and b are
isospectral.

To fully describe the spectrum of the two Laplace operators on the graphs,
we have to consider the differential equation —¢"” = Ay on all edges along with
the standard boundary conditions (8). For the graphs in figure [ this can be
formulated as:

-l =Xpn, n=1,..,T,
p1(z2) = p2(4) = p3(x5) = Pa(27),
9 (p1(z2) + p2(za) + @3(x5) + pa(z7)) =0,
pa(zs) = @s(z10) = w6(z11) = @r(213),
9 (pa(zs) + ¢s5(z10) + pe(211) + @r(z13)) =0,
Ip1(z1) = Opa(m3) = Op3(w6) = Op5(w9) = Dipg(212) = Ipr(z14) = 0.

(58)

The differential expression on the edges have solutions of the form ¢,, = A cos(k(x—

Zon—1)) + Bsin(k(x — xa,—1)). Together with the conditions in the last line of

B8) we have

p1 = Ajcos(k(z—x1)), w5 = Ascos(k(x —x9)),
w2 = Agcos(k(x —x3)), e = Agcos(k(x—1x11)),
p3 = Aszcos(k(x —x5)), pr = Agcos(k(x —x13)),
pg = Agcos(k(x —x7)) + Aysin (k(x — x7)) .

(59)

These functions together with the boundary conditions give, for graph [Hl a):

©1(b) = pa(a) = p3(a) = p4(0),
L o1(b) + Lpa(a) + Ls(a) — Les(0) =0, (60)
¢a(2a +2b) = ps(a + 2b) = pe(2a +b) = p7(b) = 0,
4 oy(2a+2b) + Loos(a+2b) + Log(2a+b) + L (b) = 0.

Let cos(kxz) be abbreviated by c¢(z) and sin(kx) by s(z). Then the function ¢
is an eigenfunction to the Laplacian with the standard boundary conditions, on
graph Bl a) iff:

c(b) —c(a) 0 0 0 0 0 0
0 c(a) —cla) 0 0 0 0 0
0 0 c(a) -1 0 0 0 0
s(b)  s(a) s(a) 0 1 0 0 0
0 0 0 ¢(2a+20) s(2a+2b) —c(a+2b) 0 0
0 0 0 0 0 cla+2b) —c(2a+0) 0
0 0 0 0 0 0 c(2a+b) —c(b)
0 0 0 s(2a+2b) —c(2a+2b) s(a+2b) s(2a + b) s(b)
(61)

17




The corresponding condition for the Laplacian with standard boundary condi-
tions on graph Bl b) is

c(a) —c(2a+ 3b) 0 0 0 0 0 0 Ay
0 c(2a+3b) —c(d) 0 0 0 0 0 Ay
0 0 eb) -1 0 0 0 0 As

s(a)  s(2a+ 3b) s(b) 0 1 0 0 0 Ay
0 0 0 c(2a)  $(2a) —c(a) 0 0 Al
0 0 0 0 0 cla) —c(b) 0 As
0 0 0 0 0 0 ) —cla+2b) As
0 0 0 s(2a) —c(2a) s(a) s(b) s(a + 2b) Az

(62)

We are now ready to prove the main result:

Theorem III: The Laplace operators to the graphs shown in Figure [J are
1sospectral in the case when standard boundary conditions are imposed at all
vertices (including loose endpoints).

Proof: The determinants to the matrices in (1) and (62) are:

det(S) = cos(ka) (

—Lsin(6ka + 3kb) + sin(4ka + 3kb) + sin(4ka + kb) — sin(2ka + kb)]

—; [— sin(4ka + 5kb) + sin(2ka + 5kb) + sin(kb)]
— L [sin(6ka + Tkb) + sin(6ka + 5kb)] )
(63)
The result is obtained by an expansion of the terms in the determinants with
trigonometric identities, for example sin(a + b) = sin(a) cos(b) + cos(a) sin(b),
as far as possible and then by sorting the terms and combining them again.
The equality of the determinants verifies that the spectrum is equal for the two
operators when X\ # 0. In the case when A\ = 0, the spectral multiplicity is 1 for
both graphs according to [10], Theorem 1. O
The same result has been proved in the case of Dirichlet boundary conditions
at the loose endpoints and standard boundary conditions at the inner vertices.
In that case:

det(S) = sin(ka) (

—Llcos(6ka + 3kb) — cos(4ka + 3kb) + cos(4ka + kb) 4 cos(2ka + kb)]

