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Preface

This thesis is devoted to inverse spectral problems for d@ploperators on metric
graphs, and it is based on the following papers:

Paper | P. Kurasov and M. Nowaczyk 2005 Inverse spectral problengdi@antum
graphsl. Phys. A: Math. Ge884901-15
Paper Il M. Nowaczyk 2007 Inverse spectral problem for quantum gsapith ra-

tionally dependent edgeédperator Theory, Analysis and Mathematical
PhysicsOperator Theory: Advances and Applicatidi¥’ 105-16

Paper Il P.Kurasov and M.Nowaczyk 2007 Geometric properties of tyan
graphs and vertex scattering matrices, Preprint 2007:2tr€&r Math-
ematical Sciences, Lund University.

Paper IV S. Avdonin, P. Kurasov and M. Nowaczyk 2007 On the Reconstmiof
the Boundary Conditions for Star Graphs, Preprint 2007:28tf@ for
Mathematical Sciences, Lund University.

In the first paper, we prove the trace formula and show thairitte used to recon-
struct the metric graph in the case of rationally indepenéggths of the edges and
the Laplace operator with standard boundary conditioniseavértices.

The second paper generalises this result by showing thatothdition of rational
independence of lengths of the edges can be weakened.

In the third paper the possibility to parameterise vertexriaary conditions via
the scattering matrix is investigated. The trace formulgeiseralised to include even
arbitrary vertex boundary conditions leading to energyepehdent vertex scattering
matrices, so-called non-resonant boundary conditions.

In the last paper, we turn to the problem of recovering bogndanditions and
solve it for the special case of the star graph.
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Introduction

1. Historical background

Although the spectral problems for quantum graphs have @dgntly become a ra-
pidly developing field of mathematics and mathematical syshe first problems of
this kind have already been studied in the fifties by K. Rubdep and others [66].

In 1988, B.S.Pavlov and N.I. Gerasimenko gave the first rmaslieally rigorous
definition for a Schidinger operator on a metric graph [31]. They considered the
Schibdinger equation with real potentiads(x) (where indexi goes over all edges)
and with standard boundary conditions at the vertices, fastbompact graphs and for
graphs with several semi-infinite branches. They have prtvat the spectrum of the
Schiddinger operator is discrete, provided that the potergiatal, bounded from be-
low and integrable, that the boundary conditions at théaestare standard and that the
graph is compact. At the same time, P. Exner argeba analysed numerous examples
of quantum graphs [22; 23]. Besides the pure one dimensiasd, they also stud-
ied more complicated structures: graphs with higher dinogasg inclusions, such as a
wire attached to a plane or graph superlattices [21]. Simee P. Exner has contributed
to virtually all directions of research involving quantumaghs.

The above research was based on theory developed for thefcasaite interval,
which can be seen as the simplest example of a geometric.gféghinverse spectral
problem for the Sclirdinger operator on a finite interval has been studied exelgs
in the middle of the last century. This problem consists agbwering the potential in
the Schédinger operator from its spectrum. One of the first mathaiaais to study
this problem was V. A. Ambarzumian, who proved in 1929 thairie exceptional case
the spectrum of the Sabdinger operatodoesdetermine the potential uniquely [2].
In general, one needs two spectra in order to determine ttemipal, a fact shown by
G.Borg [11]. Later on, I. M. Gelfand and B. M. Levitan [29] gaan explicit method
for calculating the potentiaj(z), known today as the Gelfand-Levitan equation. Stud-
ies of the inverse spectral problem were being developetbseconnection with the
investigations of the inverse scattering problem on thaitefinterval. The latter prob-
lem has been considered by G. Borg and V. A. Marchenko [12; B3se results have
to be taken into account while investigating the inverséofams for metric graphs.

In the nineties and at the beginning of this century the spktiteory of quantum
graphs experienced renaissance due to many potentiataftis in modern technol-
ogy. Therefore, properties of arbitrary quantum graphsdiffierent inverse problems
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INTRODUCTION

have been investigated by numerous authors. These standiege not only conven-
tional "locally” one-dimensional graphs but graphs witllirsions in the form of bil-
liards and manifolds.

V. Kostrykin and R. Schrader have given the most general enadtically rigorous
definition for a Schidinger operator on a metric graph [40]. Their paper plays an
important role in the theory of quantum graphs since thenpdriicular, they have
described the most general vertex boundary conditionsguibstion of how to param-
eterise the boundary conditions has also been discussedigiher and P. Kuchment
[37; 44; 45]. A detailed analysis of this topic is presentedection 3.4. of this thesis.
In particular, we present a slightly novel parameterisatibthe boundary conditions
via the vertex scattering matrix, which has an advantageiofghunique and having a
straightforward relation with the connectivity of the ghafsee section 4.2.). Recently,
there have appeared two volumes entirely devoted to quagtaphs and we refer the
reader to these volumes for most state-of-the-art devedopsof this theory. They also
contain excellent introductions written by P. Kuchment;[46]. In addition we would
like to mention important studies of spectral problems foamfum graphs carried out
in series of papers by Solomyak [55; 56; 68; 69; 70; 71] anerégting examples of
the two-dimensional periodic square graph lattice stuliel. Pankrashkin, V. Geyler
and J. Biining in [60; 15].

This thesis focuses on inverse problems for quantum gramhsolve such a prob-
lem, one has to reconstruct:

e the metric graph,
e the real potential on the edges,
e the boundary conditions at the vertices.

At this moment only the inverse problem for quantum treeslasecto being fully
solved.

The inverse spectral and scattering problems for treeslese studied intensively
in recent years, among others, by S. Avdonin, M. Belishev,BMwn, R. Carlson,
G. Freiling, P.Kurasov, A. Vakulenko, R. Weikard and V. Yor3; 6; 7; 13; 14; 17,
26; 27; 74]. It has been shown that the knowledge of the Deteto-Neumann map,
or Titchmarsh-Weyl matrix function, allows one to calcel#ite potential for standard
boundary conditions at the vertices. The case of more gelmewadary conditions has
been discussed in [27], but the whole family of boundary @oos has not been in-
vestigated yet. In general, the methods used in inversdrappooblems for quantum
graphs resemble very much the methods developed for oydilifeerential operators.
In particular, we discuss the problem of recovering boupdanditions for the special
case of the star graph in paper IV. We believe that combinaifdhe methods devel-
oped there, together with the boundary control method eggth quantum graphs in
[3], will lead to a complete solution of the inverse probleon juantum trees. This is
the main topic of section 7.

The spectral problems for general quantum graphs (i. e.ayitkes) are much more
sophisticated than those for trees. Therefore, in thealitee one can find many more
papers dealing with trees than with arbitrary graphs. Thie neason is that the Cauchy
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1. HISTORICAL BACKGROUND

problem, on a graph with cycles and for arbitrary Cauchy ,daty possess infinitely
many solutions or even cannot be solved at all. This is the megison why differential
equations on graphs have properties of both ordinary antpdifferential equations.
The corresponding inverse scattering problems were discuis [52] by P. Kurasov
and F. Stenberg. They have shown that, in general, the sogtteatrix does not de-
termine neither the topology of the graph, the potentialsheredges, nor the bound-
ary conditions. Methods used in this work have been geselby J. Boman and
P. Kurasov in [10], where it is proven that operators on gsapith internal symmetries
cannot be recovered from the scattering matrices. On ther ddind, P. Kurasov has
shown that the Euler characteristics of the graph can belleééd from the scattering
matrix and discrete spectrum of Sédinger operator with essentially bounded com-
pactly supported potential [48; 49]. The method used indHatest papers is based
on the trace formula first presented (without proof) by Rdth in [64]. The trace
formula used was first given by T. Kottos and U. Smilansky [4Rit without paying
attention to the fact that the secular equation descritsiegspectrum in general does
not determine the correct multiplicity of the eigenvalueoze

B. Gutkin and U. Smilansky [36] have applied the trace fomrtalthe inverse spec-
tral problem for graphs with rationally independent lersgtti the edges. Mathemati-
cally rigorous proof of the trace formula for the case of ded boundary conditions
is given in paper I. In the same paper, we also present theotigalgorithm of recon-
structing the metric graph with rationally independentglias of the edges from the
spectrum of the Laplace operator. In paper Il it is shown thatcondition of rational
independence can be weakened. Moreover, in paper lll, #oe formula has been
derived even for arbitrary vertex boundary conditions iegdo energy independent
vertex scattering matrices, so-called non-resonant banyrmbnditions (see section 5.)

The trace formula can be used to prove that the Euler chaistatef the underly-
ing graph is determined by the spectrum of the Laplace opef48; 49]. An explicit
formula for the Euler characteristics has been derivedtéordard boundary conditions
in the case of Sclidinger operator in [49]. The spectral properties of thelaeg op-
erator for discrete graphs and the topological invariaatetbeen also investigated by
S. Novikov and Y. Colin de Veréie [19; 57].

Applications of quantum graphs arise in many fields of s@esach as chemistry
(free electron theory of conjugated molecules [34; 35; 68]perconductivity (thin su-
perconducting networks [1; 65]), nanotechnology (quaniras circuits [22]), optics
(photonic crystals [24; 47; 67]), scattering theory [3Me®aging in dynamical sys-
tems [25], spectral theory of differential operators irgsitar domains [20] and others.
Quantum graphs are also used as testing models for morsti@afperators, since solv-
ing ordinary differential equations is in general easi@ntisolving partial differential
ones. Such quantum graphs are used in quantum chaos thBpanfbto model effects
of electron propagation in non-simply-connected media4%jother example of prac-
tical application of quantum graphs in nanowires has beesgmted by M.-E. Pistol in
[62; 63].



INTRODUCTION

2. Isospectral graphs

In this section we present an example of two isospectraldagbperators on graphs,
which shows that already the problem to reconstruct theiomtaph is not trivial. This
example shows that the inverse spectral problem in genanalat be solved uniquely.
It has served as a motivation for our research. This alsa&égthe reason why only
the Laplace operator is investigated in this thesis.

2.1. “Can one hear the shape of a drum?”

For two-dimensional manifolds, a corresponding inversesal problem was formu-
lated in 1966 by M. Kac as "Can one hear the shape of a drum2iriistout that
methods developed for certain partial differential opgrstan be applied successfully
to quantum graphs.

Mark Kac's question "Can one hear the shape of a drum?” mattieatly means
that, if D, and D, are two isospectral domains in the Euclidean plane, mysand
Dy be actually isometric? In his paper M. Kac showed that thereigluesdo deter-
mine certain properties of domain, for example the area, the circumference and the
number of connected components [39]. Two years earlierd64 LMilnor found two
16-dimensional tori that are not congruent but are neviersasospectral [54]. Later,
it was proven that there exist non-isometric pairs of Rienf@m manifolds that are,

nevertheless, isospectral.
b) ;% %

N O

Figure 1: Two isospectral planar domains

a)

Finally, in 1992, the M. Kac's question was answered, ansl éimswer was nega-
tive (see [32] and [33]). Gordon, Webb and Wolpert, usingrttethod developed by
T.Sunada in [72], gave an explicit example of two non-iseiogsimply-connected
domains in the Euclidean plane which are both Dirichlet amdiiNann isospectral.
The Fig. 1b shows these two isospectral domains. Moreodveratithors of that pa-
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2. ISOSPECTRAL GRAPHS

a
a |b a 2a + 3b b

V1 Wi
2a

2a + 2b

alb

Va

a+ 2b 2a+b a—+ 2b

Vs b

Figure 2: Two isospectral but non-isometric graphs. Theedeggths are expressed in
terms of the two arbitrary lengthsandb.

per pointed out that one can make a simple geometric sutistit(inverse mapping
showed in Fig. 1c) to get another two isospectral domaing/shio Fig. 1a.

2.2. "Can one hear the shape of a graph?”

We can follow Kac’s question and ask "Can one hear the shathe gfraph?” B. Gutkin
and U. Smilansky in the paper [36] have shown that the answegative. Their coun-
terexample was based on the ideas developed by C. Gordorelih ®hd S. Wolpert
[32] and by S. J. Chapman [18]. A similar problem for netwoskss analysed by J. von
Below in [8].

Intuitively, one of the ways to construct isospectral gsjstto take two isospectral
domains shown in Fig. 1a and to choose the subset of V-shagecbftriangle as sug-
gested on Fig. 1c in order to obtain the domains like thosagnlB. Next, we shrink
the width of the branches of V-shape in such a way that onechrhas lengttu and
the other has length We obtain graphs presented in Fig. 2. From this construcition
is clear that the two graphs have the same spectrum, protheedifferential operator
and the boundary conditions are chosen properly. It is ahtarconsider the Laplace
operator with standard boundary conditions (see secth& all internal vertices and
at loose endpoints one can choose either Dirichlet or Nearbaondary conditions.

It is possible to calculate the spectra of correspondinddcapoperators explicitly
and to compare them. Preliminary calculations were preseint [36], while com-
plete analysis has been carried out by the author of thigstieg58] and later by
E. Wernersson in [73]. The cases of standard boundary ¢onsliat all internal ver-
tices and Dirichlet and Neumann conditions at loose endp@iere considered in [58]
and [73], respectively.



INTRODUCTION

3. Quantum graphs - definition

By quantum graph we mean a geometric graphwith symmetric differential expres-
sions on the edges and with boundary conditions at the esrtighich guarantee the
self-adjointness of the operator.

Let IV be the total number of edges In We will identify each edge);, j =
1,2,..., N, of the graph with the interval of the real lin®; = [z2;_1,22;] C R.
We will denote the length of each edge 8y = |z2; — z2;_1|. Furthermore, let us
denote byM the number of vertices in the graph, where each vevigxs a set of
equivalent endpoints froffir;, } 2V, . The valence (degree) of the vertex, i.e. the number
of endpoints joined at/,,,, will be denoted by,,, .

A geometric grapi” can be equipped with the natural metpicz, y) induced by
the distances on the intervals; and thus can be considered as a metric space. Notice
that the graph”, as a set, contains not only the vertices but all points oretlges.
Therefore, one can define the Lebesgue meakumn the graph in a natural way. Any
function f(z) on T is defined along each edge rather than only at the verticess as i
would be in a discrete model.

In order to define a self-adjoint differential operatorlgiet us consider the Hilbert
space of square integrable functionslan

H=L*) =@} L2 (A;) = B, LP[wo-1, w2]. 1

3.1. Differential operators

For quantum graphs, the most commonly used operator isaplace operatarwhich
is equal to the negative second derivative:

N d2
An example of a more general operator is 8@hibdinger operatomwith potential
q(z) on the edges
2

d
el (~gm i) . @ eR,

whereq belongs to the space of integrable functidrs
Finally, one can analyse an even more genai@jnetic Schidinger operatoywith
real potentialg/(x) and A(x) being sufficiently smooth

Hy = oY, <<%% - A(x))2 + q(x)) .

Higher order differential and even pseudo-differentiaéigors have been used
by various researchers in studies of quantum graphs (seexémple, [45; 23] and
references therein).
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3. QUANTUM GRAPHS - DEFINITION

The problem of reconstructing the potential is very diffidgnlgeneral case, there-
fore in this thesis, we will limit ourselves to the Laplaceeogtor (2) only. This dif-
ferential expression does not determine a self-adjointaipeuniquely and two dif-
ferential operators i.?(I") are naturally associated with expression (2): the minimal
operatorLy;, with the domainDom (Luin) = @, C5°(A;) and the maximal op-
erator L., with the domainDom (Lyax) = @FIWQQ(A]-), whereWW;? denotes the
Sobolev space:

W3(A;) = {f € L2(A)) | f. " € L*(A))}-

The operatol . is simply the adjoint operator tb,,i,,, Linax = L

min*

3.2. Self-adjoint boundary conditions for the Laplace oper&or

In this and following sections we are going to discuss howefing boundary condi-
tions at a vertex in such a way that operator on the graphfiad@int and boundary
conditions are consistent with the vertex structure. As wkesee later, the boundary
conditions also determine how the edges match each othes, e will sometimes
use the namenatching conditionsinstead of “boundary conditions”. In order to make
our presentation more readable, we will start by studyiegstar graph, having in mind
to generalise our considerations later for the case of namglicated graphs.
Let us consider a star graghy,, with v semi-infinite nodes\; = [0,0), j =

1,2,...,v, connected at one vertéx with valencev (equal to the number of edges
connected at the vertex). In this case the Hilbert spaceuzrsgntegrable functions is

equal to

H = L) = &_, L*([0, 00)). (3)
The Laplace operator of., is the sum of the second derivative operators on each
interval A,

d2
Dj—1 (@) . (4)

and the domains of the minimal and the maximal operatgs, and L., are given
asDom (Lmin) = ©}_;C5°((0,00)) andDom (Lax) = @;’:1W22((0,oo)). Every
self-adjoint operator. associated with the differential expression (4) can beiobth

7



INTRODUCTION

by extending the minimal operator or by restricting the maadione so thal,,;, C
L C Lyax. The domain of every such operator can be described usirgjrcedundary
conditions connecting boundary values of the function¥'gg. at the vertex/.

Such self-adjoint extensions can be described using vomiden formulae taking
into account thal,,;,, is symmetric and has deficiency indidesv), while parameter-
isation via boundary conditions appears more appropriageta their local character.

Another parameterisation of extensions/gf;, can be obtained using Lagrangian
planes. Consider the boundary form of the maximal operator:

v

B[@ﬂ/’] = <Lmax<ﬂ7w> - <§07 Lmax¢> = Z(@n%(())z/)_](O) - @j(o)anw_j(o))y

j=1

whered,, 1) denotes the normal derivative of the functiprat the vertex/. Let us de-
note byy andd,¥ the vectors of boundary values ferand the values of its normal
derivative at the verte¥X, respectively. The boundary form gives a sesquilinear sym-
plectic form in the finite dimensional space of boundary gall*” = {4, 9,3 }. Then

all Lagrangian planes, i.e. all maximal subspaces i’ annulating the boundary
form such thap, ¢ € wimplies B[y, )] = 0, describe all self-adjoint extensions of the
minimal operatoll,i, to be denoted by, so thatDom(L,) = {¢ € Dom(Lyax) :

(¢(0),9,0(0)) € 7}

3.3. Boundary conditions via the vertex scattering matrix

In this section we are going to show that the boundary camtitat any vertex can be
parameterised in a unique way by a certain unitary matrixr &proach is a slight
modification of that by M. Harmer [37], with the advantage off parameterisation
being that the parameter matrix coincides with the value of the vertex scattering
matrix atk = 1 (this explains our notation as well).

