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Abstract

The main purpose of this paper is to study a discrete approxi-
mation of metric quantum graphs and show that the spectra of the
discrete Laplace and Schrödinger operators converge to that of their
continuous counterparts as the resolution gets finer. We will also prove
some topological spectral invariants of these models. The approach is
similar to that used by P. Kurasov and M. Nowaczyk to analyze the
inverse spectral problem of metric quantum graphs, and some of the
notation and figures used here are adopted from these papers.

1 Preface

The theory of quantum graphs has applications in various branches of physics,
notably quantum chemistry and nanotechnology. The notion of quantum
graphs first appeared in the 1980-ies in works of B. Pavlov, N. Gerasimenko,
P. Exner, P Seba and Y. Colin de Verdière. In recent years the spectral
problem has been investigated by K. Naimark, A. Sobolev and M. Solomyak,
the inverse spectral problem by B. Gutkin and U. Smilansky, the direct scat-
tering problem by V. Kostrykin and R. Schrader and the inverse scattering
problem by J. Boman, P. Kurasov and F. Stenberg. In this paper we will
investigate discrete Laplace and Schrödinger operators as approximations of
the corresponding differential operators. The main problem tackled could
be viewed as a special case of a more general question, namely, whether
given any Riemannian manifold it is possible to find a family of discrete nets
whose (Laplacian) spectrum converges to that of the manifold in question.
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For a discussion and some results on this more general problem we refer to
[5]. What might be novel in this paper is the application of techniques from
quantum scattering theory to combinatorial graphs, and to the extend needed
we will in parallel present the same theory applied to metric graphs. Dur-
ing the work we found that our results on the convergence of the Laplacian
spectrum have already been proven by X.W.C. Faber. However, with some
extra assumptions made on regularity of the models we are able to present a
substantially simpler proof. We begin by introducing the basic concepts and
definitions used in the sequel, together with some elementary theorems. The
spectral analysis of the discrete Laplace operator is then given a separate
treatment, and in the last chapter we show how the main theorem can be
generalized to discrete Schrödinger operators.

2 Definitions

2.1 Quantum Graphs

A quantum graph Γ consists of a collection of edges ∆j = [x2j−1, x2j], which
are copies of intervals of the real line. The set of edges is denoted E(Γ), and
the points x2j−1 and x2j are said to be the endpoints of the edge ∆j. We
will only discuss compact graphs, where E(Γ) is a finite set and all edges are
copies of compact intervals1. We allow the endpoints to be ’glued together’,
which we technically express by introducing a vertex set V (Γ) consisting of
equivalence classes of the set of endpoints. All endpoints belonging to the
same vertex are thus identified, and the number of points belonging to a
vertex is called the valency of the vertex. We let N be the number of edges
and M the number of vertices. The space L2(Γ) is defined by

L2(Γ) = ⊕
N∑

j=1

L2(∆j) (1)

and the differential expression for the Laplace operator L acting on L2(Γ) is
simply

L = ⊕
N∑

j=1

(− d2

dx2
). (2)

1To ease the flow of the text we will repeatedly use the term ’continuous quantum
graph’ instead of ’finite compact metric graph’
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The maximal domain of this operator is the space Dommax = ⊕∑N
j=1 W 2

2 (∆j)

where W 2
2 (∆j) denotes the Sobolev space

W 2
2 (∆j) = {f ∈ L2(∆j)|f ′, f ′′ ∈ L2(∆j)}. (3)

However, the operator defined by the differential expression L with domain
Dommax is not self-adjoint, so in order to get a self-adjoint restriction of the
maximal operator one introduces boundary conditions at the vertices. These
conditions may be of several different kinds, but the most common are the so
called Standard (Neumann, natural) boundary conditions. These impose the
requirement that the functions be continuous at the vertices and that the sum
of all normal derivatives be equal to zero. With standard boundary conditions
any vertex of valency 2 becomes superfluous and may be removed, resulting
in a so called ’clean’ graph. Two edges connected by a vertex of valency 2
then merge into one edge, with the total length preserved. Having specified
the boundary conditions, the Laplace operator is uniquely determined by the
graph and one can show that it has a pure discrete spectrum. For a proof of
this statement and a detailed exposition on different boundary conditions we
refer to [3]. In recent years, extensive research has been done on quantum
graphs and some of the spectral invariants found so far are stated in the
following proposition:

Proposition 1 For any compact metric quantum graph the following prop-
erties are determined by the spectrum of the Laplace operator (determined by
standard boundary conditions at the vertices)

• The number of connected components
• The total length
• The Euler Characteristic χ = M −N

For proof, see [2].