—; [— cos(4ka + 5kb) — cos(2ka + 5kb) + cos(kb)]
— 3 [cos(6ka + Tkb) — cos(6ka + 5kb)] ),

(64)
and thus, the spectrum of the Laplace operators on the graphs are equal when
A # 0. For any tree with Dirichlet boundary conditions and standard boundary
conditions at the inner vertices, the only function corresponding to the eigen-
value A = 0 is the function ¢ = 0. This result can be obtained by slightly
modifying the proof of Theorem 1 in [10]. This fact was not discussed, neither
in [I5] or [5] but it is essential for a rigorous proof.

The eigenfunctions to the Laplace operator with standard boundary condi-
tions at all vertices can be divided into two classes, according to whether they

18



vanish at the inner vertices or not. We call eigenfunctions, ¢, localised if they
are supported by a certain non-intersecting path, i.e. if they are supported on
no more than two edges that are connected to the same vertex. Each path that
supports a localised eigenfunction has to start and end at a loose end point or
g = 15 paths
that can support localised eigenfunctions, see table (1). All eigenfunctions that
are zero at the inner vertices can be expressed by linear combinations of the lo-
calised eigenfunctions. The approach with localised eigenfunctions is very useful
if only a subset of the spectrum to the Laplace operator is needed. We have
found six different types of localized eigenfunctions on the graphs. They are:

the boundary conditions can not be met. There are in total

Graph a Graph b
# Path lengths type lengths type
1 Vi—Vs—1, b,a i a,(2a+3b) i
2 Vi—Vs—-V, b,a i a,b i
3 Vi —Vs—-Vs—-V; a,2a+2b,a+2b iii a,2a, a vi
4 Vi —V3—Vs—V; Db,2a+2b,2a+b iv a,2a,b i
5 Vi—V3—Vsg—Vg b,2a+2b.,b iv a,2a,a+2b iii
6 Vo—-Va -V, a,a vi 2a+3b,b iv
7 Vo—V3—Vs—Vs5 a,2a+2b,a+2b iii 2a+3b,2a,a ii
8 Vo—-V3—V5—V; a,2a+2b,2a+b i 2a+3b,2a,b iv
9 V-V —Vs—Vs a,2a+2b,b i 2a+3b,2a,a-+2b i
10 Vi—V3—Vg—Vs a,2a+2b,a+2b  iii b,2a,a i
11 Vy—V3—Vs—Vz a,2a+2b,2a+b i b,2a,b iv
12 Vy—-V3 -V —TV4 a,2a+2b,b i b,2a,a+2b i
13 Ve — Ve — V7 a-+2b,2a+b v a,b i
14 Vs — Ve — Vg a+2b.b i a,a+2b iii
15 Vo=V — Vs 2a+b.,b iv b,a+2b i

Table 1: Intervals in the graphs in figure Bl that can support localised eigen-
functions, together with a type parameter (i-vii) and the lengths of the edges of
the paths.

Type i: Take for example the path V; — V3 — V5 on graph a. The boundary
conditions yield that cos(ka) = 0 and cos(kb) = 0 and hence, for A\ = k2 to be
an eigenvalue to the Laplace operator on the graph, k must satisfy:

k=T (l + nl;
a ' 65
O %)
Type ii: The conditions on k are:
k=T (l =+ ’I’Ll)
LRG| ’ (66)
{ k=g (3 +mn2).

Type iii: Consider path number 3 on the graph in figureBla): V3 —V3—V5—V5.
On Vi — Vj it is required that cos(ka) = 0 on Vg — V5 it is further required that
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sin(2kb) = 0. These restrictions are sufficient for the boundary conditions to be
fulfilled on V3 — Vg as well. Thus, & is the solution to:

= (ly4y
{R2ilrm) (67)

Type iv: Analogous to type iii above but a and b are interchanged.

Type v: The conditions on k are:

k=2 (% +n1)
a+ﬂ?b 2 ) 69
{ A ) (69

Type vi: k is the solutions to cos(ka) = 0 and thus

k:f<%+n1). (70)

a

The direct problem for the localised eigenfunctions is reduced to the problem
of finding eigenvalues for the one-dimensional Laplace operator on compact
intervals with Dirichlet boundary conditions at certain points.