Theorem 1. The family of self-adjoint extensions of the minimal opardt,,;, can be
uniquely parameterised by an arbitrary x v unitary matrix.S, so that the operator
L(S) is the restriction ofL,.x = L%, to the set of functions satisfying the boundary
conditions

i(S = Dp(V) = (S + Donp(V). (5)

The proof of this theorem can be found in paper Ill.

The advantage of parameterisation (5) is that there is omm#¢ correspondence
betweenS and self-adjoint extensions @f,,;,, and the parameter has a clear meaning
being the vertex scattering matrix féf = 1. Let us have a look at two intensively
studied families of boundary conditions.

EXAMPLE 1. Standard boundary conditiond et in this and the following example
¥, = 1, (0)) foranyn = 1, ..., v. To get standard boundary conditions

¢' :wlﬁ j7k:17"'7va
{ S, Oty =0, ©



3. QUANTUM GRAPHS - DEFINITION

the matrixS should be chosen equal to

2-v 2 2

v v v

_ 2 2—v 2

S = v v v

2 2 2-v

v v v

Then

2(1-v) 2 2 2 2 2
v v v v v v
S—1= 2 20—y 2 . S4+I1=| 2 2 2
v v v v v
2 2 2(1—v) 2 2 2
5 E T v v v

The boundary conditions (5) look as follows:

i((l—v)l/}l+¢2+-«-+1/Jv)—(3n¢1+m+8n1/)v)=0,
i(¢1+(1—U)¢2+-~-+1/1v)—(5n¢1+---+5n¢v)=0>

i1+ 2+ (1= 0)) — Onths + ... + Buthy) = 0.

Subtracting the first equation from each of the other oneshteim

i((1—0)¢1+¢2+-~+¢v)—(3n1/)1+m+5n2/1v) :0,
i(ﬂwl - va) = 07

%(vwl —vth,) = 0.

Finally we gety; = ¢ = ... = v, andd, 1 + ... + O, = 0, which are exactly
the standard boundary conditions.

EXAMPLE 2. Boundary conditions af-type.To get boundary conditions of-type:

/l/):’l/)k7 j,k.:17"'7v7
{ ijyzl 3n¢j = i, (7)

the scattering matrix foE! = 1 should be chosen equal to

a—(v—2)i 2 2
1 % a—(w=2)i ... 2
S =— :
Vi — « .
2 2 s a—(v—2)i
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where« is the real constant determining the strength of &kfanction at the vertex.
Then

a—(v—1)i i i
2 i a—(v-=10 ... i
S—1=—
Vi —
i i a—(v—1)i
and
1 1 1
9 | 11 1
S4l=—"-
Vi — o _
11 ... 1

Therefore, the boundary conditions (5) look as follows:

(ai(vil)z)¢l+“/)2++“/)v*(anwl++8n¢v):07
W + (@ — (v=1))s + ...+ iy, — (Opth1 + ... + Onthy) =0,

%¢1+iw2+~"+(0‘_(v_l)i)wv_(anw1+~~~+an¢v):0'

Similarly as in the previous example, we subtract the firsiagign from every other
one

(@ —(v—1)i)thr +ivva + ... +ithy = (nth1 + ... 4+ Onthy) =0,
(@ —vi)ir + (vi — @)y =0,

.(oz — i)y + (vi — a)h, = 0.

Thusy, = ¢ = ... = 1,, i.e.the functiong) are continuous at the vertéx and
from the first equation we obtain

(a - (7) - 1)2)/‘/)1 + (v - 1)“%) - (anwl +...+ 8n"/]v) =0

and hence
O‘wl = 8n¢1 +...F anwv-

Having considered these examples, let us establish theecbon between the ma-
trix S appearing in the boundary conditions and the vertex saagtenatrix S, (k).
SinceS is a unitary matrix then it possesses the following spectalesentation:

Stp=Y (1, 4,)0;, ®)
j=1
wheree'® is the eigenvalue and; (6; € R, (¢;,¢;) = 8;j,7 = 1,...,0) is the
corresponding eigenfunction.

10



3. QUANTUM GRAPHS - DEFINITION

In what follows the subspaces related to the eigenvalesl —1
N1 =ker (5 — (1)), )

are going to play a very important role.
To introduce the vertex scattering matrix let us first coesithe solutions to the

differential equation
2

_% (@) = K*(z), x €A, (10)

which satisfy the boundary conditions (5) at the vertex. uBoh to the differential
equation can be written in the basis of incoming and outgeiages as shown below

V;(x) = bje”* T aze** xe A (11)

The amplitudesa andb have to be chosen so that the function in (11) satisfies the
boundary conditions at the vertex. The relation betweervéintors of waves’ ampli-
tudesa andb is given by the vertex scattering mati$k (k) asa = S, (k)b. The values

of the functions and of its normal derivatives at the vertex a

p(V)=b+a=>b+S,(k)b

and
0n(V) = —ikb + ika = —ikb + ikS, (k)b.

After substitution into equation (5) we obtain
i(S— )T+ S,(k)) =ik(S+ I)(—1 + S,(k))

and then B(S 1) 4 (S 1)
+1)+ (S -
Su(k) = , k#0. 12
(k) E(S+1I)—(S—1) 7 (12)

ThussS, (k) is a unitary vertex scattering matrix ascequalsS,, (1). In paper Il we
have shown that all boundary conditions at a vertex leadirggtf-adjoint extensions
of L, can be described by the matrsc We would like to point out that in 2000
V. Kostrykin and R. Schrader ([41], Theorem 1) showed thatkiowledge of5,, (k)
for some fixed energy parameteay allows one to calculaté, (k) for any arbitraryk,
and therefore determines the boundary conditions at thexer

3.4. Parameterisations of boundary conditions
Kostrykin-Schrader’s parameterisation

In 1999, V. Kostrykin and R. Schrader [40] gave a full destoipof self-adjoint bound-
ary conditions. Letd and B bev x v matrices. Then all boundary conditions at the
vertexV can be described in the following way:

AP(V) + Boyp(V) =0, (13)

where) is the v-dimensional vector of functions and,s» - of normal derivatives
defined on edges meeting at the vertéx

11
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Proposition 2 (Kostrykin, Schrader). All self-adjoint extensions of the minimal op-
erator L,;,, are described by the boundary conditiofi8) where A and B are v x v
matrices with the following properties:

1. thev x 2v matrix (A, B) has maximal ranlo,
2. the matrixAB* is Hermitian.

Notice that parameterisation of boundary conditions iregign (13) with matrices
AandB is notunique . One can take any arbitrary invertible mafriand use matrices
A’ = DA andB’ = DB instead of4 and B. These matrices determine the same
Lagrangian plane of boundary values.

The relation between the scattering matsix(k) and the matricesl and B (see
[41]) can be written as

Sy (k) = —(A+ikB)""(A - ikB) (14)

and, in particular,
S=5,(1)=—(A+iB) (A —iB). (15)

Harmer’s parameterisation

Another way to parameterise boundary conditions in a unigaygand using only one
unitary matrixU was proposed by M. Harmer in 2000 [37]

—i(U+ (V) + (U = Donp(V) = 0. (16)

In this parameterisation the unitary matrix again does woataide with the unitary
matrix appearing in von Neumann formulae. One may obtais parameterisation
from (5) simply by puttingS = —U. The only advantage of the parameterisation via
the matrixS is that it has a clear meaning, since it is the vertex scatarmatrix for
k=1.

Kuchment's parameterisation

In 2004 P. Kuchment noticed that boundary condition (13)amrewritten equivalently
as two conditions which use orthogonal projectionken B. This makes Kostrykin-
Schrader’s parameterisation unique.

Proposition 3 (following Corollary 5 in [45]). Let(A, B) has maximal rank and B*
be Hermitian matrix. Then the boundary conditiiB) is equivalent to the pair of
conditionsP, ;1% = 0 and L Py + Py 0,9 = 0, whereP,, is orthogonal projection
onto space = (Ker B)*t, P,;. is the complementary projector, ardis the self-
adjoint operatorB—! A.

The operaton'g—;f, whereS = Py SPy. , is hermitian inN-=,. Therefore, it
can be shown that we obtain P. Kuchment's parameterisayitaking

MoNY and Lottt 7!
= 1 = .
ooa ZPNflsPN_il 7
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4. BOUNDARY CONDITIONS AND VERTEX SCATTERING PROPERTIES

4. Boundary conditions and vertex scattering proper-
ties

In this section we shall describe how boundary conditiofiectthe scattering prop-
erties of the vertex. We will start by looking at high energymptotics, showing that
it is equal to some energy independent scattering matriterdhrds, we will discuss
how does the vertex scattering matrix reflect connectivitthe vertex. Finally, we
introduce and investigate in detail a new class of boundangitions which we call
hyperplanar matching conditions.

4.1. High energy asymptotics

In order to study the spectral asymptotics it is necessairyastigate the high energy
behaviour of the vertex scattering matrix.

Let us remind that the unitary matrixpossesses the spectral representation (8) and
that the vertex scattering matri, (k) is given by (12). We then obtain the following
representation for the matri, (k):

Sulkye = 3 (Db di)d; + D LY, 605
j:0j=m " j:0; v:() (17)
eti + 1 _|_( 05 _ 1)
k 679J + 1 (679' _ 1) W%%)(bj

j:0#m,0

SincesS is unitary Ny and N_; are orthogonal to each other;S$fhas no other eigen-
values, thenV; & N_; = C". Formula (17) implies that the eigenvalug$ are stable,
whereas all other eigenvalues dependkormhe properties of this representation for
S, (k) give us immediately the following two theorems.

Theorem 4. The scattering matriX, (k) is energy independent if and only if the pa-
rameter matrixS has just eigenvaluesand —1, i.e. iff boundary condition§5) take
the form

PN1871'¢'(V) =0, PN-l'I/)(V) =0, (18)
whereN; @ N_; = C".
Boundary conditions leading to energy independent vertakering matrices are

going to play an important role in our studies, therefore veeil like to introduce the
following definition

Definition 5. Vertex boundary conditions are calledn-resonantiff the correspond-
ing vertex scattering matrix is energy independent.

The main motivation for this definition is that all other balany conditions lead to
vertex scattering matrices having singularities.
From spectral representation (8) we immediately obtain

13
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Theorem 6. Ask — oo, the vertex scattering matrix tends to the energy independen
vertex scattering matrix

Se= Y (D 00)d+ D (85005 = —Pn_, + Pys, (19)

Ji0j=m J:b57#m

whereN_; is the eigensubspace fét (and hence for allS(k)). In addition, the fol-
lowing holds

S, (k) = 8° + O(1/k), ask — oc.

The above theorem is a modification of the result alreadyrngbxe M. Harmer in
[37] and it implies, that for high energies, every vertextsring matrix tends to a
certain scattering matrix corresponding to non-resonanhbary conditions.

4.2. \ertex scattering matrix and connectivity

In this section we will discuss what additional conditiohsyond unitarity) are needed
for the matrix S, to connect all endpoints meeting at the vertéxThe only require-
ment we introduced so far is that the boundary conditions@®nect together only
boundary values corresponding to the vefiieX his alone is insufficient since it might
happen that the endpoints can be divided into two claBsesV; U V; in such a way
that the boundary conditions connect together the bounddnes afl’; and Vs, sep-
arately. Unfortunately, in a case like this, boundary ctiads do not correspond to
the vertexV” but rather to two (independent) verticés and V5 (see Fig. 3). In other

XA X

Figure 3: Boundary conditions and connectivity

words, if the verteX” can be chopped into two vertices in such a way that the boyndar
conditions are preserved, then those conditions are npeplsoconnecting and should

be excluded from our consideration if no special reasont®xisdo otherwise. This
problem has been discussed in details in [52], [42], but veeidlee it using the param-
eterisation via the matri%. Due to uniqueness of this parameterisation the discussion
becomes much more transparent.

For energy dependent vertex scattering matrices, we airggfacother interesting
effect. It might happen that the corresponding boundargitimms are properly con-
necting, but the boundary conditions corresponding toith& scattering matrixS:;°
are not. However, it is the limit scattering matrix that igoontant in calculating spec-
tral asymptotics. Therefore, we also need to define asyioptiytproperly connecting
boundary conditions, but let us consider one example first.

14
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EXAMPLE 3. Let the grapi" be a loop formed by just one edge = [—, 7] with
the endpoints-7 andw connected at the vertd% . Consider the boundary conditions

{1/)(—7?) = —Onp(+m),
P(r) = —Onp(—m),

which are clearly properly connecting and corresponfl te ( (Z) (Z) ) . The vertex

scattering matrix can be calculated using (12) to be

k-1 2ik

2 2
sk = | ot et

K241 k241

Clearly, it tends to the unit matrix s — oo. The boundary conditions correspond-
ing to unit scattering matrix are simply Neumann boundamyditions 9,4 (—7) =
9,9 () = 0, which do not connect the values-atr together.

Let us summarise our discussion by giving the following daéin.

Definition 7. Vertex boundary conditions are callgdoperly connecting iff the ver-
tex cannot be divided into two (or more) vertices in such a e the boundary
conditions connect together only boundary values belangineach of the new ver-
tices. Vertex boundary conditions are callasymptotically properly connecting iff

the limit scattering matrixS;° corresponds to certain properly connecting boundary
conditions.

Characterisation of all properly connecting boundary domms via the matrixs' is
rather straightforward, which again can be attributed &uhiqueness of our parame-
terisation of boundary conditions.

Theorem 8. Boundary conditiong5) are properly connecting if and only if the unitary
matrix S cannot be turned into block-diagonal form by any permutatié the basis
vectors.

We are now going to study the relation between the propemyeocting boundary
conditions and the spacd€é_; in more details. In order to do this, we need to introduce
the notion ofcoordinate subspace- any subspace i@" spanned by a certain number
of basic vectors from the standard basi€ifh, but does not coincide wit™. This is
a straightforward generalisation of the notion of coorténalanes ifR®. We say that
a subspaceV is perpendicularto a coordinate subspade iff Px N € N n K and
PnyK C NN K, whereP denotes the orthogonal projection.

Theorem 9. The non-resonant boundary conditions corresponding teriagix .S are
properly connecting iffv_; is not perpendicular to any coordinate subspace.

This theorem can be generalised to describe all asympligtpraperly connecting
boundary conditions using the fact that the subspéce is stable forS, (k).
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Theorem 10. The boundary conditions are asymptotically properly cartimey iff N_;
is not perpendicular to any coordinate subspace.

The energy independent scattering matffiis not properly connecting for example
in the following two cases:

1. Ny = {0}, N_; = C?, which corresponds to the Dirichlet boundary conditions
at the endpoints forming the vertex;

2. N, =C", N_; = {0}, which corresponds to the Neumann boundary conditions
at the endpoints forming the vertex.

Clearly, these boundary conditions are not properly cotimgand they correspond to
the case where the vertéxis maximally decomposed intoseparate edges.

4.3. Hyperplanar matching conditions

Letyp(V) = (w(x1), ¥ (x3),...,¥(x2,—1)) and let us define the following two impor-
tant families of properly connecting non-resonant boupdanditions:

1. Hyperplanar Neumann conditions— defined by a certain vectar € C” with
all components different from zero

Y(V) || w,
{ 8n1,b(V)wL w. (20)

2. Hyperplanar Dirichlet conditions — defined by a certain vectar € C” with
all components different from zero

$(V) Lu,
{ 0.(V) | u. (1)

These boundary conditions correspond to the case wheref dine subspaced/; and
N_; is one dimensional. For hyperplanar Dirichlet conditid¥s; is spanned by
and, since all components afare different from zeroN_; is not perpendicular to
any coordinate subspace. For Neumann conditionsitishat is spanned by and,
again,Ny, and thereforéV_, as well, is not perpendicular to any coordinate subspace.
It follows that both hyperplanar Neumann and Dirichlet dtinds are non-resonant
properly connecting boundary conditions. In the case ofexeformed by one end-
point, hyperplanar Neumann and Dirichlet conditions rediecclassical Neumann and
Dirichlet conditions respectively, which is the motivatitheir names. The word "hy-
perplanar” reflects the fact that one of the correspondimgzaces .y, or N_;) has
codimensionl. Note that if the vectow is chosen equal t01, 1, ..., 1), then hyper-
planar Neumann conditions coincide with the standard bagncbnditions (which are
sometimes called Neumann conditions in the literature).

For hyperplanar Neumann matching conditions (in particdita standard bound-
ary conditions) for the vertex of valeneeit may happen that the reflection coefficient
is equal to zero. It is easy to show that the other reflecti@ffioient is zero as well
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and the transition coefficients az& ande~* with a certainu € R. In such a case,

one may apply the transformation (6) from paper IV, and assalr®@btain a unitary

equivalent Laplace operator with standard boundary cmmdit Then the correspond-
ing two edges can be substituted by one single edge with tiggHeequal to the sum of
the lengths of the removed edges. This procedure is celdathing[52] and the graph

without vertices of valencg is calledclean graph

5. Trace formula for non-resonant boundary conditions

This section is based on papers | and IIl.

Unlike in previous sections, from now on we consider an eabjtgraphl’, con-
sisting of N edges, M/ vertices and” connected components, as defined in section 3.
We also assume that the graptlis clean, finite and simple, except in the case of stan-
dard boundary conditions, where we allow loops and muléglges. A graph is called
simpleif it contains no loops and no multiple edges.