2.2 The Discrete Quantum Graph

We have chosen to maintain the terminology used for continuous quantum
graphs with the disadvantage that it might lead to some confusion regarding
the use of the words ’vertex’ and ’edge’. However, having pointed this out
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we hope that the reader will find the presentation accessible. The following
definition is almost a replica of that of a continuous quantum graph.

Let Γ be a finite collection of finite sequences of consecutive integers, and
let V (Γ) be a set of equivalence classes of the the set of endpoints of these
sequences. An endpoint is understood as the first or last element of a se-
quence. For reasons which will be apparent later we also require that every
sequence consists of at least 3 elements. In accordance with the terminol-
ogy of continuous graphs a sequence will be denoted ’edge’ and a member
of V (Γ) will be denoted ’vertex’, and as before we let N denote the number
of edges and M the number of vertices. Further we introduce the symmet-
ric relation ∼ denoted ’neighbour’ defined as follows: Two points xi and xj

are neighbours if they belong to the same edge and | xi − xj | = 1. We
identify all elements belonging to the same vertex Vm, and all neighbours of
the constituent points are inherited by the vertex. The valency of a vertex
Vm is defined as the number of neighbours of the vertex (or equivalently the
number of endpoints belonging to the vertex) and is denoted vm, where m is
an index identifying the vertex.

In the absence of the usual topology, connectedness of a discrete graph
is defined by use of the neighbour relation as follows: A path is defined as
a sequence of points {x1, x2, .., xn} such that xk ∼ xk+1 and a graph is said
to be connected if there is a path between any two points of the graph. We
stress that since we have identified all points belonging to the same vertex
any complex valued function defined on Γ must attain the same value at
all these points. The latter restriction is in accordance with the continuity
condition on continuous graphs. The purpose of identifying each point with
an integer is to be able to get analytic expressions for the eigenfunctions of
the Laplace operator. The requirement that every edge should consist of at
least 3 points enables us to treat each edge separately, however, since we are
mainly interested in the behaviour as the number of points goes to infinity
that restriction should be seen as just a precaution.

2.3 The Laplace Operator

For scaling purposes we modify the graph Γ by multiplying each integer point
with a positive real number h which we call step length, and the graph derived
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in this way will be denoted Γh. All operators mentioned in this section are
acting on l2(Γh). The Laplace operator we are going to analyze is the usual
one, anyhow we will first give a brief motivation to our choice. We take as
starting point the ordinary Laplace operator as it is defined on continuous
edges, that is L = − d2

dx2 . As a natural analog to the first order differential
operator we define

DΨ(nh) =
Ψ((n + 1)h)−Ψ(nh)

(n + 1)h− nh
=

Ψ((n + 1)h)−Ψ(nh)

h
(4)

Consequently we get

−D2Ψ(nh) = −Ψ((n + 2)h)− 2Ψ((n + 1)h) + Ψ(nh)

h2
(5)

However, there’s no reason to prefer right derivatives before left derivatives,
so in order to obtain a symmetric expression we define

LΨ(nh) = −Ψ((n + 1)h)− 2Ψ(nh) + Ψ((n− 1)h)

h2
(6)

The above formula is obviously only valid for points not belonging to any ver-
tex. On continuous quantum graphs one introduces boundary conditions at
the vertices in order to get a self-adjoint restriction of the maximal operator.
For the discrete graph there is no need for a self-adjoint restriction, instead
we seek a generalization of the Laplace operator defined on the whole graph,
thats is, including the vertices. Formula (6) suggests a natural generalization:

LΨ(x) =
1

h2

∑
y∼x

(Ψ(x)−Ψ(y)). (7)

With the above operator we see that points on edges could equally well be
considered as a vertices of valency 2, similar to the situation with standard
boundary conditions on continuous graphs.