Lemma I: Localised functions of the types (i)-(v) ewist iff § is a rational
number.
Proof: For type (i), the two conditions on k in (63) yields:

Pem) =5 Ge) "

a 1+2m

The right hand side of (72)) is rational and we conclude that (65]) have solutions
iff ¢ is rational. This result is obtained for type (ii)-(v) in the same way. O
We can show the result in another way as well. Let [ be the total length of all
edges in a path. The eigenfunction to the Laplace operator with Dirichlet b.c.
on the interval [0,1] € R is ¢ = cos(kx), k = 0,1,2.... This function do never
vanish at points that divide the interval into irrational parts and hence, the
extra conditions from the types mentioned can never be met if a/b is irrational.
For example, let @ = /2 and b = 1; then, the path Vi — V53—V have | = a+b,
and thus cos(2Z) can never be zero at 2 = /2 since L — “T*b =1+ % =1+ %

a

and we get

(72)

is irrational.

We have thus given an example of two isospectral but non-isometric graphs.
They were proven isometric by solving the direct problem, which we saw had
the same solutions. This demonstrates that the inverse problem does not have
a unique solution. For the graphs considered, we could also conclude that the
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. . . . . . . _ 1
spectrum corresponding to localised eigenfunctions is limited to k = 7 (5 + n)

when a/b is an irrational number. Type vi is special and this can be seen in
(63) which can be factorized by sin(ka).
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4 Four graphs with different Euler characteristics

This section will discuss questions regarding the Euler Characteristic, x that we
earlier defined as x = M — N, where M is the number of vertices and N is the
number of edges in a graph.

Consider for a moment the graph that consists of only one edge and thus
two vertices. The Euler characteristic for this graph is 1. All connected graphs
can be constructed from this graph by three operations:

1. Decorating the graph i.e. adding a vertex on an existing edge. This will
leave x unchanged since the decorated edge will be split in two.

2. Addition of an edge between two nodes. This will decrease x by one.
3. Addition of an edge with a loose endpoint. This leaves x unchanged.

So, for a connected graph:
—N<x<l1. (73)

The trace formula (I)) reveals that y can be determined from the spectrum
and the following theorem gives an explicit formula:

Proposition II:  (Theorem 4 from [9]) Let T' be a finite compact metric graph
and L(T")-the corresponding Laplace operator (with standard boundary condi-
tions). Let ¢ € Loo(T) be a real valued potential and S = L(T) + Q-the corre-
sponding Schridinger operator, where Q is the operator of multiplication by q.
Then the Euler characteristic x(T') of the graph T is uniquely determined by the
spectrum A\, (S) of the operator S and can be calculated using the limit

I siny/m()/2t\
x(T) = QtEI&;cos\//\n(S)/t <—\/T(S)/2t ) ; (74)

where the following convention is used:

B siny/An(S)/2t
A =0 = A 1. (75)

In what follows we are going to determine x to the graphs shown in Figure
using the following properties instead:

Proposition IIT: (Theorem 1 from [I0]) Let T’ be a compact metric graph
with Euler characteristic x, and let L(I") be the corresponding Laplace operator.
Then A = 0 is an eigenvalue with spectral multiplicity ms(0) = 1 and algebraic
multiplicity mq(0) =2 — x.
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a)
X=0 X= -1 X= -2 X=-3

Figure 6: Four graphs with different Euler characteristics. For simplicity, all
edges have the length 1.
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Figure 7: Estimation of the trace formula for the four graphs in figure @l From
top to bottom, a), b), ¢) and d). The 9193 first terms from (Z9)) are used. Maple
and Matlab were used in order to calculate the scattering matrices and produce
the graphics.

Let u be the distribution that contains the spectrum to the Laplace operator on
the graphs shown in figure [6l There is a suitable expression for u in equation

ET):

1 ok
u= %TT[(k; S*\D). (76)
The expression does have a more simple form when [; =I5 = ... = 1 since then:
0 1
10 ,
S, = 0 1 et (77)
1 0
Se
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and

e}

o= o TrlCY (880N (78)
k=—o0
_ %Tr[(Z(Svge)k)cos(k)]. (79)
k=0

For I; = 1, the spectrum is 27-periodic on the k-axis i.e. if (k;)? is an eigenvalue
then (kj + 27n)? is also an eigenvalue. In addition, if k; + 27n # 0 for any n,
then the multiplicities of k; + 27n coincide (Theorem 2, [9]).