The theorems for a star graph can be easily generalisedyarhiirary grapH™ in
the following way:

Theorem 11. The family of self-adjoint restrictions df,,., can be described by
boundary conditions connecting the boundary vahtes- (¢¥(V7),...,%(Va)) and

i(S—I=(S+1)0.. (22)
These boundary conditions are properly connecting iff tineye the form
i(S™ = Dp(Vin) = (5™ + 1)0np(Vin), (23)

whereS™ is a unitaryv,,, x v, matrix with N_; (5") not orthogonal to any coordinate
subspace iC.
The non-resonant boundary conditions are given by:

PN{"an"p(Vm) = 07 PN1"1¢(VW) = 0’ (24)
whereN{* & N = C*.

Assume that the boundary conditions at the vertices are@smnant. Every eigen-
function(x, k), corresponding to the energy= k2, is a solution of the differential
equation

d? 9
— g V@, k) = k(z, k), (25)

on the edges, satisfying the boundary conditions (24) aveéhiices. Foik = 0 every
solution to (25) can be written using either a basis of inc@r one of outgoing
waves (see Fig.5.)

1/}(56', k) = agj,leik‘w_w21*1| + agjeik|“’_“'2ﬂ’| S Aj = [.%‘Qj,l,mgj].

— b2j_1€—ik|x—x2j,1|+b2je—ik|x—x21|
(26)
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The amplitudes = {q; ?ﬁl andb = {b, ?fl are related to each other by the edge
scattering matrix
Sl o

€

| o,
b—S.a, whereS (k)= | _0 [ 52| ... ,sg(k):(eigdj 60 ) @7

whered; is the length of the edga ;. The amplitudes are also connected by the vertex
scattering matrices, which are obtained from the requirgtiaty (z, k) satisfies (22).

iklr—xoj_1] eik\m—mgj

azj—1€ a2;

_— —

/£C2j—1 Aj T2

Figure 4: Incoming waves at the edge

It is convenient to use the following representation for sb&ution to (25), using
only amplitudes related to every endpaintfrom V,,,
,w(x, k’) _ ajeik|x—wj| + bje—ik|x—zj|
and corresponding vectotg™,b™ < C"= of amplitudes. Then for alk # 0 the
boundary conditions (24) are equivalent to

{ Brman s =0

Py (@™ —b™) = 0. (28)

It follows thata™ andb™ are related by the corresponding vertex scattering maffix
as follows

a™ =S"b,,m=1,2,...M. (29)
The last equation implies that
1 1
22 22 stlo|...
—s,| . |, withs,= [ 0 [S5]--- |. (30)
a}\f bM : S

Note that the matriceS. andS, possess the block representations (27) and (30) in
different bases. Clearly, vectardetermines an eigenfunction of the Laplace operator
if and only if the following equation holds:

det (S(k) — I) = 0, whereS(k) = S,S. (k). (31)
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The matrixS(k) is unitary for realk since it is a product of two unitary matrices. It is
easy to see that

| S(k) ||< 1 for Imk > 0, and || S~ (k) ||< 1 for Imk < 0, (32)

since the (independent & matrix S, is unitary and the matri$. (k) satisfies (32).

Equation (31) determines the spectrumiofvith correct multiplicities for all non-
zero values of the energy. On the other hand, the multiplieit (0) of the zero eigen-
value given by this equation (i.e. the dimensiorkef (S(k) — I)), to be calledal-
gebraic multiplicity may be different from the dimension,(0) of the zero eigensub-
space ofL, to be calledspectral multiplicity

In paper Il we have calculated explicitly the spectral atgehraic multiplicities
of zero eigenvalue in case of hyperplanar Neumann and Detiatatching conditions.

For a grapH™ with cycles and with hyperplanar boundary conditions aténtices
it looks natural to impose an extra consistency conditiomngider a closed path
of discrete lengthu(p). Every such path can uniquely be defined by a sequence of
endpoints(z;, , i, , - - - , T1,,,, ) that the path comes across, whefg, andz,,, , (as
well asz,, ,, andx;,) belong to the same vertex while,, , andz,,, are different
endpoints of the same edge.

Definition 12. We say that the hyperplanar Neumann boundary conditions@msis-

tent iff for every closed path = (z;,, zi,, . . . ,xl2n(p)) the following holds
n(p) n(p)—1
H w(xbk) = H w(xl2k+1)' (33)
k=1 k=0

Similarly, the hyperplanar Dirichlet boundary conditioage consistent iff

n(p) n(p)—1
I wn,) = 0" I wiz,,,)- (34)
k=1 k=0

These consistency conditions play an important role inudatimg the multiplicities
ms(0) andm,(0).

Theorem 13. The spectral and algebraic multiplicities of the groundtetaigenvalue
A = 0 for the Laplace operator with consistent hyperplanar Neamand Dirichlet
boundary conditions are equal to:

mN(0)=C m(0) =mP(0) = 20 — x,

b C' -, @

whereC' is the number of connected components gnd M — N is the Euler char-
acteristic.

We now introduce the distributiom connected with the spectral measure
u=2mg(0)5(k) + D (6(k — kn) + 5(k + kn)) -
n=1
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For any test functiop € C§°(R), the value of the distribution[y] can be calculated,
with the help of the functiorf = det(S(k) — I) as follows

el = i 5 [ (T - EEE ) i+ 2ma(0) - ma 0000
(36)
Moreover we have the following relation
ulp] = (2ms(0) — ma(0))¢(0) =
2m/ {(Indet(S(k — i0) — I)) — (In det(S(k +i0) — 1)) yo(k)dk
=5 / {(TrIn(S(k —i0) — I))" — (TrIn(S(k + i0) — I))"}(k)dk
=5 / {Tr(In(S(k — i0) — 1)) — Tr(In(S(k 4 i0) — I))"}p(k)dk
S'(k — i0) S'(k +i0)
2m {TrS(k—zO) AT —1}¢(k)dk'

Taking into account that the matr, is independent of the energy we obtain
S(k) = S,S.(k)iD = iS(k)D

whereD = diag[d;, dy,ds,ds,ds, ds, .. .| in the basis associated with the edges. This
allows us to substitutéS (k) D into the previous formula, leading to

ulp] = (2ms(0) —ma(0))¢(0)

1
= — lim [Tr((I+S(k +ie)+...)S(k + ig)iD)
2mi e—0 ) _

+Tr((S™ Yk —ie) + S %(k —ie) +...)S(k —ie)iD)]p(k)dk.  (37)

In the formula above we can exchange the. ., and the integral sign, since the
sum under the integral is absolutely converging (see Pdpedétails). Thus we obtain
the following formula

ulel=5- / TN 87 R+ TSR+ D) (K)dk+ (2m4 (0)—ma (0))(0),

i.e.

1
u= =T [(...+ 87 (k) + I +S(k) +...)iD] + (2m(0) — m4(0))5(k). (38)
To calculate the trace, let us introduce the orthonormakhEsncoming waves to
bee; = (1,0,0,...), e2 = (0,1,0,...),..., eany = (...,0,0,1). By aperiodic orbit
we understand any oriented closed path ott is not aIIowed for an orbit to turn back
at any inner point of an edge, but it may turn back at a verteatelthat the orbit so
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defined does not have a starting point. With every such (coatis) periodic orbit, we
can associate discrete periodic orbijtconsisting of all edges that the orbittcomes
across.

Also let:

e P be the set of all periodic orbits for the graph
e [(p) be the geometric length of a periodic orpjt

¢ n(p) be the discrete length of— the number of edges that the orbit contains,

P be the set of all periodic orbits passing through the pejninto the interval
A[%] (where[ - ] denotes the integer part) and having discrete length

prim(p) denote a primitive periodic orbit gf, i. e. the shortest orbit such that
is a multiple ofprim(p),

e d(p) = n(p)/n(prim(p)) be the degree qf.

The geometric length of an orbit is equal to the sum of lengththe edges con-
tained in the orbit (including multiplicities). When the drigoes from one edge to
another, passing through a vertex, we need to take into attimelicorresponding scat-
tering coefficients.

The right-hand side of (38) can be divided into three pardeniity, all positive
powers ofS(k) and all negative powers &(k). The contribution from the first part is
equal to
iTr(ID) = % = £,

2w 2w T
whereL = dy + ds + . .. + dy is the total length of the graph.
The second part (all positive powers®fk)) is equal to

co 2N
1

%Tr[(sug)l +S(k)?+...)D] = % > > <S8"Dey,en >

r=1n=1
co 2N

=7 2D dagny 3 S0) M

r=1n=1 pEPL

1 , .
=5 D Uprim(p))S(p) '),
peEP

whereS(p) is the product of all vertex scattering coefficients alorghthp. And the
third part (all negative powers &(k)) is equal to

%Tr[(- . +87%(k) +S7Y(K))D] = % > I(prim(p))S* (p) e~ ).
peEP
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Theorem 14 (Trace formula). LetI" be a compact finite metric graph with the total
length£ and letL be the Laplace operator i, (T") determined by properly connect-
ing non-resonant boundary conditions at the vertices. Tliea following two trace
formulae establish the relation between the spectféft of L and the seP of closed
paths on the metric graph

u(k) = 2m(0)6(k) + S (8(k — k) + 6(k + k) (39)
kpn#£0
= (2m(0) — ma(0))3(K) + = 4 1 3 i(prim () (S)MP) 1 5* (p)e K1)
pEP
and
V2ri(l) = 2mg(0) + > 2cos knl (40)
kn #0
= 2m,(0) = ma(0) +2£5(0) + > Uprim (1)) (S(R)( —1(p) + 5" ()01 +1(p))-
peEP

6. Uniqueness theorems for standard boundary condi-
tions

In this section we will consider the conditions Brwhich guarantee that the spectrum
of L determined” uniquely.

The set of lengths of all periodic orbits is usually called thdength spectrum
In some cases, formula (40) allows us to recover the wholgthespectrum from the
energy spectrum. On the other hand, there are known grapkgfoh some lengths
of periodic orbits cannot be recovered. Formula (40) ingpdigectly that the spectrum
of a graph allows one to recover the lengthsf all periodic orbits from theeduced
length spectrum\’ C A defined as

AN =1l ( S Ap) £0). (41)
zf’p)e:z

The following example shows that setsandA’ can differ.

EXAMPLE 4. In this example we will show a case of a vanishingftioient A,,.
Consider the graph presented at Fig.5. There exist exduot tperiodic orbits with
the length equal t@d; + ds + d3 + dy + ds.

Assume that the degrees of the verti¢g@sandV; are arbitrary and;, = v3 = 3.
If l =2d; +d2+d3+d4+d5,then

6 [-2 -2 4
=—— | =+ —=—4+-|l=0.
z 4 9@2v4{9+9+9}

pETP
I(p) =1
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V3
dy ds
4 dl V2

ds da

<D<

Figure 5: Periodic orbits of lengthi; + ds + d3 + d4 + d5

6.1. Graphs with rationally independent edges

In this section we are going to describe the main results fPaper |, where we have
studied graphs with rationally independent lengths of edge

As we have just shown, some periodic orbits do not appeareifetigth spectrum,
but we can prove that at least some specific @weappear in it.

Lemma 15. Let T be a finite, clean and connected metric graph with rationaily
dependent lengths of edges. The reduced length spectfurontains at least the
following lengths:

e the shortest orbit formed by any interval; only (i.e. d; or 2d; depending on
whetherA; is a loop or not);

e the shortest orbit formed by any two neighbouring edgesand A, only (i. e.
2(dj + di), d; + 2dy, 2d; + di, d; + di, depending on how these edges are
connected to each other).

The first step in the reconstruction Bfis to recover the set of lengths of the edges
from the total length of the graph and the set of reduced kesgéctrum\’.

Lemma 16. Let the lengths of the edges of a clean, finite and connecté&itrgeaph

I' be rationally independent. Then the total lengthof the graph and the reduced
length spectrum\’ (defined by (41)), determine the lengths of all edges andhehet
these edges form loops or not.

Once the lengths of all edges are known the graph can be teactesl from the
reduced length spectrum. Lemma 15 implies that by lookinthatreduced length
spectrumA’, one can determine whether any two edggsand A, are neighbours or
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not (i. e. whether they have at least one common endpoirg)edges) ; andA,, are
neighbours if and only i\’ contains at least one of the lengthst di,, 2d; +dx, d; +
2dy, or Q(dj + dk)

Lemma 17. Every clean, finite and connected metric grapltan be reconstructed
from the setD = {d;} of the lengths of all edges and the reduced length spectrum
A’ — the subset of all periodic orbits defined by (41), provideat &; are rationally
independent.

Any graphI’ can be reduced to a simple subgrdphby deleting all loops and
removing all but one of the edges connecting the same twgsrt

We have, in Paper |, proven the following theorem in a cowsire way, by first
reconstructing a simple subgraph and then by adding all multiple edges and loops.

Theorem 18. The spectrum of a Laplace operator on a metric graph detegsithe
graph uniquely, provided that:

e the graph is clean, finite and connected,

¢ the lengths of edges are rationally independent.

6.2. Graphs with rationally dependent edges

In this section we are going to describe the main results feaper 11, in which we
analysed graphs with rationally dependent lengths of edges

Graphs with trivially rationally dependent edges

We say that the lengths of the edgestargally rationally dependenif they are equal.
We will now discuss graphs where the set of all lengths of edgeationally inde-
pendent, but where some edges can have equal lengths. Wealifuch entities
graphs with trivially rationally dependent edgéd/e shall prove that even such graphs
can be uniquely reconstructed from the length spectrum atiadl length of the graph
— and, therefore, can be uniquely reconstructed from spectf Laplace operator
on this graph — provided that the edges with the same lengtegarated by “suffi-
ciently” many edges with rationally independent length& réktrict our considerations
to graphs that are finite, clean, connected and simple (itleout loops or multiple
edges).

We shall begin by generalising Lemma 15 to the case of gragthgnvially ratio-
nally dependent edges.

Lemma 19. LetI" be a finite, clean, connected and simple graph with triviggiijo-
nally dependent edges. Assume that the edges of the sartie d&agot neighbours
to each other. Then the reduced length specti\fntontains at least the following
lengths:

e 4d;, forallj=1,...,N;

e 2d; if there exist exactly one edge of length
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e 2(d; + dy,) iff the edges having lengths andd,. are neighbours;
o 2(d; +d; +dy) if A;, Aj and Ay, form a path but do not form a cycle.

As before, from the reduced length spectrum, we can obtaitetigths of all the
edges. However, we can also get the exact number of edgetheigame length, that
exist in the grapht.

Lemma 20. Assume thal is a finite, clean, connected and simple metric graph with
trivially rationally dependent edges. Let us denote the lnemof edges of lengtth;, by
51, number of edges of length by (3, ..., number of edges of lengih by 3,, (where
G; >1fori=1...n).

Then the total lengtif of the graph and the reduced length spectrihdetermine
the lengths of all edgeslf), as well as the number of edges having these particular
lengths ;).

Lemma 21. Assume thal is a finite, clean, connected and simple metric graph
with trivially rationally dependent edges. Also assume #ray two edges\, A’ with
lengthsd;, d; (wherei can be equal tg), for whichg; > 2 and3; > 2 (i. e. they are
both repeating edges), are separated by at least two noeattgpy edges (i. e. edges
for which g = 1).

Then the graphi® can be reconstructed from the get= {d; } of the lengths of all
edges and the reduced length spectiim

Now, using these three lemmata, we can prove the followiagrém

Theorem 22. The spectrum of a Laplace operator on a metric graph detegsithe
graph uniquely, provided that:

e the graph is clean, finite, simple and connected,
e the edges are trivially rationally dependent,

e any two repeating edges are separated by at least two nogatem edges (i. e.
ones having rationally independent lengths).

Graphs with weakly rationally dependent edges

In the last part we shall consider a special class of grapts nationally dependent

edges and we will prove that for those graphs the unique staartion from the spec-

trum of the Laplace operator is still possible. We shall asdyefore, the trace formula
and some properties of mutually prime numbers.

Definition 23. Assume that the metric graghis finite, clean, connected and simple.
We say that the lengths of the edges are weakly rationallgmiggnt if the lengths of
edges belong to the set

{d17 p£d17 @dla ce plrl dlad27 @d27 e p2’r.2 d27 AR d’n7 %dTLa s pnrn’ dn}7

q12 q13 qiry q22 q2r, dn2 qnr,
wherep;;/q;; > 1 are proper fractionsg;s, ¢;s, - - ., g, are mutually prime for all
1=1,...,nanddy,ds,...,d, are rationally independent.
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Observe that ifn = 1 then all edges in the graph are rationally dependent. On
the other hand, if alp;; = 0 for j > 2 and all4, then all edges in the graph are
rationally independent. Note that the denominatgysare mutually prime but it does
not immediately indicate that they are prime numbers.

Lemma 24. Assume thal' is a finite, clean, connected and simple metric graph with
weakly rationally dependent edges. Then the total ledhtf the graph and the re-
duced length spectrur’ determine the lengths of all edges.

Lemma 25. Assume thal' is a finite, clean, connected and simple metric graph with
weakly rationally dependent edges. Then the grEgtan be reconstructed from the
setsD = {d, } and the reduced length spectruth

From the two above lemmata we can easily prove the followhegtem

Theorem 26. The spectrum of the Laplace operatoon a metric grapH” determines
the graph uniquely, provided that the graph is clean, firstmjple and connected, and
the edges are weakly rationally dependent.

7. Reconstruction of the boundary conditions of star
graphs

In paper [3] S. Avdonin and P. Kurasov have considered theda sets: (1) reduced
by one dimension Titchmarsh-Weyl matrix, (2) reduced by dingension the scatter-
ing matrix and (3) reduced by one dimension response opd@tsufficiently large
time parameter. They have shown that any one of those setgsatine to recon-
struct uniquely the connectivity of the tree, the lengtheddges and the potentigfor
Schibdinger operator on a tree with boundary points (equal to the dimension of the
scattering matrix).

Similar inverse problem is described in this section andbeen investigated in
paper IV. We will show that for a star graph with the verféxof valencev and for
asymptotically properly connectirmpundary conditions, the principal —1) x (v—1)
block of the scattering matrix known for one particular \abf the energy, essentially
determines the boundary conditions (up to one real paraywetéh in principle can-
not be recovered). Explicit interpretation of this freegraeter is given using unitary
equivalent operators. Later we will also show that knowingaddition, the diagonal
elements of the principal block for a finite number of enesgiae may reconstruct the
boundary conditions even in the case of jusiperly connectindpoundary conditions.