There is a very simple argument showing that the Laplace operator is
positive on the graph we have constructed:

Lemma 1 The Laplace operator is non-negative on Γh.
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PROOF2. Let f be an eigenfunction of L on l2(Γh) with eigenvalue E < 0.
Since Γh is finite, there are points a and b on Γh such that <f(a) is maximal
and and <f(b) is minimal. By looking at formula (7) it is obvious that
<Lf(a) = E<f(a) is non-negative, so <f(a) must be non-positive since E
is negative. On the other hand, <Lf(b) is necessarily negative so <f(b)
must be non-negative. By arguing in the same way with the imaginary part
of f we must conclude that f is identically equal to zero, and we have a
contradiction. ¤

2.4 The Laplacian Matrix

Some of the elementary properties of the Laplace operator can be found by
looking at the corresponding Laplacian Matrix. Obviously, the model we
have just defined could be seen as a special case of an ordinary combinatorial
graph with weighted edges. Thus, we now consider all points of Γh as vertices
belonging to a vertex set V and we let E be the set of all unordered pairs
{x, y} such that x ∼ y. The set E is called the edge set. Note carefully
that the notions ’vertex’ and ’edge’ have different meanings in this context.
Further, let m = |V | and n = |E|. We enumerate all the vertices with
and index ranging from 1 to n, and we let v(xi) denote the valency of xi.
The Laplace operator will now be represented by the n× n matrix L, called
Laplacian matrix, defined by (L)ii = v(xi)/h

2, (L)ij = −1/h2 if xi ∼ xj and
zero otherwise. L is a real symmetric n × n matrix, hence it has exactly n
eigenvalues (counting multiplicity) all of which are real. In order to be able
to identify Γh as a net of a continuous quantum graph we extend the notion
of geometric length to the former as follows

L(Γh) = h|E(Γh)|. (8)

Given this definition, Γh will in fact share many of the spectral invariants
of continuous quantum graphs. Parts of the proof depend on the following
lemma

Lemma 2 Given a non-weighted combinatorial graph without loops and mul-
tiple edges3 with the Laplace eigenvalues {λi} (where the index i counts the

2This theorem could also be proved by deriving the quadratic form corresponding to
L. We refer to for example [8]

3Of course, this requirement does not imply that the graph cannot model a continuous
graph with loops and multiple edges.
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multiplicity of the eigenvalues) and the edge set E we have that

|E| = 1

2

n∑
i=1

λi. (9)

PROOF. We use the well known fact that the trace of a symmetric matrix
equals the sum of its eigenvalues, and we get with our assumptions:

n∑
i=1

λi = TrL =
n∑

i=1

v(xi) = 2|E|. (10)

¤
If the graph is constructed in the way described in section (2.2) we have that
M −N = m− n, and in analogy with Proposition (1) we get:

Theorem 1 The following properties of Γh are determined by the Laplace
eigenvalues {λi} (where the index i counts the multiplicity of the eigenvalues)

• The number of connected components is equal to the spectral multiplicity
of the zero eigenvalue

• The total length is equal to h3

2

∑n
i=1 λi

• The Euler Characteristic χ = M-N is equal to
∑n

i=1(1− h2

2
λi)

PROOF. The first part is well known, and a proof can be found for example
in [8]. The second and third part follows from the definitions and Lemma 2 ¤

As we will show further on, the discrete graphs as we have defined them
will indeed serve as models for continuous quantum graphs in the way de-
scribed in the beginning paragraph. One might therefore ask whether the
spectral invariants also carry over to the continuous graphs in a natural way.
It appears though that such a connection in the case of the total length
and the Euler characteristic is far fetched. One reason to believe that is
that for continuous graphs, only the asymptotic behaviour of the spectrum
is important, which clearly is not the case for discrete graphs.
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3 The Eigenfunctions of the Discrete Laplace

Operator: Scattering Matrix Approach

The purpose of this section is to obtain the secular equation determining
the spectrum of the Laplace operator using a method first developed by B.
Gutkin and U. Smilansky. The word ’edge’ will now have the meaning it was
given in section 2.2. The starting point for our analysis are the solutions to
the equation

LΨ = EΨ. (11)

Considering only internal points on the edges, equation (11) gives rise to
difference equation having the general solution

Ψ(hn) = aeikhn + be−ikhn. (12)

The eigenvalue E is given by

E =
2− 2 cos(kh)

h2
. (13)

Equation (12) with hn replaced by the continuous variable x is of course also
a solution to the differential equation − d2

dx2 Ψ = EΨ, with the difference being
that in this case E = k2. Limiting our discussion to an edge, indexed j, with
starting point n2j−1 and endpoint n2j, we will choose {eikh|n−n2j−1|, eikh|n−n2j |}
and {e−ikh|n−n2j−1|, e−ikh|n−n2j |} as bases for the space of eigenfunctions. Phys-
ically, one may interpret this as a base of ’incoming waves’ or ’outgoing
waves’. Expressing Ψ(nh) in these two bases:

- ¾
a2j−1e

ikh|n−n2j−1| a2je
ikh|n−n2j |

hn2j−1 hn2j

Ψ(nh) = a2j−1e
ikh|n−n2j−1|+a2je

ikh|n−n2j | = b2j−1e
−ikh|n−n2j−1|+b2je

−ikh|n−n2j |,
(14)
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we see that whenever k is not an integer multiple of π/h the equations (14)
are only satisfied when4

b2j−1 = eikh|n2j−n2j−1|a2j, b2j = eikh|n2j−n2j−1|a2j−1. (15)

All the equations can be put together in matrix notation using the following
definitions:

a =




a1

a2
...
a2N


 , b =




b1

b2
...
b2N


 , (16)

mj = |n2j − n2j−1|, εj
h =

(
0 eikhmj

eikhmj 0

)
. (17)

We may now write equations (15) simply as

b = Eha, (18)

where we have introduced the edge scattering matrix Eh defined by

Eh =




ε1
h 0 . . .
0 ε2

h . . .
...

...
. . .


 . (19)

So far we have only treated the edges. For each vertex Vm, we introduce new
vectors am and bm containing the amplitudes of the waves going out from
the vertex and the waves approaching the vertex respectively:

am =




al1

al2
...
alvm


 , bm =




bl1

bl2
...
blvm


 . (20)

We now seek the matrix σm
h , called vertex scattering matrix, such that

am = σm
h bm. (21)

4The remaining values k = nπ/h correspond to the zero eigenvalue and for some graphs
the maximum eigenvalue. However, we may exclude these from further consideration since
the first can be treated separately and the second will not be important for our later results
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The calculations are straightforward but we demonstrate them for the sake
of clarity. Let a+ =

∑vm

j=1 alj and b+ =
∑vm

j=1 blj . With the ansatz given by
formula (12) we must have that

alj + blj = ali + bli (22)

in order for the function to be uniquely defined at the vertex. Furthermore,
we have the eigenvalue equation at the vertex:

(2− 2 cos(kh))(alj + blj) = vm(alj + blj)− (a+eikh + b+e−ikh). (23)

By symmetry considerations we see that σm
h should have the following ap-

pearance:

σm
h =




r t t . . .
t r t . . .
t t r . . .
...

...
...

. . .


 . (24)

The coefficients r and t (which are dependent on m) are called reflection- and
transmission coefficients respectively. The equations (22) immediately yield

r = t− 1, (25)

thus the eigenvalue equation (23) becomes:

(2− 2 cos(kh))tb+ = vmtb+ − (t− 1 + (vm − 1)t))b+eikh − b+e−ikh, (26)

which yields

t =
2i sin(kh)

vm(eikh − 1) + 2− 2 cos(kh)
, (27)

and one can show that the vertex scattering matrix so defined is unitary.
The amplitudes of the outgoing waves may now be expressed in terms of the
amplitudes of the incoming waves as demonstrated below:




a1

a2

...
aM


 = Σh




b1

b2

...
bM


 , where Σh =




σ1
h 0 . . .
0 σ2

h . . .
...

...
. . .


 . (28)

If necessary, the basis vectors are renumbered so that equation (28) is sat-
isfied. By virtue of the above calculations and definitions we conclude that
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every eigenfunction of the Laplace operator corresponds to a vector in R2N

which satisfies the following equation:

a = Uha, where Uh(k) = Σh(k)Eh(k). (29)

Conversely, for any vector satisfying equation (29) there corresponds an
eigenfunction. However, we stress that the number of distinct vectors corre-
sponding to a certain eigenvalue might not coincide with the spectral mul-
tiplicity of the eigenvalue in question, see [2]. Finally we are in position to
express the secular equation leading to the spectrum of L:

fh(k) = det(Uh(k)− I) = 0. (30)

We first point out some immediate observations about the solutions to equa-
tion (30).

Lemma 3 If k is a zero of fh(k) then so is k + 2nπ/h for all n ∈ Z.

Lemma 4 If k is a zero of fh(k) then so is −k.

Lemma 5 The zeros of fh(k) are real numbers.