We introduce two approximations in order to carry out the calculations. Let
us be a truncation of ([9) so that:

2048

= %Tr[(Z(Svge)k)cos(k)]. (80)

k=0

If ¢ is a function with support in k& = 0 but not in any other k, which is a zero
to det(S — I) = 0, then m4(0) can be calculated from:

il = [ et = (Oma(0) (81)

A function ¢ for which the condition on the support holds in this case is ¢ =
0(k +0.02) — 0(k — 0.02). We arrive at

0.02 120 )
ulg] = / o RS 3 () = 7 0), (s2)

Where A = %.
Carrying out these calculations for the graphs shown in Figure [0l yields:

Graph in Figure[@ | a) b) c) d)
M4 (0) | 2.02 3.02 4.03 5.03

We see that the Euler characteristics for the graphs can be calculated accu-
rately by x = 2 — m,(0).
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5 Edges of length zero

Figure 8: We prove that the two graphs have the same scattering properties in
the limit when the length of E tends to zero and the valencies fulfil v1 + vo =
v3 + 2.

In this section we are going to discuss what happens to the spectrum of a graph
Laplacian in the limit when the length of an edge (or several) say F tends to zero.
It is natural to consider the reduced graph, I'r which can be obtained from I" by
removing the edge F = [z1, 22| and substituting the vertices connected to E say
V1 and V4 by a new vertex Vs = V3 UVa \ {21, 22} with valency vz = vy +v9 — 2.
This procedure is illustrated in Figure R

We know about scattering in a single vertex from the proof of the trace
formula. An incoming wave results in a reflected wave and transmitted waves
that can be described through the vertex scattering matrix. In the same way,
we can have a scattering matrix for a compact graph with with infinite edges
attached.

Theorem IV: The scattering matriz for the double star graph shown in Figure
[8 a) tends to the scattering matriz for the reduced (star) graph shown in figure
[8 b) when the length of E tends to zero.

Proof: We denote the reflection and transmission coefficients for vertex V,,, by
rm and t,, respectively. The standard boundary conditions (8) give

2 — v, 2
Top = T gy = —, (83)

Um Um

where v, is the valency of V,,,. Transmission and reflection in the graph shown
in figure B b) is described by r3 and ¢3 while there are more possibilities for
the graph shown in [§la). We define the amplitude of an transmitted wave that
enter the structure from an infinite edge attached to V7 and leave the structure
on an infinite edge attached to V5 as t12. We define to1, 17 and t92 analogously.
The reflection coefficients for the structure will be denoted by 711 and ros. We
have to verify that

t =111 = t12 = to1 = tog, (84)
and

r=7T11 = T2, (85)

when the length of F, d tends to zero. We start with an expansion of the
coefficient t15.

tis = t1e®ty 4 tjehdpgethdy ethdyy 4 (86)
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ikd

tltge
_ _ 87
1 — ryrge2ikd’ (87)
for which it holds that
. tltgeikd tltg
1 = . 88
i1~ riree2ikd 1 — pripg (88)

The expression is symmetric in the sense that ¢; and t5 can be interchanged and
thus t12 = t21. In the same way we find that

T.ZtleQikd
ti1 =1t - 89
11 1+ 1= rirge2ifd’ (89)
SO
) T.ZtleQikd
limg_,o t _ 90
mg_o t1+ 1= rprac?ikd (90)
Tgtl

= t —_— 91
1+ 1—1riry (91)

t1(1 t1 —
_ 1(1+7ra(ts — 1)) (92)

1-— r1T9

ti1to

= _— 93
1-— r17T2 ( )

The expression is symmetric and equal to (88) and thus it holds that 11 = t12 =
to1 = tao. If we use (R3) we find that

_hb 2 (94)
1-— r17r2 U3 ’
and we see that (84) is true. In the case of reflection
1 = 11+ te®rge ity ot e pyettly ettty (95)
127 e2ikd
= M4+ -——= 96
1Tz r1rpe2ikd’ (96)
80
{2y e2ikd 27y
limr +—+"— = p4—12 97
d—o 1= riroe2ikd 1Tz riT9 (97)
1+ 12 + 2117
1 . 2 17 (98)
—Tirs