Let us remind that the vertex scattering massix k) is given, after (12), as

(k+1)S+k-1
(k—1)S+k+1
This formula allows one to establish explicit connectiotwmen vertex scattering ma-
trices for different values of the energy parameter
(k + ko) Sy (ko) + k — ko
(k — ko)Sy(ko) + k + ko’

S, (k) = k#0. (42)

k, ko # 0. (43)

Su(k) =
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7.1. Asymptotically properly connecting matching conditons

In this section we discuss the possibility to reconstruetrttatching conditions from
the principal(v — 1) x (v — 1) block (S, (k))..», Of the vertex scattering matrix. This
part of the matrix is obtained when we send plane waves alenfjrstv — 1 edges and
measure the reflected waves coming along the same edges dlistuss first whether
this reconstruction is unique or not. Consider the follggvimitary transformation in
LQ (Fstar)
 f(=x), reN;,j=1,2,..,v—1,
@t ={ I, TEN (44)

This transformation does not change the differential dpetaut do change the match-
ing conditions at the vertex. The corresponding unitaryrixat’ is changed as follows

S? = RyS°R_y, (45)

whereRy is the followingv x v matrix:

10 0 0
01 ...0 0

Ry =diag{1,1,...,1,e®}y = + :+ -+ = |. (46)
00 ... 10
00 ... 0 €

It is clear that this transformation does not change thekb(¢ (k)),., of the matrix
S. The same holds for the vertex scattering matrix, since @pJies that

So(k) = RoS)(k)R—o, (47)
whereS? (k) is the vertex scattering matrix corresponding to the nevditmms.

Theorem 27. Consider the set of x v vertex scattering matriceS, determined by
certain asymptotically properly connecting vertex bouydzonditions and having the
same principalv — 1) x (v — 1) block (S, (ko)) v With det((S,(ko))wv:w + 1) # 0.
This family of matrices can be described by one real phasarpater so that

S9(k) = ReSY(k)R_o, (48)
whereR, is given by (46) and? (k) is a certain particular member of the family.

It follows that in the case of asymptotically properly cootieg matching condi-
tions the vertex scattering matrix for all values of the ggearan be recovered from its
principal (v — 1) x (v — 1) block given for a certain value of the energy paraméter
up to one real parameter connected with the unitary tram&fion given by (47) (pro-
videddet((Sy(ko))w:w + I) # 0). The corresponding Laplace operators are all unitary
equivalent to each other.

We would like to mention that the result just proven is an egien of Theorem 1
from [41], where it is shown that the knowledge of the (whdegttering matrix for
a certain energy allows one to reconstruct the boundaryitionsl at the vertex and
therefore determine the vertex scattering matrix for dieotvalues of the energy.
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7.2. Properly connecting matching conditions

In what follows, we discuss the possibility to recover theéehang conditions from the
principal(v—1) x (v—1) block of the scattering matrix given for different energiest
without assuming that the boundary conditions are asynepibt properly connecting.
It is only assumed that the boundary conditions are justengponnecting. This
restriction is not essential, since in the case of not pigm&mnnecting conditions one
may solve the inverse problem for each block separately.ofhecase that has to be
excluded is where the last edge is not connected to the rés¢ atar graph. It is clear
that in this case no information concerning the boundangitmm for edge numbes
is contained in the principgdb — 1) x (v — 1) block of the scattering matrix.

In the following theorem we are proving that the knowledgéhef principal block
(S (k))w:w for several energies allows one to reconstruct the boundamditions at
the vertex up to the unitary transformation given by (45) &46).

Theorem 28. Consider the set of x v vertex scattering matriceS, determined by
certain properly connecting vertex boundary conditiond aaving the same principal
(v—1) x (v —1) block (S, (ko))vw, ko > 0. Assume in addition that these matrices
have the same diagonal elements(k,), 7 = 1,2,...,v — 1 for certain different
kn > 0,k, # ko, n = 1,2,...,2v — 3. Then this family of matrices can be described
by one real phase parameter so that

So(k) = RoSy (k) R0, (49)
whereRy is given by (46) and? (k) is a certain particular member of the family.

The family of vertex scattering matrices having the sameqipal (v —1) x (v—1)
block can be described by two real parameters so that

5% (ko) = RaSO(ko) Ry, (50)

whereSY (k) is a certain particular member of the family. Then the scaiematrix
for all values of the energy parametecan be calculated using (43)

(k + ko) S P (ko) + k — ko
(k — ko)SSP (ko) + k + ko

SB(k) = (51)

The proof of this theorem is based on the analysis of the digigglements of the
matrix S (k) and their dependence on the parameter o + 3. It appears that if all
those diagonal elements are independent tifen S0 (kq) has a block diagonal form
and hence the corresponding boundary conditions are npegyoconnecting.
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Abstract

The inverse spectral problem for the Laplace operator on a finite metjhgs inves-
tigated. It is shown that this problem has a unique solution for graphs wiinady
independent edges and without vertices having valenge prove the result trace formula
connecting the spectrum of the Laplace operator with the set of perioblits dor the
metric graph is established.

1. Introduction

Differential operators on metric graphs (quantum grapss) father new and rapidly
developing area of modern mathematical physics. Such tipsiean be used to model
the motion of quantum particles confined to certain low disi@nal structures. This
explains recent interest to such problems due to possilplécagions to quantum com-
puting and design of nanoelectronic devices [1].

Quantum graphs are differential (self-adjoint) operatmmsmetric graphs deter-
mined on the functions satisfying certain boundary coodgiat the vertices. Therefore
these operators combine features of both ordinary andapdiffierential equations. On
every edge the differential equation to solve is an ordim#fiferential equation which
includes the spectral parameter. On the other hand the €guohlem on the whole
graph is not solvable but for special values of the specedipeter and Cauchy data
only. The main mathematical tool used in this article - tlaedr formula - supports
this point of view. This formula establishes the connectietween the spectrum of
the Laplace operator on a metric graph éimellength spectrumthe set of all periodic
orbits on the graph. This is in complete analogy with the stassical approach due
to V. Guillemin and R. Melrose [19; 20] and the relations betw the spectrum of a

*Appeared inl. Phys. A: Math. Ge38 (2005) 4901-15
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Laplace operator on certain two-dimensional domains ardatprs on graphs estab-
lished in [6; 7]. J.P.Roth [31] has proven trace formula foatum graphs using the
heat kernel approach. An independent way to derive traceuiar using scattering ap-
proach was suggested by B. Gutkin, T. Kottos and U. Smilafizky24]. We provide
mathematically rigorous proof of this result. The tracerfata is applied to reconstruct
the graph from the spectrum of the corresponding Laplaceatgre This procedure can
be carried out in the case when the lengths of the edges ayeally independent and
the graph has no vertices having valeBdcA rigorous proof of this fact is also provided
in the current paper (Theorem 2). We decided to restrict onsicleration to the case
of the so-called Laplace operator on metric graphs - thergkderivative operator with
natural or free boundary conditions at the vertices. Thaltggroven in the current
paper are stronger than those proposed in [21]: it is notiredjthat the graph is simple
i.e. graphs with loops and multiple edges are allowed. Wewethat our methods can
now be extended to prove similar results for arbitrary quangraphs with rationally
independent edges.

Explicit examples constructed in [21; 27; 3] show that theemse spectral and
scattering problems for quantum graphs in general do na Aawnique solution (if no
restriction on the lengths of the edges is imposed).

The notion of quantum graphs was introduced in the 80-ies.BaBlov and N. Ge-
rasimenko [17; 18; 30]. Many important examples includimgpds with higher di-
mensional inclusions were considered by P. Exner asefa [13; 16] (see also two
conference proceedings volumes [14; 15] collecting asian this subject). The ex-
tension theory used in the current article is similar to oeeetbped for multi-interval
problemsin[8; 9; 10; 11; 12]. One can find recent refererstanlith historical remarks
in the book [2] and volumes [25; 26] devoted entirely to quamgraphs.

The spectral problem for quantum graphs has been investigatently by K. Na-
imark, A.Sobolev and M. Solomyak [28; 29; 32; 33; 34; 35]. Tiheerse spectral
problem was investigated by B. Gutkin and U. Smilansky [21d &r a special class
of operators in [5]. Borg-Levison theorem for Sturm-Lolevibperator on trees was
proven in [4]. The direct scattering problem was invesgdaby V. Kostrykin and
R. Schrader [23]. The inverse scattering problem is disligs[27] and [22].

2. Basic definitions

Consider arbitrary finite metric graph consisting of N edges. The edges will be
identified with the intervals of the real lin®; = [x9;_1,29;] C R, j =1,2,...,N.
Their length will be denoted by, = |z2; —z2,_1|. Let us denote by/ the number of
vertices that can be obtained by dividing theget} 7Y, of endpoints into equivalence
classes/,,,m = 1,2,..., M. The coordinate parametrization of the edges does not
play any important role, therefore we are going to identifgtric graphs having the
same topological structure and the same lengths of the edgese precisely this
equivalence is described in [27; 3]. A graphis calledcleanif it contains no vertices
of valence2. In what follows we are going to consider clean graphs onhgesivertices
of valence2 can easily be removed by substituting the two edges joindaearertex
by one edge with the length equal to the sum of the lengthseotwio edges. This
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procedure is calledleaning[27].
To define the self-adjoint differential operator Brconsider the Hilbert space of
square integrable functions @h

N N
H=L*T) =) L*(4)=0) Lz 1] 1)
j=1

n=1

The Laplace operator of is the sum of second derivative operators in each space
LQ(Aj)v

H = @Z <—@> . (2
j=1

This differential expression does not determine the sdjlfiat operator uniquely. Two
differential operators ir.?(I") are naturally associated with the differential expression
(2): the minimal operator with domaibom (H i) = © Zj.vzl C§°(A;) the maximal
operatorH ., with the domaiDom (Hyax) = & Z;.V:l W3 (A;), whereW3 denotes
the Sobolev space.

All self-adjoint operators associated with (2) can be ot#diby restricting the
maximal operator to a subspace using certain boundary tamsliconnecting bound-
ary values of the functions dnassociated with the same vertex.

The functions from the domaibom (H,,.x) are continuous and have continuous
first derivatives on each edgk;. The Hilbert spacé introduced above does not
reflect the connectivity of the graph. It is the boundary d¢bons that connect values
of the function on different edges. Therefore these comutihave to be chosen in a
special way so that they reflect the connectivity of the gr&sre [27] for the discussion
how the most general boundary conditions can be chosen.elgutrent article we
restrict our consideration to the case of natural, or fragndary conditions given by

M

{ f((ﬂj) = f(xk)v Zj,Tp € ‘/ma m=1.2 5 (3)

> ev, Onf () =0, 02,

whered,, f(z;) denotes the normal derivative of the functipiat the endpoint;. The
functions satisfying these conditions are continuous aétvértices. In the case of the
vertex with valence conditions (3) imply that the function and its first derivatiare
continuous at the vertex, i.e. the vertex can be removedssided above.

The Laplace operatof (I') on the metric graph' is the operatoi,,,.. given by
(2) restricted to the set of functions satisfying boundamyditions (3). This operator is
self-adjoint [27] and uniquely determined by the grapiherefore the inverse spectral
problem forH (T") is to reconstruct the graghfrom the set of eigenvalues.

The Laplace operatoH (I') can be considered as a finite rank (in the resolvent
sense) perturbation of the operaffdy,., restricted to the set of functions satisfying
Dirichlet boundary conditions at the vertices. This opar#g equal to the orthogonal
sum of the second derivative operators on the disjoinedvaland therefore has pure
discrete spectrum. Hence the spectrum of the opefatd)) is also pure discrete with
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unigue accumulation point atoco. The quadratic form of the operator

(Hf, f) = Z/x 1 f—x—Z/ (z)|?dz >0

is nonnegative and therefore the operatbis nonnegative. Thus the spectruméf
contains of an infinite sequence of nonnegative real nunamesmulating ter-oco. The
kernel of the operator contains only constant function§'¢eee Lemma 1).

3. Trace formula

In this section we establish the correspondence betweepasitve spectrum of the
operatorH (I') andthe length spectrurof the metric grapi™ - the setL of lengths of
all periodic orbits ofi". Our presentation follows essentially [21; 24], but we wertea
to correct few minor mistakes making presentation mathiealt rigorous.

Let us establish the secular equation determining all peséigenvalues of the
operatorH. Suppose thap is an eigenfunction for the operator corresponding to the
positive spectral paramet& = k% > 0. Then this function is a solution to the one-
dimensional Sclidinger equation on the edge% = k2. The general solution to
the differential equation on the edde; = [x2;_1, z2;] with the lengthd; = |zo; —
x2;_1| can be written in the basis of incoming waves as follows

¢(T) — azj_leik|x7m2j_1| +a2jeik|m7m2j|’ (4)

wherea,, is the amplitude of the wave coming in from the end paint

\a2j161k|x—m2j1 a2jelk‘aﬁ—$2j
—_— -~
/30247‘—1 Aj T2;

The same solution in the basis of outgoing waves possessagar sepresentation

'(/)((L) _ b2j67ik\w712j| + b2j71€7ik|;rf:z2j,1|’

ij—l B 0 eik’dj asj—1
( bo, ) = ( Gikd; as; ) (5)

The following notation will be useful

where
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3. TRACE FORMULA

If one introduces th& N dimensional vectors of amplitudes of incoming and out-

going waves
N N
(R {Ce)
a2; j=1 ’ ij j=1 ’

the relation (5) can be written as

b=¢a, whereg—=|_0 €[ .. (6)

is a block matrix composed of matriceson the diagonal.

Consider any verteX,,, = {z,,z,,...,2;, } of valencev,, = val(V,,) con-
necting exactlyv,, edges (counting multiplicities). Then knowing the ampulits
bi;,j = 1,2,...,v,, of all wavesblje‘““'x_"'lj| approaching the vertek,,, the am-
plitudesa;,,j = 1,2,...,v,, of all wavesa,, etkle—a;] going out from the vertex can
be calculated from the boundary conditions (3).

We introduce the notations

all bll

a12 b12
a” = , b= :

aj bl

vm vm

Then the relation between the vectdf andb™ is described by a certain vertex scat-
tering matrixc™ determined by the boundary condition

a™ = g™p™, 7)

For natural boundary conditions the vertex scattering imaes not depend on
the energy

2 .
m o_ o ? J#k,
Ok = { Lo oy, m7h ®
Observe that for,, = 2 andv,, = 1 the scattering matrices are trivial and equal
1 . . .
too = (1) 0 tando = 1, respectively, which explains the reason to call the

boundary conditions (3) free or natural (and the operatdhe Laplace operator). For
the same reason we have to exclude vertices with vafefroen our consideration and
consider clean graphs only, since one cannot "distingwehtices of valenc@ with
natural boundary conditions from the other internal powftshe edges. In the case
vm = 1 (loose endpoint) the boundary condition coincides with idaan condition.

TObserve that in our parametrization the scattering m%rb({ (1] ) corresponds to zero reflection

coefficient and unit transition coefficient — no scatteringurs in that case.
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The connection between the amplitudesand a given by the vertex scattering

matrices appears in a simple way if one considers the basigiased with the vertices
1 1

a2 b2 ot | 0

a b 5

=X where ¥ = 0 |o” |- |. 9)

)

aM b]\/]

Then formulae (6) and (9) imply that the amplitudedetermine an eigenfunction of
H(T) for E > 0ifand only ifa = X&a, i.e. the matrix

U(k) = 2E(k) (10)

has eigenvalué anda is the corresponding eigenvector. Observe that the mat¥ice
and€& have simple representations in different bases assoocidthdhe vertices and
edges respectively. Thus the nonzero spectrum of the @pdiatan be calculated as
zeroes of the following function:

F(k) = det(U(k) — I) = 0 (11)

on the positive axis. Let us denote the eigenvalues of théatapmperato#f in non-
decreasing order as follows

Eo=ki=0<E =k <E=k<..
Then the zeroes of the functigfitk) are situated at the points

k=0,2v/E1,£\/Fs, ...

(Lemma 1 see below, implies that, = 0 has multiplicity1). Together with the secular
equation (11) we are going to consider the correspondimgiisystem

(U(k) — I)a =0, (12)

which has nontrivial solutions if and only if (12) is satigfie

Let us call byspectral multiplicitythe multiplicity of the eigenvalué’ of the oper-
ator H and byalgebraic multiplicitythe dimension of the linear space of solutions to
the equation (11).

The spectral and algebraic multiplicities of all non-zeigeavalues off coincide,
since forE # 0 there is a one to one correspondence betweand (z) (see (4)).

Let us study the poinE’ = 0 in more details.

Lemma 1. LetI" be a connected metric graph withi edges and\/ vertices. Then the
point £ = 0 is an eigenvalue for the Laplace operatlrwith the spectral multiplicity
1 and algebraic multiplicityN — M + 2.

PROOF. IfE = 0 then the corresponding eigenfunction should satisfy tHevie
ing equation—dz—w = 0 on each edge. The solution to this equation is just a linear

dx?
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function. In addition the function should satisfy the boandconditions (3). To prove
the first part of the lemma it is enough to show that the uniggergunction is con-
stant (having equal values on all edges). Assume that teene €igenfunction which
is not constant. Since such function is linear on the edgaiains its maximum and
minimum at the end points of the edges, i.e. at the verticessider the vertex being
the global maximum point for the function. Then the sum of tleemal derivatives
at this vertex is a sum of non-positive numbers but it is edqoaero. Therefore all
normal derivatives are equal to zero and the function is teoion all edges meet-
ing at the vertex in question. It follows that the eigenfumetattains maximum at all
neighbouring vertices. Proceeding with the same argumehtaking into account the
continuity condition we conclude that the function is camston the whole graph since
it is connected.