PROOF. Lemma 3 follows from inspection. Lemma 4 amounts to taking the
conjugate value of all entries in the scattering matrix. To prove Lemma 5 we
recollect our earlier observations that the eigenvalue E must be a positive
real number. This is only fulfilled when k is real, since cos(k) has to be a
real number less than 1, see (13). ¤
From Lemma (3) and (4) we see that the zeros are placed symmetrically
around the point π

h
, and since the formula for the eigenvalue (13) is also

symmetric around the same point we need only find the zeros in the interval
[0, π

h
], which are finitely many as we would expect. Further, if we let λi

denote the eigenvalue corresponding to the zero ki then in the interval [0, π
h
]

we have that ki < kj ⇒ λi < λj.

4 The Scattering Matrix Approach applied

to Continuous Graphs

The scattering matrix method was originally developed for the analysis of
continuous graphs, and a detailed treatment can be found for example in [1].
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Since the procedure is almost identical to the one presented in the previous
section we will here only present an outline and point out where the two
cases differ. The subscript c will be used to indicate that we are now dealing
with continuous graphs.

Let Γc be a finite compact metric graph with an edge set E = {∆j},
where ∆j = [x2j−1, x2j]. On every edge, the general solution to the eigenvalue
equation

LΨ = EΨ (31)

is given by
Ψ(x) = aeikx + be−ikx, (32)

where E = k2. We choose {eik|x−x2j−1|, eik|x−x2j |} and {e−ik|x−x2j−1|, e−ik|x−x2j |}
as bases for the space of eigenfunctions and write

Ψ(x) = a2j−1e
ik|x−x2j−1|+a2je

ik|x−x2j | = b2j−1e
−ik|x−x2j−1|+b2je

−ik|x−x2j |. (33)

For all k different from zero we obtain

b2j−1 = eik|x2j−x2j−1|a2j, b2j = eik|x2j−x2j−1|a2j−1. (34)

Further we define

a =




a1

a2
...
a2N


 , b =




b1

b2
...
b2N


 , (35)

dj = |x2j − x2j−1|, εj
c =

(
0 eikdj

eikdj 0

)
, (36)

Ec =




ε1
c 0 . . .
0 ε2

c . . .
...

...
. . .


 , (37)

after which we may write
b = Eca. (38)

For each vertex Vj we define the vectors am and bm in just the same way
as in the previous section, but as we will see the vertex scattering matrix
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σm will be different for continuous graphs. The continuity condition at the
vertex yields the equations

alj + blj = ali + bli (39)

just as for discrete graphs. The cruisal point is that equation (23) is now
replaced by the condition that all normal derivatives be equal to zero:

∑
xj∈Vm

∂nΨ(xj) = 0 ⇐⇒
∑

xj∈Vm

(aj − bj) = 0. (40)

Using the same ansatz for the vertex scattering matrix:

σm
c =




r t t . . .
t r t . . .
t t r . . .
...

...
...

. . .


 (41)

we obtain
r = t− 1 (42)

as before, but now
t = 2/vm (43)

One important observation one should make is that for the continuous graph,
the scattering matrix is not dependent on the energy. Finally we introduce
the following definitions:

Σc =




σ1
c 0 . . .
0 σ2

c . . .
...

...
. . .


 , (44)

Uc(k) = Σc(k)Ec(k), (45)

fc(k) = det(Uc(k)− I) = 0. (46)

5 Discrete Models of Quantum Graphs

We will now demonstrate how the discrete graph Γh can be used to model a
continuous quantum graph. We remind the reader that the subscripts h and
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c indicate whether we are talking about the discrete graph with step length
h or the continuous graph. Let Γc be a finite compact metric graph with an
edge set E(Γc) and a vertex set V (Γc). If the lengths of the edges have a
basic length5 δ we let the step length h be equal to δ/p for some integer p.
We then replace each edge Ej in E(Γc) with a sequence of mj +1 points such
that mjh equals dj. We denote the discrete graph constructed in this way Γh

and the corresponding scattering matrices Eh and Σh. By the construction
it is obvious that L(Γc) = L(Γh). In the absence of a basic length we could
pick an arbitrary small number h and let mj be equal to the integer part of
dj/h, though strictly speaking, the discrete graph obtained in this way could
no longer be considered as a net of Γc. We will now investigate what happens
as we let h tend to zero.