Since the last expression is symmetric, we see that 111 = ra2. If we use ([B3) we

finaly get
rit+re+2rry 22— w3

1-— T1T2 V3 (99)
This concludes that (85 is fulfilled and that all possibilities are considered. O
We turn our considerations to the spectral problem for the Laplacian on the
graph in figure [@ a). It has six edges and six vertices, three of valency 3 and
three of valency 1. The volume of the graph is always 3 but the shape is altered
by the parameter a that determine the length of central edges and also change

26



Figure 9: A one-parameter graph. The letters denote vertices; the numbers
edges and the arrows indicate positive direction in local coordinate systems on
the edges. Note that the graphs are presented with different scales and that the
total length always is 3.

the length of the outer edges so that the total length ¥ = 3. Figure@b) and c)
shows two extreme cases when the parameter ¢ = 1 and a = 0 respectively. In
the first case, the loose edged disappear and in the second one the graph reduces
to a tree i.e. the cycle disappears. Our aim is to understand how the spectrum
of the graph b) and c) can be obtained as a limit of the spectrum in a). We
apply the direct method that was used in Section Bl to find the spectrum. The
functions on the edges are

w1 = Ajcos(kx), w2 = Ajcos(kx)+ A, sin(kx),
w5 = Ascos(kz), @3 = Ascos(kx)+ Afsin(kx), (100)
e = Agcos(kxr), ps = Aycos(kx)+ Ajsin(kx).

With the abbreviations c¢(x) = cos(kx), s(z) = sin(kz) and b = (1 — a) the
conditions on the coefficients are

ob) -1 0 0 0 0 0 0 0 A
c(b) 0 0 —c(a) —s(a) 0 0 0 0 As
—s(b) 0 -1 —s(a) c(a) 0 0 0 0 Al
0 0 0 0 0 -1 0 b)) 0 As

0 —c(a) —s(a) 0 0 0 0 c(b) 0 Al

0 —s(a) c(a) 0 0 0 -1 —s(b) 0 Ay

0 0 0 -1 0 0 0 0 cb) Al

0 0 0 0 0 —c(a) —s(a) 0 c(b) As

0 0 0 0 -1 —s(a) c(a) 0 —s(b) Ae
(101)

When a = 1, the determinant of the matrix in the equation system ([IOT)) is
2(cos(3k) — 1) (102)
and the solution to this equation give the same k as the decorated circle of

length 3, i.e.

2
k:%, ne, (103)
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and the spectrum to graph b) is thus equal to the spectrum of the reduced
graph.

Eigenvalues to the Laplacian on the reduction of graph c) can be determined
from the equation

cos? (kx) sin(kz) = 0, (104)
and thus, the eigenvalues are
n?n?
A= 1 (105)

Let a = 0, then the determinant of the matrix in (I0T) is zero. This means that
there is at least one non-zero vector in the nullspace to the matrix for every k.
The vector is the one that corresponds to A) = A5 = A). The corresponding
function has the properties that it has no value anywhere, but a derivative in the
three vertices that was brought together. Is this an eigenfunction to the graph
Laplacian? It is not mathematically meaningful since ¢ has no support and
hence ||p|| = 0. The difference between the algebraic and spectral multiplicities
is related to the Euler characteristic. It is clear that the Euler characteristics
for graphs shown in figure[@ a) and c) are different.

Lemma II: Let T be a compact graph with scattering matriz SV and an edge
E of length d. If T’y is the reduced graph to I'y with respect to E then

lim det(SM) = —det(S?) (106)

Proof: S‘(/l ) and 55/2 ) are unitary by Theorem [ and furthermore real and
symmetric so their determinants are therefore equal to one. As d — 0, the

block that corresponds to E in Sg) tends to ( (1) (1) ) and thus
0 1
imsP=|[ 10
alllg% Sy @ (107)
Sg
lo)
0 1
lim det S =det | 1 0 = —det S (108)
d—0 (2)
Sg
O
It does not hold that det(A) = det(B) implies det(A—I) = det(B—1I). Take for
1
example A = (1) (1) and B = (2) (2) . Hence, Lemma [2] will not reveal

how the trace formula handles edges of length zero.