The general solutions to the equation (12) are given by (4¢ach edge. Now
if E = 0thenk = 0 and using continuity of the eigenfunction at the verticeés, t
amplitudesa; have to fulfill the relatiorus;—1 + a2; = asp—1 + a2, Wherey, k are
indices such that the edgeés; and A, are connected. When the graph is connected
there is always a path from\; to any other edge\;. This system of equations is
equivalent t the following system @f — 1 linearly independent equations; + as =
agj—1 + azj, Wherej =2,..., N.

Moreover, the second boundary condition provides an aditiMv — 1 linearly
independent relations among elememfs Thus the number of linearly independent
solutions to (12) is equal t8N — (N — 1) — (M — 1) = N — M + 2. Hence the
algebraic multiplicity isN — M + 2. O

Thus the secular equation (11)gives all nonnegative eaeas ofH (I") with cor-
rect multiplicities except for the poirf = 0.

The functionf is analytic inC, because all elements of the finite matkixk) are
analytic functions of the variable. Zeroes of this function cannot accumulate to any
finite point, sincef is analytic and it is not identically equal to zero. This gianother
proof for the fact that the spectrum of the operatbris discrete.

Let us introduce the distributiom connected with the spectral measure

=6k Z )+ 0(k+ k).

For any test functiop € C§°(R) the value of the distribution[¢] can be calculated
using the functiory as follows
1 [/ (k—ie) [fl(k+ is))
— — . k)dk — (N—M+1)p(0), (13
(Lime - LEE ) an )e(0). (13
where the correction term (N — M + 1) (0) appears due to the difference between
the spectral and algebraic multiplicitiesiat= 0.
Since the functionp has compact support, say the interjealb], the sum is in fact
finite and thus it is sufficient to study the case when the stgdg contains only one
zero of f, say a simple zer®;. In this case we have

oo b 1 — 3 l i
[ §(k —kj)p(k)dk = 113%% <J;((:_ if)) - J;((:Lj) p(k)dk

el =l o)
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1 kj—x kj+x b
= 1. —_— e
lim / + / T /k ) L etk

wherey < 1. The first and the third integrals have trivial limits

lim (/j’jx +/kj+x> (... )p(k)dk =0,

since%ﬂk) is a continuous function outsidé; — x, k; + x). We can split the
middle integral into two as follows

1 kj+x kj+x
lim —_ga(kj)/k ( )dk + lim — ( )(gp(k) — p(kj))dk.

e—0 271 =X e—0 271 kj—x

The integrand in the second integral is uniformly boundexd], therefore its absolute
value is less than a constant timesT he first integral can be transformed to the integral
over a small circle arounkl;, due to residue calculus equaltok; ). Therefore we have

Loy [ (L= fEEY
tig Lopth) [ (L PO ki) = ath - k)

If the support ofp contains several zeroes ffthen the following formula holds

1 [ _ )
gl =5 | (in f(k = i0))' — (In £k +i0))J(k)dk — (N = M + 1) (0). (14)
For any diagonalizable nonsingular matrdxthe following equation holds modulo
27

Indet A = Trln A. (15)

In the case when all entries of the matrix functidn= A(k) are differentiable we get
the equality:
(Indet A(k))" = (Trln A(k))". (16)

The matrixA(k) = U(k) — I is diagonalizable for redt, sinceU (k) = ZE(k) is
unitary there. This property holds true in a certain neiglthood of the real line, since
the entries oE (k) are analytic functions.

Moreover the matriXU (k) — I = X&(k) — I is nonsingular outside the real axis
because

1. forImk > 0, ||U(k)|| = ||E(k)|| < 1, this implies thatlet(U — I) # 0,

2. forImk < 0, [[UTL(k)|| = ||E7(k)|| < 1, this implies thatdet(U — I) =
det(U(I —U1)) =detU -det(I —U~Y) #0.

Formula (16) holds forA(k) = U(k) — I and fork # k,, from the neighbourhood of
the real line.
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With the functionf (k) = det(U (k) — I) we have then

ulp (N—=M+1)p(0) =
o / {(ndet(U(k — i0) — 1)) — (In det(U(k +i0) — 1)) yo(k)dk

=5 / {(TrIn(U(k —i0) — 1)) — (Tr In(U (k 4 i0) — I))"}p(k)dk

=5 / {Tr(In(U (k —i0) — I))" — Tr(In(U (k 4 i0) — I))"}p(k)dk
U’ (k — i0) U’ (k + i0)

= omi {TrU(k—zO) —7 "Tt+0) —I}‘p(k)dk'

Since||E(k+ig)|| < 1, the norm||U (k +1¢)|| is also less thah and the geometric
expansion can be used

U’ (k + i)

T—UGtio) Te((I + Uk +ic) + U(k + ie) + .. )U' (k + ie))

In the lower half-plandm(k — ic) < 0, ||U~*(k — ic)|| < 1 and we get:

Utk —ie) 1 U'(k — ie)
Uk —ie)—1 " Ulk—ie) I-U-(k—qe)
=TeU(k —ie) (I +U 'k —ie) + U ?(k —ic) +...)U'(k —ig))

=Te((U Mk —ie) + U2 (k —ie) +...)U'(k —ig)).

Tr

Putting together the last two expansions we have

o0

ulp]+(N—=M+1)p(0) = i lim [Tr((I +U(k+ig) +...)U'(k +ig))

2mi e—0 )

+Te(U Yk —ie) + U %(k —ie) + .. )U'(k — ic))|p(k)dk.
Taking into account that the matriX is independent of the energy one gets
= XE&iD = iUD,

whereD = diag[d;,dy,ds,ds,ds,ds,...] (in the basis associated with the edges).
Substitution into the previous formula implies

ulp] + (N — M +1)p(0) = % gli% - [Tr((I + U(k +ie) +...)U(k +ie)iD)
+Tr((U 1k —ie) + U 2(k —ig) + ... )U(k — ie)iD)]p(k)dk a7

In the last formula one can exchange the. ., and the integral sign, since the
sum under the integral is absolutely converging. To proa¢dine can use the fact that
the test functiorp has compact support and is infinitely many times differdaéiand
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therefore its Fourier transform decays faster than anynmotyal, i.e. in particular the
following estimate holds

> 7 % c
‘/ etk (1Y dk| < e ldl>1

where(' is a certain positive constant. Entries of the matrités) are exponential
functionse?(*+%)4; Therefore the entries of the matiX™ (k + ic) are equal to sums
of exponentials:' %) 2 7%1 925 where@ = (a, @, ..., ) is @anm-dimensional

vector with nonnegative integer coordinates less or equdl tThe number of all such
vectors is less tham™ ~1. Then the product of matricd$™ (k)D can be written as a
finite sum with less tham®¥ ! items

]f+l€ ZB 6 i(k+ie) Zm d.,

where the norms of the constant matridés are not greater than the norm of the
matrix U™ (k + ic)D equal tomax{d;}. Therefore the traceflr Bz| are less than
2Nmax{d;}. Then every item containing positive powersléttan be estimated as

‘ /O;Tr[Um(k+ia)D]go(k)dk‘ - | L T

ZB 62(k+1€)zm da ] (p(k)dk

< Z2Nmax{d }‘/ i(ktie) 35y da @(k)dk‘

C - £
(min {d; })N+1 = m?’
(18)

whereK is another constant. Estimating the sum of negative powelsin a similar
way the following formula is now proven

N-1
< m” " 2Nmax{d,} N

ulel = 5 /jO Te((.. 4T (k) + T+ U (k) +.. )iD)p(k)dk — (N — M +1)5(0),
i.e.
"y %Tr [+ U (k) + T+ U(k) +...)iD] — N6 (k). (19)

To calculate the trace, let us introduce the orthonormakhlEsncoming waves to
bee; = (1,0,0,...),e2 = (0,1,0,...),...,eany = (...,0,0,1). By aperiodic orbit
we understand any oriented closed pathl'omote that the orbit so defined does not
have any starting point. To any such (continuous) periodiit  one can associate the
discrete periodic orbitonsisting of all edges that the orbit comes across. Also let

e P be the set of all periodic orbits for the graph
I(p) be the geometric length of a periodic orijt

e n(p) be the discrete length of- the number of edges that the orbit comes across,
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e P be the set of all periodic orbits going through the paipt into the interval
A[%], where[ - ] denotes the integer part, and having discrete length

e prim(p) denotes a primitive periodic orbit, i.e. such thais a multiple of
prim(p)
e d(p) = n(p)/n(prim(p)) is the degree op.

The geometric length of an orbit is equal to the sum of lengftthe edges com-
posing the orbit (with multiplicities of course).When théibrgoes from one edge to
another it passes through a vertex and we will need to takeaotount the corre-
sponding scattering coefficients. Then let us denot@ by) the set of all scattering
coefficients along the orbjt.

The right-hand side of (19) can be divided in three partsatithe all positive pow-
ers ofU and all negative powers @f. The first part gives

2L L
27TTr(ID) o 71"
wherel = dy + dsy + ... + dy is the total length of the graph.

Contribution from all other terms can be calculated usingexponding periodic

orbits. Let us consider for example the contribution frorh:

1 1 2N
—Tr(U*D) = — 4D )
5 r(U*D) o Z < U"De,, e, >

n=1

Using thatDe,, = d[nTH}en and definition (10), the trace can be calculated

1 2N
Tr(UD) = — Y dingy <Ule,, e, >
2 1 [ 2 ]
n=

2

2N

= oY (T o) M@

n=1 pEP4 o €T (p)

Now we will sum all positive powers

1 co 2N
—Tr[(U'+ U+ U +..)D] = — D
- Tl(U + U+ U + .. )D] %;anU €n,en >
co 2N
ikl(p)
2 > diegy Yo ([ o) et
s=1n=1 PEP; 0T (p)
1 . m 7
=§Zl(pr1m(p))( H Uz‘j) M)
pEP o eT (p)
Similarly we have for negative powers
1 —m —ikl(p)
ﬁTr[( 4+UP+U24+U! lerlm ( H Uij)e P,
pGP o €T (p)
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For the sake of simplicity one can introduce:

Ay =1primp) ([T o). A =teime)( ] oF) @0

o €T (p) o €T (p)

Thus we have proved the following trace formula (21), whigfairigorous coun-
terpart of the formula derived by B. Gutkin, T. Kottos and thiinsky in [21; 24].

Theorem 1 (Trace formula). Let H(I") be the Laplace operator on a finite connected
metric graphl’, then the following two trace formulae establishes thetietebetween
the spectrum{£?} of H(I') and the set of periodic orbit®, the number of edged’
and the total lengtihC:

u(k) = 6(k) + > (8(k — kn) + 60k + kn)) (21)

n=1

‘C 1 i * _—1
= —(N =M+ 13k) + =+ 5= (A €™M0 4 Ay e ikI0),

2m e
and -
a(l)=1 —&—Z(e‘ik"l + e'nl) (22)
== (N = M+ 1) +2£5(0) + > (A0( = 1(p) + A;0(1 + U(p)

pEP
whereA,, A; are independent of the energy complex numbers given by (20).

The second formula (22) is just a Fourier transform of (2X)thé graph is not
clean, then the coefficient4, containing reflections from the vertices of valercare
equal to zero. If the graph is clean, then (8) implies that@diificientsA,, are different
from zero, but it may happen that the singular suppott(éf does not contain lengths
of all periodic orbits (see the following section).

4. The inverse spectral problem

In this section we are going to apply formula (22) to prove tha inverse spectral
problem has unique solution for clean finite connected mefraphs, provided the
lengths of the edges are rationally independent.

The setl of lengths of all periodic orbits is usually called the lemgpectrum.
In principle formula (22) allows one to recover the lengtlecpum (of periodic or-
bits) from the energy spectrum (of the Laplace operdfdr But this relation is not
straightforward and we are able to prove it in certain spexEaes only (see the fol-
lowing section). Formula (22) implies directly that the sfpem of a graph allows one
to recover the lengthisof all periodic orbits from theeduced length spectrufid C L

defined as
L’:{l:( 3 A,,) £0}. 23)

pETP
I(p) =1
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Lemma 2. LetI" be a connected finite clean metric graph with rationally ipee-
dent lengths of edges. The reduced length specfrloontains at least the following
lengths:

e the shortest orbit formed by any interval; only (i.e. d; or 2d; depending on
whetherA ; forms a loop or not);

e the shortest orbit formed by any two neighbouring edggsand A, only (i.e.
2(dj + dg), d;j + 2di, 2d; + di, d; + d;, depending on how do these edges are
connected to each other).

PROOF. Note that if the graph is clean and there is a uniguedierorbit p, of a
certain lengtH(po) then the corresponding sum degenerates and is differentdeno:

Do Ap=Ay, 0. (24)
pETP
I(p) = L(po)
If there are several, say orbits having the same length gsand all A - coefficients
are equal, then the sum is different from zero:

Z Ap =rAy, #0. (25)
pEP
I(p) = L(po)

e Inthe case); is a loop, there are two orbits of length with equal coefficients
A. If A; does not form a loop, then the shortest orbit is unique andemagh
2d;.

e Suppose that neithex; nor A, forms a loop and they do not form a double edge.
Then the shortest possible length of an orbit formed\yyandAy, is 2(d; + dx)
and such orbit is unique.

Suppose that exactly one of the two neighbouring edgesAsajorms a loop.
Then there are two orbits having the shortest possible hesigt- 2d;, and the
correspondingd - coefficients are equal.

Suppose thaf\; and A, form a double edge. Then there are two orbits with the
shortest possible lengtly + d;, and the corresponding - coefficients are equal.

Suppose that both ; andAj, form loops. Then the number of orbits having the
shortest lengtli; + dj, is four and theA - coefficients are equal.

All possible cases have been consideféad.

We are going to show now that the knowledge of the reducedthesigectrum
together with the total length of the graph is enough to retoiet the graph. The first
step in this direction is to recover the lengths of the edga® fthe total length of the
graphs and the sdt’. The following result can be proven by refining the method of
B. Gutkin-U. Smilansky [21].

Lemma 3. Let the lengths of the edges of a clean finite connected nggamh " be
rationally independent. Then the total lengfhof the graph and the reduced length
spectrumZ’ (defined by (23)) determine the lengths of all edges and whéliese
edges form loops or not.
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PROOF. Consider the finite subgét of L’ C L consisting of all lengths less than
or equal ta2L
L'"={leL :1<2L}.

This finite set contains at least one of the numbkrer 2d;. Therefore there exists a
basissi, so, .. ., s, such that every lengthe L” (as well as fromlL) can be written
as a half-integer combination ef

|
| = 521njsj, n; € N.
i=

Such basis is not unique especially if the graph has loopg twa baseqs; } and{s’; }
are related as follows; = n;s, , n; = %, 1,2, whereiy, io, ..., iy IS @ permutation
of 1,2,...,N. Then among all possible bases consider a basis with theeshdotal
lengthy"", s;.

The total length of the graph can also be written as a sum ©f with the coeffi-

cients equal td or1/2
N

EzZajsj, a; =1,1/2. (26)
j=1

The coefficients in this sum are equalltdf s; is equal to the length of a certain edge
Aj;, i.e. when the edge forms a loop. The coefficiéfiz appears ifs; is equal to
double the length of an edge. In this case the edge does motftwop. Therefore the
lengths of the edges up to permutation can be recovered f26)nuging the formula
d; = ajs5, 7 =1,2,...,N. To check whether an edgk; forms a loop or not it is
enough to check whethéy; belongs ta’ or not.J

Once the lengths of all edges are known the graph can be teectesl from the
reduced length spectrum. Lemma 2 implies that looking at¢daced length spectrum
L’ one can determine whether any two edgesand A, are neighbours or not (have
at least one common end point): the edggsand A, are neighbours if and only i
contains at least one of the lengths+ di, 2d; + d., d; + 2dy,, or 2(d; + di,).

Lemma 4. Every clean finite connected metric grapltan be reconstructed from the
setD = {d,} of the lengths of all edges and the reduced length speciruithe subset
of all periodic orbits determined by (23), provided thgtare rationally independent.

PROOF. Let us introduce the set of eddes= {Aj};\’:l uniquely determined by
D = {d;}. We shall prove lemma for simple graphs first. A graph is cadieapleif
it contains no loops and no multiple edges. From an arbitgaaph one can obtain a
simple graph by cancelling all loops and choosing only orgeddom every multiple
one:

1. If di, € L' then the corresponding edge is a loop. Then rembydrom E and
all lengths containingj,, from L’.

2. If d, + d; € L' then there exists a double edge composed paind Ay, (since
the loops have already been removed). Then remove elthar A, from E
and also all lengths containing the chosen length fiam
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The new subset&* C FE containingN* < N elements and.* C L’ obtained
in this way correspond to a simple subgrdph C I" which can be obtained fromi
by removing all loops and reducing all multiple edges. Ontiols differentl’™ by
choosing different edges to be left during the reduction.

The reconstruction will be done iteratively and we will coost an increasing finite
sequence of subgraphs such thatc I'; C ...I'y~ = I'*. The corresponding subsets
of edges will be denoted bi;..

For k. = 1 take the grapfii'; consisting of one edge, say;. By looking atZ’ pick
up any edge, sayr,, which is a neighbour of\,. Attach it to any endpoint of\; to
get the graph’s.

Suppose that connected subgrépttonsisting ofc edgesk > 2) is reconstructed.
Pick up any edge, sa¥;1, which is a neighbour of at least one of the edgeE;in
Let us denote byiPh the subset of7;, of all edges which are neighboursf, ;. We
have to identify one or two vertices in, to which the newA,, is attached. Every
such vertex is uniquely determined by listing the edgesejdiat this vertex, since the
subgraph’;, is simple, connected and contains at least two edges. Terak have
to separatéZ*! into two classes of edges attached to each endpoif,0f . (One of
the two sets can be empty, which corresponds to the caseglee\ad is attached to
'y, at one vertex only.)

Take any two edges from!™?, say A’ and A”. The edges\’ and A” belong to
the same class if and only if:

e A’ andA” are neighbours themselves and

o d'+d'"+dyy1 ¢ L'i.e. the edged\’, A” andA; do not build a cycle. Note
that if A’, A” and A, ; form a cycle, then there are two periodic orbits having
with the lengthd’ + d” + d.1 and the corresponding-coefficients are equal,
which implies that’ + d” + dy+1 € L'.