Lemma 6 Let Γc be a finite compact metric graph with edge-scattering ma-
trix Ec and vertex-scattering matrix Σc and let Γh be a discrete model of Γc

with edge-scattering matrix Eh and vertex-scattering matrix Σh. Then we
have

Eh → Ec as h → 0 (47)

(with equality for graphs where the edges have a basic length), and

Σh → Σc as h → 0. (48)

PROOF. The lemma follows from the fact that mjh → dj as h → 0 and that

t =
2i sin(kh)

vm(eikh − 1) + 2− 2 cos(kh)
→ 2

vm

as h → 0. (49)

¤
To prove that the Laplace eigenvalues of the discrete graphs converge

to the Laplace eigenvalues of the corresponding continuous graph is now a
straightforward matter. We let λh

i denote the i:th Laplace eigenvalue of Γh

and let λc
i denote the i:th Laplace eigenvalue of Γc (counting from below with

multiplicity). We may now state our main theorem:

Theorem 2 For a finite compact metric quantum graph Γc with a discrete
model Γh we have that

λh
i → λc

i as h → 0 (50)

5A number δ such that dj = njδ, where {dj} are the lengths of the edges and {nj} are
integers.
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where {λh
i } and {λc

i} are the Laplace eigenvalues of Γh and Γc respectively
(counting from below with multiplicity).

PROOF. After inspection one verifies that t = t(h, k) has removable singu-
larities at the points 2πn/h, n ∈ Z, so it can be treated as an entire analytic
function with respect to k. Thus fh(k) can also be considered as an entire
analytic function. By Lemma (6) we get that fh(k) converges uniformly to
fc(k) on any compact set. Let kc be any zero of fc(k) and take a positive
number r that is smaller than the distance to any neighbouring zero. There
is always such a number since the set of zeros of an analytic functions has
no finite point of accumulation. We now consider the contour integral of
f ′h(k)/fh(k) and f ′c(k)/fc(k) around the circle centered at kc with radius r.
Since fh(k) converges uniformly to fc(k) on any compact interval, it is clear
that for h small enough fh(k) and fc(k) will have the same number of zeros
inside this circle. We let ρ denote the spectral multiplicity of the zero eigen-
value, which by Proposition (1) and Theorem (1) we know is the same on Γc

and Γh. Theorem (2) is thus fulfilled for i 6 ρ. Further we let

0 < kh
ρ+1 6 kh

ρ+2 6 . . . 0 < kc
ρ+1 6 kc

ρ+2 6 . . . (51)

denote the zeros of fh(k) and fc(k) on the positive real axis, where we have
taken into account the algebraic multiplicity. We have proved that for i > ρ,
kh

i → kc
i as h → 0 and from this we obtain

λh
i =

2− 2 cos(kh
i h)

h2
→ (kc

i )
2 = λc

i as h → 0. (52)

for i > ρ and the theorem is proven. ¤

So far we have not said anything about the nature of the convergence of
the eigenvalues. Empirical data suggests that the eigenvalues of the discrete
nets with equal step length increases monotonically to the eigenvalues of the
continuous graph, a conjecture also stated in [4]. We will now discuss how
this conjecture relates to the zeros of the analytic functions used in the proof
of Theorem 2, and the lemma stated below provides some information in that
direction.

Lemma 7 If kh
i increases monotonically to kc

i as h → 0, then λh
i increases

monotonically to λc
i as h → 0.
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PROOF. By the combined use of Lemma (3) and Lemma (4) we see that
the zeros of fh are situated symmetrically around the point π

h
. Since E =

(2 − 2 cos(kh))/h2 is also symmetric around the same point we are justified
in considering only the zeros smaller than π

h
. Consider two different step

lengths h1 and h2 such that h2 < h1 or equivalently h2 = αh1 where α < 1.
Let k1 and k2 be the i:th zero of fh1 and fh2 respectively and suppose that
k2 = βk1 where β > 1. We may assume that both h1k1 and h2k2 are less
than π, and we make the following series of estimates:

λh2
i =

2− 2 cos(βk1αh1)

(αh1)2
>

2− 2 cos(k1αh1)

(αh1)2
>

2− 2 cos(k1h1)

(h1)2
= λh1

i (53)

where we have used the fact that (2−2 cos(ξ))/ξ2 is decreasing in the interval
0 < ξ < π. The inequality (2 − 2 cos(hk))/h2 < k2 shows that the series of
eigenvalues is bounded by λc

i , which concludes the proof of the lemma. ¤
The significance of Lemma 7 lies in the fact that, again, empirical data
suggest that the zeros of fh do increase monotonically to their limits.

6 Discrete Schrödinger Operators

The apparatus developed for the analysis of the Laplacian spectra is well
suited also for the study of the stationary one-dimensional Schrödinger op-
erator, the difference being that the edge-scattering matrices will be more
complicated. Explicit solutions of the Schrödinger equation are in general
impossible to obtain so we will only be concerned with generalizing the spec-
tral convergence theorem to also include these operators.