5.1 Connecting symmetric graphs

We let three symmetric graphs with known scattering properties be connected
to each other as in Figure IOl At this point, we require that each of them have
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three infinite edges, or connectors. We say that graphs are symmetric iff their
scattering matrices have the form:

t
S = t r t . (109)
t r

e

Figure 10: Three symmetric graphs G; = Go = G3 are connected to a new
graph. It is possible to determine the scattering properties of this combination.
The letters denote amplitude coefficients to incoming and outgoing waves.

was derived. This definition can be extended to the case of compact graphs with
several infinite edges attached. Here we do so, and let the scattering matrices de-
scribe the relationship between the coefficients of incoming and outgoing waves
to graphs. We stress that the graphs can have any finite number of edges and
vertices as long as they are symmetric. For example, three triangular graphs
like the one in figure [[1 a) can be joined together and form b). If we then let
the lengths of the connecting edges shrink to zero, the resulting graph is c).
Consider figure [I0] again. If we as a first step not consider interaction between
the graphs, it holds that:

o Q

A

B S
= S e (110)

I

Now we continue and let the graphs be connected. We let one wave enter the

structure from above, i.e. a =1, e = 0 and i = 0. We see that the reflection

coefficient to the structure, 7 will be equal to A and that the transmission

coefficient # will be equal to E or I. The way we connect the three graphs and

the symmetries in the problem gives another 14 equations:

from symmetry: from connectivity:

B=C, b=c b=D, B=d,
D=G, d=¢g c=G, C=g,
F=H, f=h f=H, F=h,
E=I, e=i.
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And we finaly get

trd —r2 =322 — 3 4 2% r + 0t —3r 4+ 2t — 112

P = 111
" —t3—t2r+tr2—r+r3 —tr+1—12 ’ (111)
and )
N t“(-1—t
f=— ( +r) . (112)
3 —t2r+tr2—r+r3 —tr+1—1r2

Finaly, we give an example. Put together three star graphs with valency 3. A
star graph is a graph that consists of one vertex only, with attached infinite
edges. The star graph with valency three has r = —1/3 and ¢t = 2/3. Formula

(III) and (I12) yield # = —1/3 and £ = 2/3. This is in perfect order with
Theorem [

Figure 11: a) An example of a symmetric graph. b) Three such graphs are
joined together. The length of the edges goes to zero, and the result is c).
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6 Discussion, Applications and Conclusions

In Section B] we proved that two graphs can be isospectral even if they are not
isometric. It is an interesting question to find out other equivalence classes
of isospectral graphs as well as conditions that guarantee that two isospectral
graphs are isometric. One of the first steps in this direction is the proof that
the Euler characteristic is determined by the spectrum. This is illustrated in
Section [ where several explicit calculations have been carried out. The recursive
formula for the scattering parameters that was found in [l can be applied to the
scattering problem on Sierpinski triangles and it should be possible to generalize
the result for other kind of symmetric graphs as well.

It is beyond the scope of this paper to discuss the accuracy of the model and
also application but many references can be found in [16} [8].

Graph Laplacians promise to be very useful. They have the same eigenvalues
as discrete approximations:

Proposition IV: (Theorem 2 from [13]) For a finite compact quantum graph
T'. with a discrete model Ty, it holds that
M Xe as h—0 (113)

where {\'} and {\$} are the Laplace eigenvalues of T, and T respectively
(counting multiplicity).

And the discrete approximations can approximate Laplacians of higher order
i.e. not only one-dimensional Laplacians:

Proposition V: (Theorem from [J]]) Let M be a closed Riemannian manifold
of dimension d. Take a sequence of 1/n-nets in M, (I'y,,1,,),1 < n < oo, with
length functions l,, = 1/n. There exist a constant C(d) depending only on the
dimension d, such that:

1
— limsup A\ (T, 1) < A(M) < Climinf A\, (T, 1), (114)

C n—oo n—oo

for any k > 0. The constants C(d) satisfy C(d) < 2-50% for any d > 1.
The parameter estimation might suggest that this is a very rought estima-

tion, but Fujiwara suspects that there exist nets in M such that C' = 1 in the
Theorem.
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Symbols

%@@%X E\Q%?\%m s H

Graph

Vertex

Edge

the set of integers, ...,—2,—-1,0,1,2, ...
the set of natural numbers, 0,1,2, ...
the total length of a metric graph

the Euler characteristic of a graph, x = M — N
Hilbert space

Orthogonal sum symbol

The complex numbers

The real numbers
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