In this way we either separatB*" into two classes of edges @:"" consists
of edges joined at one vertex. In the first case the new édge connects the two
unique vertices determined by the subclasses. In the sexamed\ ., ; is attached by
one endpoint td’, at the vertex uniquely determined 5" It does not play any
role which of the two end points @k, ; is attached to the chosen vertexigf, since
the two possible graphs are equivalent.

Denote the graph obtained in this way By, ;.

Since the grapi™ is connected and finite, afté&f* steps one arrives &ty = I'*.

It remains to add all loops and multiple edges to reconsthetinitial graphr".
Suppose that the reconstructed subgrapls not trivial, i.e. consists of more than one
edge. Then every vertex is uniquely determined by listihg@des joined at it. Check
first to which vertex the loo@\,, is connected by checking if periodic orbits of the
lengthd,, + 2d; belongs toL’ or not. All such edgeg\; determine the unique vertex
to whichA,, should be adjusted. To reconstruct multiple edges checkhehg,, + d;
is from L', whereA; € E*. Substitute all such edge; with corresponding multiple
edges.

In the casd™ is trivial, the proof is an easy exercidé.
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Our main result can be obtained as a straightforward impdicacf Lemma 3 and
Lemma 4.

Theorem 2. The spectrum of a Laplace operator on a metric graph detezmihe
graph uniquely, provided that:

e the graph is clean, finite and connected,
¢ the edge lengths are rationally independent.

PROOF. The spectrum of the operator determines the lefi-sate of the trace
formula (21). Formula (22) shows that the spectrum of th@lg@etermines the total
length of the graph and the reduced length spectrum. LemmaBeis that the lengths
of all edges can be extracted from this quantities underahnelitons of the theorem.
It follows from Lemma 4 that the whole graph can be reconsediprovided that its
edges are rationally independent and it is clean, finite andected

One can easily remove the condition that the graph is coade@the result can be
generalized to include more general differential opesator the edges and boundary
conditions at the vertices. Rigorous proofs of these result be a subject of one of
forthcoming publications.

Acknowledgments

The authors would like to thank prof. J. Boman and A. Holsiffigportant discussions.
Fruitful criticism from the Referee helped us to improve #ngcle considerably.

References

[1] Adamyan V 1992 Scattering matrices for microscher®gerator Theory: Ad-
vances and Applicatiors9 1-10

[2] Albeverio S and Kurasov P 200@&ingular perturbations of differential opera-
tors(London Mathematical Society Lecture Notes N@&Zajnbridge: Cambridge
Univ. Press)

[3] Boman J and Kurasov P Symmetries of quantum graphs andubese scattering
problem. To appear iAdv. Appl. Math.

[4] Brown B M and Wiekard R A Borg-Levinson theorem on treespublication.

[5] Carlson R 1999 Inverse eigenvalue problems on directaghg Trans. Amer.
Math. Soc3514069-88

[6] Evans W D and SaitY 2000 Neumann Laplacians on domains and operators on
associated treg3. J. Math.51313-42

[7] Evans, W D and Harris D J 1993 Fractals, trees and the NentaplaciarMath.
Ann.296493-527

52



4. REFERENCES

[8] Everitt W N and Zettl A 1992 Differential operators geatxd by a countable
number of quasi-differential expressions on the realrec. London Math. Soc.
6452444

[9] Everitt W N, Shubin C, Stolz G and Zettl A 1997 Sturm-Lioller problems with
an infinite number of interior singularities. Spectral theand computational
methods of Sturm-Liouville problems (Knoxville, TN, 1996gcture Notes in
Pure and Appl. Math191211-49 (New York: Dekker)

[10] Everitt W N and Markus L 2001 Multi-interval linear ortry boundary value
problems and complex symplectic algeti@m. Amer. Math. Sod.51 no.715
p 64

[11] Everitt W N and Markus L 2003 Elliptic partial differeat operators and sym-
plectic algebraviem. Amer. Math. Sod62n0.770 p 111

[12] Everitt W N and Markus L 2004 Infinite dimensional complymplectic spaces
Mem. Amer. Math. Sod.71n0.810 p 76

[13] Exner P andSeba P 1987 Quantum motion on a half-line connected to a plane
Math. Phys28386-91

[14] Exner P andseba P 198%chibdinger operators, standard and nonstandard. Pa-
pers from the conference held in Dubna, September 6-10, (@&heck, NJ:
World Scientific Publishing Co., Inc.) p 409

[15] Exner P andSeba P 198%pplications of selfadjoint extensions in quantum
physics. Proceedings of the conference held in Dubna, Séete29-October
1, 1987Lecture Notes in Physics, 324 (Berlin: Springer-Verlag)/g 2

[16] Exner P andSeba P 1989 Free guantum motion on a branching graph Math.
Phys.28 7-26

[17] Gerasimenko N | and Pavlov B S 1988 Scattering problemsencompact
graphsTeoret. Mat. Fiz.74 345-59 (Eng. transl. 198Bheoret. and Math. Phys.
74 230-40)

[18] Gerasimenko N | 1988 Inverse scattering problem on a&ompact grapfeoret.
Mat. Fiz.75187-200 (Eng. transl. 198heoret. and Math. Phy35460-70

[19] Guillemin V and Melrose R 1979 An inverse spectral regod elliptical regions
in R? Adv. in Math.32128-48

[20] Guillemin V and Melrose R 1979 The Poisson summatiomiaga for manifolds
with boundaryAdv. in Math.32204-32

[21] Gutkin B and Smilansky U 2001 Can one hear the shape ojphdJ. Phys. A.
Math. Gen.346061-8

53



[22] Harmer M 2002 Inverse scattering for the matrix Sxhinger operator and
Schibdinger operator on graphs with general self-adjoint bampaonditions
ANZIAM J.44161-8

[23] Kostrykin V and Schrader R 1999 Kirchoff’s rule for quam wiresJ. Phys
A:Math. Gen.32595-630

[24] Kottos T and Smilansky U 1999 Periodic orbit theory apédcral statistics for
quantum graphénn. PhysicR7476-124

[25] Kuchment P 2003Vaves in periodic and random media. Proceedings of the AMS-
IMS-SIAM Joint Summer Research Conference held at MountakelCollege,
South Hadley, MA, June 22-28, 20@&ntemporary Mathematic339. (Provi-
dence, RI: American Mathematical Society)

[26] Kuchment P 2004 Quantum graphs. I. Some basic struet@@ecial section on
quantum graphgvaves Random Medisd S107-28

[27] Kurasov P and Stenberg F 2002 On the inverse scatterotggm on branching
graphsl. Phys. A: Math. Ger85101-21

[28] Naimark K and Solomyak M 2000 Eigenvalue estimatestierweighted Lapla-
cian on metric treeBroc. London Math. So&0690-724

[29] Naimark K and Solomyak M 2001 Geometry of Sobolev spaweregular trees
and the Hardy inequalitigRuss. J. Math. Phy8.322-35

[30] Pavlov B S 1987 The theory of extensions, and expligtivable models (Rus-
sian)Uspekhi Mat. Nauk2 99-131, 247

[31] Roth J-P 1984 Le spectre du laplacien sur un gragwtures Notes in Mathemat-
ics: Theorie du Potentiel096521-39

[32] Sobolev AV and Solomyak M 2002 Sdidinger operators on homogeneous met-
ric trees: spectrum in gapev. Math. Physl4421-67

[33] Solomyak M 2003_aplace and Sclidinger operators on regular metric trees:
the discrete spectrum case. Function spaces, differeppi@tators and nonlinear
analysis (Teistungen, 200151-181 (Basel: Birkhuser)

[34] Solomyak M 2003 On approximation of functions from Stavespaces on metric
graphs]. Approx. Theory21199-219

[35] Solomyak M 2004 On the spectrum of the Laplacian on raguietric trees.
Special section on quantum grapiaves Random Medis4 S155-71



Paper Il






Inverse spectral problem for quantum graphs
with rationally dependent edges$

Marlena Nowaczyk

Abstract. In this paper we study the problem of unique reconstruction of the quantum
graphs. The idea is based on the trace formula which establishes thenrékticeen

the spectrum of Laplace operator and the set of periodic orbits, thearuhledges

and the total length of the graph. We analyse conditions under which issig@s$o
reconstruct simple graphs containing edges with rationally dependepihéen

1. Introduction

Differential operators on metric graphs (quantum grapbs) iather new and rapidly
developing area of modern mathematical physics. Such tgperean be used to model
the motion of quantum particles confined to certain low disiemal structures. This
has many possible applications to quantum computing anigrde$ nanoelectronic
devices [1], which explains recent interest in the area.

The main mathematical tool used in this article is the tracetila, which estab-
lishes the connection between the spectrum of the Laplaematgy on a metric graph
andthe length spectrunithe set of all periodic orbits on the graph), the number of
edges and the total length of the graph.

J.P.Roth [12] proved trace formula for quantum graphs utliegheat kernel ap-
proach. An independent way to derive trace formula usindgtestag approach was
suggested by B. Gutkin, T. Kottos and U. Smilansky [6; 8] arathramatically rigor-
ous proof of this result was provided by P. Kurasov and M. Nezy& [10]. The trace
formula is applied in order to reconstruct the graph fromgpectrum of the corre-
sponding Laplace operator. It has been proven that thiepige can be carried out in
the case when the lengths of the edges are rationally indepéand the graph has no
vertices of valence. In current paper we go further and consider graphs withatitivi
and weakly rationally dependent edges. We have decidedtigateour considerations

*Appeared inOperator Theory: Advances and Applicatioh47 (2007) Operator Theory, Analysis and
Mathematical Physics 105-116.
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to the case of the so-called Laplace operator on metric grapkhe second derivative
operator with natural (free, standard, Kirchhoff) bourydamnditions at vertices.
Explicit examples constructed in [6; 11; 2] show that theense spectral and scat-
tering problems for quantum graphs do not have, in genenaue solutions.
For a historical background on quantum graphs, their agiins and theory de-
velopment see Introduction and References in our previaps10].

2. Basic definitions

All notations and definitions in this paper will follow thossed in [10]. We are not
going to repeat the rigorous derivation of the trace fornpuésented there, but in this
section we will introduce the definitions which we are goiogise.

Consider arbitrary finite metric graghconsisting ofN edges. The edges will be
identified with the intervals of the real lin&; = [z9;_1,22;] CR,j =1,2,...,N
and the set of all edges will be denotedBy= {A; }f’:l. Their lengths will be denoted
by d; = |z2; —22,—1| and corresponding set of all lengths By= {d;}. Let us denote
by M the number of vertices in the graphVertices can be obtained by dividing the set
{xx}?N, of endpoints into equivalence clasdés, m = 1,2,..., M. The coordinate
parameterization of the edges does not play any importéattierefore we are going
to identify metric graphs having the same topological strrecand the same lengths of
the edges. This equivalence is more precisely describedLir?].

Consider the Hilbert space of square integrable functions o

N N
H=L'T) =@y L*(A)=0) Llrg1,ms). 1)
j=1

n=1

The Laplace operatal/ onT" is the sum of second derivative operators acting in each

spacel?(A;), N
2
H=a) (—%) . )
j=1

This differential expression does not uniquely determime self-adjoint opera-
tor. Two differential operators ii?(T") are naturally associated with the differen-
tial expression (2), namely the minimal operator with thendm Dom (Hyin) =
&3] Zj-vzl C§°(A;) and the maximal operatdi ., with the domainDom (Hpax) =

® Zj.vzl W3 (A;), whereW; denotes the Sobolev space.

The Hilbert spacét introduced above does not reflect the connectivity of thplgra
It is the boundary conditions that connect values of the tioncon different edges.
Therefore these conditions have to be chosen in a speciabwé#yat they reflect the
connectivity of the graph. See [11] for the discussion hosvrtiost general boundary
conditions can be chosen. In the current paper we restrictansideration to the case
of natural (free, standard, Kirchhoff) boundary condit@iven by

f(z;) = flzx), 5,25 € Vin,
[{o =t oV wiian @
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3. TRACE FORMULA

whered,, f(z;) denotes the normal derivative of the functipit the endpoint;. The
functions satisfying these conditions are continuous @t#rtices. In the case of the
vertex with valence conditions (3) imply that the function and its first derivatiare
continuous at the vertex, i.e. the vertex can be removed bstisuting the two edges
joined at the vertex by one edge with the length equal to the afithe lengths of the
two edges. This procedure is calleaning[11] and a grapH" with no vertices of
valence2 is calledclean

The Laplace operatof (I') on the metric graph' is the operatoi,,,.. given by
(2) restricted to the set of functions satisfying boundamyditions (3). This operator is
self-adjoint [11] and uniquely determined by the grdpf he spectrum of the operator
H(T) is discrete and consists of positive eigenvalues accuinglat+oc. Therefore
the inverse spectral problem féf (T") is to reconstruct the graph from the set of
eigenvalues.

3. Trace Formula

Let us establish the secular equation determining all pesitigenvalues of the opera-
tor H. Suppose that is an eigenfunction for the operator corresponding to tisétipe
spectral parametd? = k% > 0. Then this function is a solution to the one-dimensional
Schibdinger equation on the edge§‘di—2 = k2. The general solution to the differen-
tial equation on the edg®&; = [x2;_1, x2;] with the lengthd; = |z2; — z2;_1| can be
written in the basis of incoming waves as follows

(@) = agj_1e*lTr2m1l gy etkle ool (4)

wherea,, is the amplitude of the wave coming in from the endpaipt
Now let us introduce two matrices and> corresponding to evaluation of ampli-
tudes through edges and vertices respectively. Firstxnatri

el o

| e,
g=|_0 ] .. , where ¢/ = ( eigdj 60 ) (5)

The second matrix is formed by blocks of vertex scatterintyices

ol ] 0

- 0a?]... , (6)

where for natural boundary conditions the vertex scattemiatrices do not depend on
the energy and elements are given by

2 ik
o = { 3 ; f k:’ forv, #1 and o=1 forv,=1. (7)

Um,
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After evaluation of the amplitudes through edges and theoutih vertices we
arrive to the same incoming amplitudes. Therefore the dug@sa determine an
eigenfunction ofd (I") for E > 0 if and only ifa = X£a, i.e. when the matrix

U(k) = 2E(k) (8)

has eigenvalué anda is the corresponding eigenvector.
Let us denote the eigenvalues of the Laplace operfdtor nondecreasing order as
follows

and we will introduce the distributiom connected with the spectral measure
u=08(k)+ Y (5(k = kn) + 6(k+ ky)).
n=1

Now we are going to present the relation between spectrunapliice operatof
and lengths of periodic orbits, number of edges and totatlenf the graph. Before
we do this, however, we need to give a few definitions reladepetriodic orbits of a
graph.

By aperiodic orbitwe understand any oriented closed pati'oliVe do not allow
to turn back at any internal point of the edge, but walkingshme edge multiple times
is allowed. Note that so defined orbit does not have any stapint. With any such
(continuous) periodic orbjt one can associate thiéscrete periodic orbitonsisting of
all edges forming that orbit. Also let:

e P be the set of all periodic orbits for the graph

l(p) be the geometric length of a periodic orbijt

prim(p) denote a primitive periodic orbit, i.e. such thatis a multiple of
prim(p),

L =dy +dy+ ...+ dy be the total length of the gragh

7 (p) be the set of all scattering coefficients along the grbit

Let us introduce coefficients which are independent of tlezgn

Ay =1prim)( I] on), A =teime)( [[ 7). ©
o €T (p) o €T (p)

The following theorem has been proven in [10], following tHeas of B. Gutkin
and U. Smilansky [6].

Proposition 1 (Theorem 1 from [10]). Let H(T") be the Laplace operator on a finite
connected metric graph, then the following two trace formulae establishes the-rela
tion between the spectrufi?} of H(I") and the set of periodic orhit®, the number
of edgesV and the total lengti of the graph:

u(k) = 5(k) + i (5(k — k) + 6(k + k) (10)
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4. THE INVERSE SPECTRAL PROBLEM

— L 1 ikl(p) * —ikl(p)
_—(N—M+1)5(k)+ﬁ+27r;3<“41’6 +A e )
p

and

ia(l) = 14+ (e7nl 4 ethnl) (11)

n=1

== (N = M+1)+2£5(0) + > (A0( — 1(p) + A;0(0 + U(p))

peEP

whereA,, A, are independent of the energy complex numbers given by (9).

The formula (11) converges in the sense of distributions [@] p. 4908—4909 for
explicit calculations).

4. The inverse spectral problem

In this section we are going to apply formula (11) to prove tha inverse spectral
problem has unique solution for certain simple (i.e. withioops or multiple edges),
clean, finite connected metric graphs with rationally deleen lengths of edges.

The setL of lengths of all periodic orbits is usually called the leémgpectrum. In
some cases, formula (11) allows us to recover the lengthrspedof periodic orbits)
from the energy spectrum (of the Laplace operdiQr On the other hand, there are
known graphs for which some lengths of periodic orbits caleaecovered. Formula
(11) implies directly that the spectrum of a graph allows tme=cover the lengthisof
all periodic orbits from theeduced length spectruiii C L defined as

U={: ( 3 A,,) £0}. (12)
lfp)ezpl

Although for any periodic orbip the coefficient4,, defined in (9) is non-zero it can
happen that the sum of all coefficients in frontof — I(p)) is zero. This is the reason
why we use reduced length spectrum instead of more commgthlspectrum.

4.1. Graphs with trivially rationally dependent edges

In this subsection we will discuss graphs where the set déatjths of edges is ratio-
nally independent, while some edges can have equal lengths/|l call such case a
graph withtrivially rationally dependenedges). One can prove that such graphs can
be uniquely reconstructed from length spectrum and totejtte of the graph — and,
therefore, can be uniquely reconstructed from spectrumapidce operator on this
graph.