We begin by studying the stationary Schrödinger differential equation on
a compact interval [x2j−1, x2j]

− d2

dx2
Ψ(x) + q(x)Ψ = k2Ψ(x) x ∈ [x2j−1, x2j]. (54)

We will assume that the potential q(x) is sufficiently smooth6 and that it is
identically zero in a neighbourhood of x2j−1 and x2j respectively. With no
boundary conditions specified the equation has a solution for every k, thus

6Throughout this section we will assume that q(x) has continuous derivatives of order
up to at least 2 in order to insure that Ψ has continuous derivatives of order up to 4.
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given any positive number k2 and some Cauchy data at a certain point we
obtain a unique solution. In the intervals where the potential vanishes the
solution to the eigenvalue equation is, as before, given by the general formula
Ψ(x) = aeikx + be−ikx. We are interested in two specific solutions f+(k, x)
and f−(k, x) characterized by the following initial data: f+(k, x) = eikx to
the right of the potential, f−(k, x) = e−ikx to the left of the potential. It is in
general impossible to solve the equations exactly, we will merely observe that
for some numbers {α+, α−, β+, β−} we have that f+(k, x) = α+eikx +β+e−ikx

to the left of the potential and f−(k, x) = α−e−ikx + β−eikx to the right of
the potential. The numbers {t+ = 1/α+, t− = 1/α−} are called the left and
right transmission coefficients and {r+ = β+/α+, r− = β−/α−} are called the
left and right reflection coefficients, and these are in general dependent on k.
With the notation used in Section (4) we have for a continuous graph

(
a2j−1

a2j

)
=

(
r+ t−e−ikdj

t+e−ikdj r−

) (
b2j−1

b2j

)
. (55)

One can show that the matrix above is unitary, and by inverting it we get
the following generalization of the edge-scattering matrix:

εj =

(
r+ t+eikdj

t−eikdj r−

)
. (56)

In order to define the discrete Schrödinger operator we must first introduce
some notation. We let ∆ denote an edge on a continuous graph and we
let ∆h be the corresponding discretized edge with step-length h. Without
loss of generality we may take the left endpoint equal to 0, and we suppose
∆ = [0, b]. We will use the notation u(h) when we speak about a function
defined on ∆h, and for any function u defined on ∆ we write {u}h to denote
the function on ∆h which satisfies {u}h(hn) = u(hn). Whenever the symbol
‖ · ‖ is used on a function (vector) it should be understood as the supremum
norm. The discrete Schrödinger operator is defined by the correspondence

− d2

dx2
+ q(x) −→ L + {q}h. (57)

The reflection- and transmission coefficients for the discrete Schrödinger op-
erator are defined in just the same way as for the differential operator, and
we assume that h is small enough so that there are sufficiently many points
on ∆h to the left and right of the potential for the definition to make sense.
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It is evident that if we can show that these coefficients converges to those
of the Schrödinger differential operator as h tends to zero, then without
any changes the proof of Theorem 2 will also show the convergence of the
Schrödinger spectrum for this class of potentials.

We introduce the following slightly modified operators acting on L2(∆)
and l2(∆h) respectively:

S = − d2

dx2
+ q(x)− k2 (58)

Sh = L + {q}h − 2− 2 cos(kh)

h2
(59)

where q(x) is a sufficiently smooth function that vanishes in a neighbourhood
of the endpoints. Further we introduce the boundary operators

γu =

[
u(0)
u′(0)

]
, γhu

(h) =

[
u(0)

u(h)−u(0)
h

]
(60)

and the boundary values

φ =

[
1
−ik

]
, φh =

[
1

e−ih−1
h

]
. (61)

As before we let f− denote the solution to the equation Su = 0 satisfying the

boundary condition γu = φ, and we let f
(h)
− denote the function satisfying

Shu
(h) = 0 and γhu

(h) = φh, and we now wish to make an estimate of
‖{f−}h − f

(h)
− ‖. With the aid of the following Taylor expansions

u(x + h) = u(x) + hu′(x) +
1

2
h2u′′(x) +

1

6
h3u′′′(x) +

1

24
h4u(4)(ξ1) (62)

u(x− h) = u(x)− hu′(x) +
1

2
h2u′′(x)− 1

6
h3u′′′(x) +

1

24
h4u(4)(ξ2) (63)

and the inequality

‖k2 − 2− 2 cos(kh)

h2
‖ < M1h

2 (64)

we see that for any function with bounded derivatives up to order 4 we have
that ∥∥∥u(x + h)− 2u(x) + u(x− h)

h2
− u′′(x)