We shall now remind Lemma 2 from paper [10] and we will re-esthts lemma for
graphs with trivially rationally dependent edges.
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Lemma 2. LetI" be a graph with trivially rationally dependent edges. Assuimat
the edges of the same length are not neighbours to each dthen the reduced length
spectrumL’ contains at least the following lengths:

4d;,forall j =1,...,N;

2d; if there exist exactly one edge of length

2(d; + dy,) iff the edges having lengtl andd,, are neighbours;

2(d; + d; + di) it A;, Aj and Ay, form a path but do not form a cycle.

PROOF. Consider any orbijt of the lengthdd;. Then the coefficiens4,, product
consists of exactly two squared reflection coefficients &edefore is strictly positive.
The coefficient in front of5(I — 4d;) in the sum (11)3Zp:z(p)=4d,- is also strictly
positive. Thusid; belongs to the reduced length spectriim

The other three parts of this proof follow from the Lemma 2 asgroof in [10]C

Lemma 3. Assume that is a finite, clean, connected and simple metric graph with
trivially rationally dependent edges. Let us denote nundfedges of length, by 31,
number of edges of lengtly by (3, ..., number of edges of lengih by 5, (where
B; >1fori=1...n).

Then the total lengtlf of the graph and the reduced length spectrihdetermine
the lengths of all edgeslf), as well as the number of edges having these particular
lengths ().

PROOF. Consider the finite subdét of L’ L, consisting of all lengths less than
or equal to1L
L'"={lel :1<4L}.

This finite set contains at least the numbéfs and those numbers form a basis for
a set of all lengths of periodic orbits, i.e. every length L (as well as inL) can be
written as a combination affd;

1 n
| = Zzlnj4dj, n; € N,
=

wheren; are the smallest possible non-negative integers. Sinag ate rationally

independent then this combination is unique. Such a basistisnique but any two

bases(4d; } and{4d} are equal with respect to a permutations of its elements.
The total length of the graphi can also be written as

1 n
L= ;ﬁjzxd‘j, 8; €N (13)

Because the graghis simple (i.e. without loops or multiple edges), the coéfits
B; indicate the total number of edges of length [J
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4. THE INVERSE SPECTRAL PROBLEM

Lemma 4. Assume that’ is a finite, clean, connected and simple metric graph with
trivially rationally dependent edges. Also assume that amy edgesA, A’ with
lengthsd;, d; (where: can be equal), for which3; > 2 and3; > 2 (i.e. they are
both repeating edges), are separated by at least two noeatapy edges (i.e. edges
for which = 1).

Then the grapii’ can be reconstructed from the get= {d, } of the lengths of all
edges and the reduced length spectrilyim

PROOF. At the beginning we are going to reconstruct the graplthout repeating
edges. In order to do this, we shall use the idea of reconstguthe simple subgraph
in the proof of Lemma 4 in the paper [10].

Let us denote by the subgraph of which can be obtained by deleting all edges
with 8; > 2. T'™* does not have to be a connected graph, so let us denote it®oentp
by I, T ... ). The reconstruction will be done iteratively and we will eon
struct an increasing finite sequence of subgraphs sucli'thatl'y; C ... C 'y~ =
I'*. The corresponding subsets of edges will be denotelbfor £ = 1,..., N*.

The reconstruction of any compondtit) is done in the following way. Fok = 1
take the graptﬂ”, consisting of an arbitrary non-repeating edge, Aay In order to
getF(zj), pick any neighbour o\, sayA,, and attach it to any of the endpointsAf
(the set of neighbours ak; can be easily obtained from the reduced length spectrum
).

Suppose that connected subgraﬁﬁ> consisting ofk: edges k > 2) is already
reconstructed. Pick any edge, sAy.,, which is a neighbour of at least one of the
edges inF,(j). Let us denote by=2P! the subset ofz;, consisting of all edges which

are neighbours ofA; ;. We have to identify (one or two) vertices Iffj) to which
the newAy, is attached — every such vertex is uniquely determined kindi®f the
edges joined at this vertex (since the subgrﬁfjﬁ is simple, connected and contains
at least two edges). Therefore we have to sepafdt® into two classes of edges,
each attached to one endpointdf_ ;. Observe that one of the two sets can be empty,
which corresponds to the case the edge ; is attached thEj ) at one vertex only.

Take any two edges frov™?, say A’ and A”. The edges\’ and A” belong to
the same class if and only if:

e A’ andA” are neighbours themselves and

o d+d"+dypyq ¢ Lie. the edged’, A” andAy; do not form a cycle (note
thatif A’, A” andAy_. ; form a cycle, then there are two periodic orbits of length
d' +d" + dy1 and the correspondind-coefficients are equal — which implies
thatd’ + d” + dp1 € L').

In this way we either separate the g6t"" into two classes of edges dri""
consists of edges joined at one vertex. In the first case,aheetlgeA,; connects
the two vertices uniquely determined by those two subctadsethe second case, the

edgeA. is attached at one end pointftﬁj) at the vertex uniquely determined by
E};bh. It does not matter which of the two end points/f , ; is attached to the chosen

vertex ofl“fj ), since the two possible resulting graphs are equivalent.
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Denote the graph created this Way]byll.

When there are no more edges left which are neighbodf‘é’bfthen pick any new
non-repeating edge froth and start the reconstruction procedure for new component
of graphI'™*, sayI'’"). After a finite number of steps one arrives at the griiph

It remains now to add the repeating edges. Since each regesatge of length,,
is separated from any other repeating edge of ledgtiby at least two non-repeating
edges, then there is no interference between adding egggsdd,,, to I'*. Following
previous lemma, from reduced length spectriihand total length of the graph we
know that we have exactly,, edges of lengtld,, .

As the first step we want to split all neighbours of &l edges int®/,, classes
(some of which can be empty). The set of all neighbourg,ofrom graphl™ will be
denoted byE,,. We say that\; andA,, from E,, are in the same class if:

e A, andA, are neighbours to each other,
o they do not build a cycle of lengtth, + d; + dy,

o if there is an edgé\,,, which is a neighbour td\ ; and toA;, but is not a neigh-
bour to any edge of lengtt,, then there is a cycle of length,, + d; + dy.

In that way we obtain non-empty séfs,E2, ... E% which correspond to ver-
ticesvy, ve, ..., vq, Wherea,, < 20,.

As the second step we have to identify, for any edge of ledgthwo vertices (or
only one) to which this particular edge is attached. We aregyto check all pairs of
verticesy; andv; from the list above. An edge of length, is attached to those two
vertices if

e v; andov; are connected by a path of two edgésandd” whered’ € E! and
d" € EJ, and there exist a periodic orbit of length+ d”’ + d,, in L', or

e v; andv; are not connected by any path of two edges and for eachipaitE?,
andd” € EJ there exist a periodic orbits of leng®id’ + d”’ + d,,) in L’.

For each of those vertices, vs, . . . , v,, for which neither of the above conditions
are satisfied, we attach a loose edge of lergth

We repeat this procedure for all edges of repeating len@inse the graph is finite,
after finite number of steps we arrive at reconstruct the evgohphl”. (I

Theorem 5. The spectrum of a Laplace operator on a metric graph detezmihe
graph uniquely, provided that:

e the graph is clean, finite, simple and connected,
e the edges are trivially rationally dependent,

e any two repeating edges are separated by at least two nogatemy edges (i.e.
ones having rationally independent lengths).
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PROOF. The spectrum of the operator determines the lefi-sate of the trace
formula (10). Formula (11) shows that the spectrum of th@lyi@determines the total
length of the graph and the reduced length spectrum. Lemmgl8ais that the lengths
of all edges and their multiplicities can be extracted frdns tquantities under the
conditions of the theorem. It follows from Lemma 4 that theokehgraph can be
reconstructed]

4.2. Graphs with weakly rationally dependent edges

In the last part of this paper we shall consider some speicidldf graph with rationally
dependent edges and we will prove that for those graphs thaeireconstruction from
the spectrum of Laplace operator is still possible. We sinsdl, as before, the trace
formula and some properties of mutually prime numbers.

Definition 6. Assume that the metric graghis finite, clean, connected and simple.
We say that the edge lengths are weakly rationally depentiéme lengths of edges
belong to the set

{dl,@dl,...,pm diydo, P2 dy, . P22y, dy R, B dn},

q12 qir, 422 q2r, dn2 qnr,
wherep;;/q;; > 1 are proper fractionsg,s, ¢is, - - ., g, are mutually prime for all
i=1,...,nandd,ds,...,d, are rationally independent.

Observe that ifn = 1 then all edges in the graph are rationally dependent. On
the other hand, if alp;; = 0 for j > 2 and all4, then all edges in the graph are
rationally independent. Note that the denominatgysare mutually prime but it does
not immediately indicate that they are prime numbers.

Lemma 7. Assume that the metric gragh has weakly rationally dependent edges.
Then the total lengtlf of the graph and the reduced length spectrihaetermine the
lengths of all edges.

PROOF. As in Lemma 3 we will use an approach of finding a basialf@eriodic
orbits. We claim that the sgs;}, wheres; is length of any edge in the graph, is
a basis for all periodic orbits. Consider as before the finitbsetl” of L' C L
consisting of all lengths less than or equaid

L'={lel :1<2L}.

It is obvious that any periodic orbit can be written as a Ilratiléger combination of
2s; elements

1 N
ZZEZO{]‘QSJ‘, a; € N.
j=1
We shall prove that for graph with weakly rationally depemtdedges this combi-
nation is unique.
Among all periodic orbits there exist periodic orbits of ¢gim 2s;. Assume that
for some arbitraryj such orbit is a linear combination of the other edges andesinc
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dy,ds,. .., d, are rationally independent it is enough to consider onlionaily de-
pendent edges. For sake of notation clearness we will omititst index in numbers
p;; andg;; as well as index af;. Thus we have the following equation

Pj+1

P at apat . a2 (14)

2&61 = Oéllid-l- 04212d+ oo+ Oéj,1
i q1 q2 qj—1 qj+1 qn

q;

2& _ pig2---4i-195+1---dn + ...+t anqiq2 .. qj—-14j+1 - - - Gn—-1Pn

4 q1G2 - - @G-19j41 - - - Gn

2piq1 . qj—1Gj41 -+ Qn = Q1P1q2 ... Gn + ... Qj_1G1G2 ... Dj—1qj - - qn
+ ®j+19192 - QiPj+1 - -Gn + - OnQ1G2 - - - n—1Dn-

Let us compare both sides of the previous equation, one bymadulo each of

41,925 -, qj—1,qj+1, - - - » gn, thus giving the following system of equations
0 = a1pP1q2 ... qn (mOd Ch)
0 = a;101q2---Pj-1qj---Gn (mod g;_1)
0 = 4141492 - - - G4jPj+1 -+ -A4n (mod Qj+1)
0 = and1492 ... 49n—1Pn (mOd q”)

Since allg; are mutually prime ang;/q; are proper fractions, the only solution to
this system of equationsis, = 0 (mod ¢;) foralli =1,2,...,7—1,j+1,...,n. It
means that all elements on the right hand side of (14) areegative integers, while
the left hand side of the same equation is an integer if angibril= 1 or j = 2 (then
p1 = q1 = 1 or, respectivelyg, = 2 andp, = 3).

In the first case, the left hand side is egalvhile at the same time the right hand
side is eithel0 or is strictly greater thaR. In the second case, the left hand side is
equal to3, while the right hand side is equal éq + r, wherer is either0 or is strictly
greater thar3. Thus, to fulfill equation (14); has to b&) and«; has to be3. This is,
however, impossible — since there is exactly one periodiit of length3 (consisting
of double edge of lengthz = 3).

Thus we have proven that the s&ts;} wheres; are lengths of all edges in the
graphI’ form the basis for all lengths of periodic orbits.

Hence we have determined all lengths of edges if these edgegeakly rationally
dependent]

Lemma 8. Assume that the metric gragh has weakly rationally dependent edges.
Then the grapii’ can be reconstructed from the séis= {d;} and the reduced length
spectrumL’.
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PROOF. As we have just shown in Lemma 7, from reduced lengtlatepm L/
one can obtain lengths of all edges in grapWwith weakly rationally dependent edges.
Following Lemma 2 we can deduce that the reduced length spedt’ contains at
least the shortest orbit formed by any two neighbouring sdgeand Ay, i.e. 2(d; +
dy). Thus we can identify all neighbours of each edge. The dlyorof reconstruction
the graphl’ will be the same as in proof of Lemma 4 in part where we recanstr
components of *. [J

Theorem 9. The spectrum of a Laplace operator on a metric graph detezmihe
graph uniquely, provided that:

e the graph is clean, finite, simple and connected,
e the edges are weakly rationally dependent.

PROOF. The spectrum of the operator determines the lefi-sate of the trace
formula (10). Formula (11) shows that the spectrum of th@ly@etermines the total
length of the graph and the reduced length spectrum. Lemmmalieis that the lengths
of all edges can be extracted from this quantities under ¢ihelifons of the theorem.
It follows from Lemma 8 that the whole graph can be reconssaic]
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Geometric properties of quantum graphs and vertex
scattering matrices

Pavel Kurasov and Marlena Nowaczyk

ABSTRACT. Differential operators on metric graphs are investigatad proven that
vertex boundary conditions can be successfully parameterized bygitexscattering
matrix at the energy equal to Connectivity and high energy asymptotics are investi-
gated in detail. The trace formula is proven for energy independetexvscattering
matrices. Two new families of boundary conditions are investigated:rpigear Neu-
mann and Dirichlet conditions. It is proven that the Euler characteristiteometric
graph can be determined from the spectrum of the Laplace operator wittotindary
conditions from any one of these classes.

1. Introduction

Quantum graphs is a rapidly developing area of research thematical physics with
important prospective applications in nanotechnologyraodern engineering, which
was started in the 80-ies [4; 3]. Probably there is no netsessiexplain the impor-
tance of such studies for the readers of the current volunmnem Ehe mathematical
point of view this is exactly the area of research where @ngiand partial differential
equations meet each other, in other words where method$ogedeoriginally for or-
dinary and partial differential equations are used sinmaltausly. In the current article
we study differential operators on metric graphs coupletidayndary conditions at the
vertices. These operators are studied using methods dfapaicalysis of self-adjoint
operators concentrating on the relations between theatispgroperties and geomet-
ric structure of the underlying graph. To calculate an €figection of such an operator
one needs to solve first a certain ordinary differential éqnaon every edge sepa-
rately, but solutions on different edges are connecteditiirdhe boundary conditions
and thus remind us about partial differential equations.

*Submitted to Proceedings @uantum Graphs, their Spectra and Applicatida$ April 2007, Cam-
bridge.
1991 Mathematics Subject classificatidrimary 35R30, 47A10, 81U40, 81Q10.
Key words and phraseQuantum graph, Laplace operator, Scattering matrix, Ellaracteristic.
The authors would like to thank P. Exner, M. Harmer, P. Kuchm&nttuger and B. Pavlov for fruitful dis-
cussions and references and Isaac Newton Institute in Cdgebior hospitality and stimulating atmosphere
during the semester on Quantum graphs.
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In a series of papers [13; 11; 12] it was proven that the specin the case of a
compact graph determines the Euler characteristic of tidenlying graph as well as
the number of connected components in the special casedailksot standard boundary
conditions at the vertices. The main analytic tool devetbiheere is celebrated trace
formula proposed independently by J.-P. Roth [15] and Bki®uand U. Smilansky
[5]. The aim of the current article is to develop this apptofcther in order to include
most general boundary conditions at the vertices. Thezefar first part of the article is
devoted to the discussion of most general boundary condithe vertices including
studies of their high-energy asymptotics. In order to makepoesentation clear only a
star graph is considered in the first part. During these stiie found it useful to use
a new parametrization of such boundary conditions by theix&t which is nothing
else than the vertex scattering matrix for the energy equal The advantage of this
parametrization is that it is unique and that the paramedsrctear physical interpre-
tation. This parametrization reminds very much of Harmpasametrization, which is
unique as well, but the parameter used there has not beemgear interpretation so
far. We establish connection with classical (for the areguaintum graphs) Kostrykin-
Schrader’s and Kuchment's parameterizations of boundamglitions. We investigate
the high energy asymptotics of the corresponding vertettesoag matrix proving that
the limit always exists and coincides with a certain matriichh may be obtained
by choosing the boundary conditions in a special way, sattieatorresponding vertex
scattering matrix does not depend on the energy. The sdtafcd energy independent
vertex scattering matrices is characterized and relatigtisknown parameterizations
are established. The corresponding boundary conditiorsai@on-resonant.

In section 6. all properly connecting boundary conditiores @assified which al-
lows us to establish the correspondence between the familiboundary conditions
and connectivity of the underlying graph. Studies of thehhégergy asymptotics
lead us to the notion of asymptotically properly connectiogndary conditions - the
boundary conditions leading to scattering matrices wittppr limit at high energies.
As we have already mentioned the high energy limit of everyexescattering matrix
coincides with a certain energy independent vertex sa@adtenatrix. It might happen
that even if the original boundary conditions are propedyrtecting, the boundary
conditions corresponding to the limit (energy indepenygeratrix are not, which leads
to spectral asymptotics reminding of the graphs with défférconnectivity than the
underlying graph. The family of boundary conditions leagdio asymptotically con-
necting boundary conditions is characterized. In pardicule select two families of
boundary conditions: hyperplanar Neumann and Dirichleddtons (see Definitions
18 and 19). The first family is a direct generalization of dimd boundary condi-
tions. The second family generalizes the so-caffedoundary conditions considered
by P. Exner [2] and P. Kuchment [10].