∥∥∥ < M2h
2 (65)
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and hence
‖Sh{u}h − {Su}h‖ < M3h

2. (66)

Thus, in particular

‖Sh[{f−}h − f
(h)
− ]‖ = ‖Sh{f−}h‖ = ‖Sh{f−}h − {Sf−}h‖ < Mh2. (67)

From this estimate we conclude that the function {f−}h − f
(h)
− satisfies the

equation Shu
(h) = ψ(h) for some function ψ(h) with norm less than Mh2.

Further is it obvious that γh[{f−}h − f
(h)
− ] = 0. We shall prove that the

difference equation Shu
(h) = ψ(h) with boundary condition γhu

(h) = φh is
stable, which means that for some constants N1 and N2 not depending on h
the solution fulfills the condition

‖u(h)‖ < N1‖ψ(h)‖+ N2‖φh‖. (68)

The proof, which is somewhat technical, is left to the appendix. Accepting
this for the moment, we see that the stability condition immediately yields
‖{f−}h − f

(h)
− ‖ → 0 as h → 0. The treatment of f+ is analogous, and

the convergence of the reflection- and transmission coefficients is thereby
established. We have thus proved the following generalization of Theorem
(2):

Theorem 3 Let Γc be a finite compact metric graph and let q(x) be a po-
tential defined on Γc that vanishes in a neighbourhood of the vertices and has
bounded derivatives of order up to at least 2. Given a discrete model Γh we
have that

λh
i → λc

i as h → 0 (69)

where {λc
i} are the eigenvalues of L+q(x) on Γc and {λh

i } are the eigenvalues
of L + {q}h on Γh.

Appendix

A Stability of Schrödinger Difference Equa-

tions

The aim of this section is to show the stability of the difference equation

Lu(h) + {q}hu
(h) = ψ(h) (70)
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on a grid with step length h extracted from the interval [0, 1]. The number
of points on the grid is thus equal to 1/h. We will only consider the case
where q is a real-valued bounded function defined on the interval [0, 1]. To
some extend we will follow the procedure presented in Chapter II of [6], the
first step being to reduce the equation to the canonical form

y
(h)
n+1 = Rh,ny

(h)
n + h%(h)

n , (71)

where we have introduced the vectors

y(h)
n =

(
u(h)(hn)

u(h)(h(n+1))−u(h)(hn)
h

)
, %n =

[
0

ψ(h)(h(n + 1))

]
. (72)

It is readily checked that the matrix Rh,n is given by

Rh,n =

[
1 h

−h{q}h(h(n + 1)) 1− h2{q}h(h(n + 1))

]
. (73)

Essential for the proof will be to show that the norm7 of the matrix
∏1/h

i=1 Rh,i

is bounded by some constant N independent of h (we let the product symbol
denote matrix multiplication from right to left). The spectral norm of Rh,n

is equal to the square-root of the largest eigenvalue λmax of R†
h,nRh,n which,

omitting the details, to the first approximation in h is given by

λmax = 1 + h
√

({q}h(h(n + 1))− 1)2 + O(h2). (74)

The function inside the square-root is positive and bounded since {q}h is real
and bounded, so it is evident that ‖Rh,n‖2 < 1 + Ch for some constant C.
Thus,

‖
1/h∏
i=1

Rh,i‖ 6
1/h∏
i=1

‖Rh,i‖ 6
√

(1 + Ch)
1/h → eC/2 ≡ N. (75)

Rewriting equation (71) in the form

y(h)
n = (

n∏
i=1

Rh,i)y
(h)
0 + h

[
(

n−1∏
i=1

Rh,i)%
(h)
0 + (

n−2∏
i=1

Rh,i)%
(h)
1 + . . . + %

(h)
n−1

]
(76)

7In the case of matrices we use the ‖ · ‖2 norm. Since we are only dealing with finite-
dimensional spaces, for convenience we will employ a somewhat sloppy use of norms.
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we obtain the inequality

‖y(h)
n ‖ ≤ N

[
‖y(h)

0 ‖+ hn(maxj=0..n−1{‖%(h)
j ‖}

]
. (77)

Hence, since hn < 1, we arrive at

‖u(h)‖ ≤ N‖ψ(h)‖+ N‖φh‖, (78)

which means that it is stable.
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