In the second part of the article arbitrary finite compactpgeaare considered.
The corresponding Laplace operator is defined on the donfdimotions satisfying
boundary conditions at the vertices that are properly cotimg and lead to energy
independent vertex scattering matrices. These operaéwes fhure discrete spectrum
consisting of eigenvalues tending+tax. Following methods developed in [15; 5; 13;
12] we prove the trace formula for arbitrary boundary cdndg leading to energy
independent vertex scattering matrices. This formula eonhthe set of eigenvalues
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2. STAR GRAPH

(the energy spectrum) with the set of periodic orbits on tlerim graph (the length
spectrum), but includes so-called spectral and algebraltipticities of the eigenvalue
zero. The first number is just the multiplicity of the eigelweszero whereas the second
number is the multiplicity of the eigenvalue given by theratderistic equation used in
the derivation of the trace formula. These numbers may Iberdiit and the Section 8.
is devoted to calculation of these numbers for the specgs ofhyperplanar Neumann
and Dirichlet conditions at the vertices. Both the speciral algebraic multiplicities
of the eigenvalue zero can be calculated from the spectrinafiist number is trivially
given as multiplicity ofA = 0, the second number is determined by the asymptotics
of the spectrum. It appears that for connected graphs theseumbers determine the
Euler characteristic of the metric graph and therefore matkpossible to determine
which sort of boundary conditions (hyperplanar Neumann ivicBlet conditions) at
the vertices is used to define the operator.

2. Star graph

In this and following sections we are going to discuss howritedlboundary conditions
at a vertex so that they connect properly together diffezdges meeting at this vertex.
In order to make our presentation clear we study the starhghaping in mind to
generalize our consideration later for more complicateghlys.

Let us consider a star graghwith v,, semi-infinite nodes\; = [0,00), j =
1,2,...,v,, connected at one vertéX,, with valencev,,, (equal to the number of
edges connected at the vertex). Consider the Hilbert sgasguare integrable func-

tions onI’
H = L) = &2, L*([0,00)). (1)
The Laplace operator oh is the sum of second derivative operators on each interval
A,
v d?

This differential expression does not determine the sdjtbiat operator uniquely. Two
differential operators ir.?(I") are naturally associated with the differential expression
(2): the minimal operator with the domaiPom (Lyin) = @57, C5°((0, 00)) and the
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maximal operator.,,,., with the domainDom (Ly.x) = @gglwg((o,oo)), where
W3 denotes the Sobolev space. The operatgr, is symmetric and. .y is its adjoint:
Lax = L:nin'

All self-adjoint operators associated with (2) can be atgtdiby extending the min-
imal operator to a subspace in the domainigf,.. Every such subspace can be de-
scribed using certain boundary conditions connecting tagnvalues of the functions
onI at the vertex.

Such self-adjoint extensions can be described using vomiden formulas tak-
ing into account that.,,;, is symmetric and has deficiency indicés,,, v,,). But
parametrization via boundary conditions appears moreogpiate due to its local char-
acter.

Another parametrization of extensions iaf,;,, can be obtained using Lagrangian
planes. Consider the boundary form:

Um

B[, 9] = (Linax ) = (¢, Lmax®) = D (80 (0)155(0) — ;(0)9,%5(0))

j=1

which gives a sesquilinear symplectic form in the finite disienal space of boundary
valuesC?'~. Then all Lagrangian planes i.e. subspaces dI?*~ such thatp, ) € 7,
B[y, v] = 0 and are maximal, describe all extensiond.gf,,, to self-adjoint operator
L, so thatDom(L,) = {¢ € Dom(Lyax) : (¢(0),0,¢(0)) € @}, wherep, d,,¢p
denote the vectors of boundary valuesgaand its normal derivative at the vert&, .

3. Boundary conditions via the vertex scattering matrix

In the current section we are going to show that the boundamgitions at any vertex
can be parameterized in the unique way by a certain unitatypm®ur approach is

a slight modification of that by M. Harmer [6], the advantagewr parametrization is
that the parameter matri¥ coincides with the value of the vertex scattering matrix at
k =1 (this explains our notation as well).

Theorem 1. The family of self-adjoint extensions of the minimal opardi,,;, can
uniquely be parameterized by an arbitrary, x v, unitary matrix.S, so that the
operator L(S) is the restriction ofL,,., = L, to the set of functions satisfying the
boundary conditions

Z(S - I)"p(vm) = (S + I)an"p(vm) (3)

Proof. As a first step we will determine the deficiency indices for diperatorL ;.
Let A be an arbitrary parameter in the upper half-plane lired > 0. Every deficiency
elementg(\) is a solution ta L,.x — A)g(A) = 0. Itis easy to see that the deficiency
subspaceV is spanned by g, ()} given by:

WAL forx € A;
(N =1J € vE
95 (M) { 0 otherwise.
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Similarly we can introduce a functiog;(A\) = ¢;(\) as a solution to the equation
(Lmax — A)g(\) = 0 and the deficiency subspagé, = span{g;(\)}. As we can
see from the form of solutiong;(\) each of the space¥’, and N5 is spanned by
exactlyv,, functions, thus the deficiency indices &g, , v.,,). Moreover any element
¥y € Ny can be written aghy = 375", ¢;9,(\) and similarlyy, € Ny asiyy =
251595 (M.

Every functiony from Dom(L,,.x) can be written in the form:

Y =1+ 1hy + b5, where ¥ € Dom(Iimm), ¥x € Na, b5 € N

and the sum is direct.

Consider a unitary operatd® mapping/\5 onto Ny; W : Ny — N, and the
matrix W representing the operat® in the basegg;(\)} C N5 and{g;(\)} C Ni.
Then any self-adjoint extension @f,,;, can be described as a restrictionaf,, to
the set of functions possessing the following represeatati

b=+ (W= Iy,
wherey) € Dom(Lmim) andi; € Ns. In other words
Dom(L(W)) = Dom(Lpin)+(W — I)N5.
Then the boundary values at the vertex of any such functinrbeacalculated

Y(Vim) = W —Dpx(Vim),

Ontp(Vin) = (VAW + VA3 (V). (4)

Comparing (4) and (3) we conclude that the maffikas to satisfy the equation

(S — D)W —I) = (S + I) (VAW + VD).

Therefore the relation between the matfixdescribing the boundary conditions and
the unitary matrix/” used in von Neumann parametrization is

S_W—I+(\/XW+¢XI)
W —I— (VAW V)

Note that the matri¥ty — I — (VAW + \/KI) is invertible. Suppose that
(W =1 — (VAW +VA))p =0
for somep € N5. Then
1—VNWe=(1+ \/i)go

SinceW is unitary andp in nonzero then|Wy|| = ||¢|| # 0. Thus comparing the
norm on both sides of the last equation we obtain

11— VA =1+ VA
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which is false sincém A > 0.
Moreover the matrixXS is unitary, sincéV is unitary
. Wl I+ (VAW VA T —W+ (VX +VAW)
S = — = — = S .
W-1—T—(VAW-14+VAI) T—W — (VX + VAW)

We have proven that any self-adjoint extension can be destiy (3) with a uni-
tary S. Let us show thab can be chosen arbitrarily. Really we have that

ST+ VSH+I)
ST -VASH+I)

and every suchV is unitary, provided tha$' is unitary. This parametrization is obvi-
ously unique. O

As we already mentioned the advantage of parametrizatipis (hat there is a
one-to-one correspondence between the unitary matsieesl self-adjoint extensions
of L. Let us have a look at few intensively used families of boupdanditions.
EXAMPLE 1.Standard boundary conditions. For standard dawn conditions the
matrix S should be chosen equal to

2— v, 2 2
v v e v
b 2", 3
S — Um Um Umn
2 2 2—v;,
Um Um Um
Then
2(1—vm) 2 2 2 2 2
v v v v v v
3 207vm) 3 g g 5
S -7 = U, VUm U , S + 1= Um Um Um
2 2 2(1—vsm) 2 2 2
Um Um Um, Um Um Um

Subtracting the first equation in (3) from other ones we obtiaat the functiong) is
continuous and the sum of its normal derivatives is equaéto.z

Let us establish the connection between the mairappearing in the boundary
conditions and the vertex scattering matfix(k). SinceS is an unitary matrix let us
denote its eigenvalues and eigenvectors®Byande, respectively§; € R, (¢;, ¢;) =

05,7 =1,...,v,). ThenS possesses the following spectral representation:
Stp=Y_ (1), 6,)0;. (5)
j=1

In what follows the subspaces
Ny =ker (S — (1)), (6)

are going to play very important role.
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To introduce the vertex scattering matrix let us first coesithe solutions to the
differential equation
d? 9
—@1/’(50) = k*(z),
which satisfy conditions (3) at the vertex. Solution to tligedential equation can be
written in the basis of incoming and outgoing waves as fatlow

V() = bje * fae™ xe A 7)

The relation between the vectors of waves’ amplitudesdbd is given by the vertex
scattering matrixS, (k): @ = S, (k)b. The scattering matrix has to be chosen so that
the function in (7) satisfies the boundary conditions at tbeex. The values of the
functions and of normal derivatives at the vertex are:

"/)(Vm) =bt+ta=0b+ Sv(k)b

and
(Vi) = —ikb + ika = —ikb + ikS, (k)b.

After substitution into equation (3) we obtain
i(S—1)(I+ Sy(k)) =ik(S+ I)(—1+ S,(k))

and then HS+1) 4 (S—1)
+I)+(S—1
SU k) = y k 0. 8
(k) E(S+1)—(S—1) 7 ®
Similarly as in the last proof we can show that the matrix apipg in the denominator
is invertible, soS, (k) is well defined. From equation (8) we can easily observe that
Sy(1) = S. This is the reason for us to choose parametrization (3).

Let us show that the matri&, (k) is unitary for any reak # 0 :

ey RS+D+(S=1) KS*+D+(S*—1)
WS = s = (5-n M- -n "

Hence we have shown that all boundary conditions at a veztekihg to self-adjoint
extensions of.,;, can be described by the matrikequal toS, (1), whereS, (k) is
a unitary vertex scattering matrix. We would like to point that in 2000 Kostrykin
and Schrader ([8], Theorem 1.) showed that the knowledg®, f,) for some fixed
energy parametét, allows one to calculaté, (k) for any arbitraryk, and therefore
determines the boundary conditions at the vertex.

4. Different parameterizations of boundary conditions
The research on boundary conditions and self-adjoint ¢per@an graphs goes back

to 80-ies to works of B. Pavlov and N. Gerasimenko [4] and &Xrer and PSeba [3]
and is described in details by P. Kuchment in [10]
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4.1. Kostrykin-Schrader’s parametrization

In 1999 Kostrykin and Schrader [7] gave a full descriptionwhall self-adjoint ex-
tensions can be obtained from local boundary conditions. A.end B bewv,, X v,
matrices then all boundary conditions at the vertex can Iserdeed in the following
way:

A"p(un) + Ba7b¢(vm) =0 (9)

where is thev,,-dimensional vector of functions ang,% - of normal derivatives
defined on edges of the graph

Proposition 2 (Kostrykin, Schrader). All self-adjoint extensions of the minimal op-
erator L,,;,, are described by the boundary conditions (9) whérend B are v,,, X v,
matrices with the following properties:

1. thev,, x 2v,, matrix (A, B) has maximal ranl,,,,
2. the matrixAB* is Hermitian.

Notice that parametrization of boundary conditions in eigma(9) with matricesA
andB is not unique . One can take any arbitrary invertible maf?iand use matrices
A’ = DA andB’ = DB instead of4 and B. These matrices determine the same
Lagrangian plane of boundary values.

The parametrization via vertex scattering matsix k) presented in the previous
section is unique. Moreover to describe properties of bagndonditions and there-
fore self-adjoint extensions we will investigate propestof only one matrixs,, (k).

The boundary conditions (9) can be rewritten as:

A(b+ Sub) + B(—ikb + ikS,b) = 0.

Hence the relation between the scattering mefik) and the matricesl and B (see

[8]) is
S,(k) = —(A+ikB)™'(A - ikB) (10)

and in particular
S=5,(1)=—(A+iB) (A —iB). (12)

4.2. Harmer’s parametrization

Another parametrization of boundary conditions using amig unitary matrixJ and
which is unique was proposed by Harmer in 2000 [6]

—i(U + I (Vi) + (U — DOptp(Vi) = 0. (12)

In this parametrization the unitary matrix again does noh@de with the unitary
matrix appearing in von Neumann formulas. One may obtagyghiametrization from
(3) just by putting

S=-U.

The only advantage of the parametrization via the méfnis that it has clear meaning
being the vertex scattering matrix fbr= 1.
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4.3. Kuchment's parametrization

In 2004 Kuchment has noticed that boundary condition (9) lmamewritten equiv-
alently as two conditions which use orthogonal projectionker B. This makes
Kostrykin-Schrader’s parametrization unique.

Proposition 3 (following Corollary 5 in [10]). Let (A, B) has maximal rank and

AB* be Hermitian matrix. Then the boundary condition (9) is eqieént to the pair of

conditionsP,,; 19 = 0 and L Py;v + Py 0,% = 0, whereP,, is orthogonal projection

onto spacel/ = (Ker B)*, P,,. is the complementary projector, ardis the self-

adjoint operatorB—! A.

The operatons T whereS = Pyi SPys ,in N, is hermitian. It follows that

we get Kuchments parametrization by taklng
PNL SPyy —1
M=NY and L=i———"1—
! PNh SPyi + 1

5. High energy asymptotics and energy independent
scattering matrices

For the studies of spectral asymptotics it is necessaryvestigate the high energy
behavior of the vertex scattering matrix.

Let us remind that the unitary matrixpossesses the spectral representation (5) and
that the vertex scattering matri, (k) is given by (8). Then we obtain the following
representation for the matri, (k):

Um l@l _|_1 ( 0 _ 1)
k)Y = Z k(e +1) — (e — )W’ 43)05

7,9]- 1 7,9J71
BTN SETTR A I ke _”fgewj )<w¢j>¢

105 41
ji0;=m 7:0;=0 j:0#m,0 + ) )

(13)
SinceS is unitaryN; andN_; are orthogonal to each other;Sfthas no other eigenval-
ues, thenV; & N_; = CY~. Formula (13) implies that the eigenvalues are stable,
whereas all other eigenvalues dependkorhe properties of this representation for
Sy (k) gives us immediately the following two theorems.

Theorem 4. The scattering matri¥, (k) is energy independent if and only if the pa-
rameter matrixS has just eigenvaluesand —1, i.e. iff boundary conditions (3) take
the form

PNlan'l/)(Vm) =0, PN_11/)(Vm) =0, (14)
whereN; @ N_; = CVm.

Proof. Observe that whefi; # 7 andf; # 0, the eigenvalues given by the fraction
0

% do depend ort. ThereforeS(k) does not depend ohif and only

if the unitary matrixS has eigenvaluesand—1 only. O
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Compare the conditions (14) with Kuchment's parametrirain Proposition 3.
Notice also the connection betwesSn+ I and B (take into account equation (3) and
9)-

We would like to mention here Datta [1] and Taniguchi anttBer [16] who at
the beginning of 90-ies solved one explicit example of epéngependent scattering
matrix for junction of3 wires. The Theorem 4 has been proven by Kostrykin and
Schrader in [9].

Boundary conditions leading to energy independent vertakering matrices are
going to play an important role in our studies.

Definition 5. Vertex boundary conditions are calledn-resonantiff the correspond-
ing vertex scattering matrix is energy independent.

The main motivation for this definition is that all other balany conditions lead to
vertex scattering matrices having singularities.

Theorem 6. Ask — oo the vertex scattering matrix tends to the energy independen
vertex scattering matrix

S = N (=1 ()0 + Y (65)¢ = —Pn_, + Py, (15)
ji0j=m ji0#m

whereN_; is the eigensubspace fér(and hence for allS(k)). In addition it holds

S™(k) = S™ + O(1/k), ask — oco.

0 0 ;
Proof. Notice that ford; # = each of the eigenvalué%jwjiijgiw;:3 tends tol as
k tends to infinity. Moreover it holds

k(e 4+ 1) + (e — 1)
k(e +1) — (e —1)

=1+ 0O(1/k), as k — oo.

Hence the limit ofS* (k) is the matrixS/™>° with eigenvalues and —1 only. By
preceding theorenf;;>° is an energy independent vertex scattering matrix. [

This theorem is a modification of the result already proveddaymer in [6] and
implies that for high energies every vertex scattering iméénds to a certain scattering
matrix corresponding to non-resonant boundary conditions

6. \ertex scattering matrix and connectivity

In this section we will discuss under which additional caiodis (beyond unitarity)
the matrix,S do connect all end points meeting at the vertgx. The only require-
ment we introduced so far is that the boundary conditionsc@nect together only
boundary values corresponding to the same vertex. But ibinfigppen that the end
points meeting at certain verté%,, can be divided into two nonintersecting classes
Vin = Vin, U V,,,, S0 that boundary conditions (3) connect together the baynad-
ues atV,,, andV,,, separately. Such boundary conditions do not corresponldeto t
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6. VERTEX SCATTERING MATRIX AND CONNECTIVITY

vertexV,,, but rather to two (independent) vertic€s,, andV,,,. In other words, if
the vertexV,,, can be chopped into two vertices so that the boundary conditare
preserved, then such conditions are not properly conrgeetim should be excluded
from our consideration if no special reason exists. Thibj@m has been discussed in
details in [14], [8], but we describe this problem using tlaegmetrization via the ma-
trix S. Due to uniqueness of this parametrization the discussionrbes much more
transparent.

For energy dependent vertex scattering matrices we arangesiother interest-
ing effect. It might happen that the corresponding boundaryditions are properly
connecting, but the boundary conditions correspondindpeolitnit scattering matrix
S;°° are not, but it is the limit scattering matrix that is impartén calculating spec-
tral asymptotics. Therefore we shall also define asymgtiyigproperly connecting
boundary conditions, but let us consider one example first.

EXAMPLE 2. Let the grapi" be a loop formed by just one edge = [—, 7] with
the endpoints-7 andw connected at the vertd% . Consider the boundary conditions

{¢(—W) = —0Ont(+m)
P(m) = —Onp(=m) ~

which are clearly properly connecting and corresponf te ( ? é > . The vertex

scattering matrix can be calculated using (8)

K*—1  2ik

2 2
Sik) = | Fykt T

+1 k2+1

and it tends to the unit matrix & — oo. The boundary conditions corresponding to
unit scattering matrix are just Neumann boundary conditiyn)(—n) = 9,0 (m) =
0, which do not connect the values-atr together.

Let us summarize our discussion by giving the following dé&éin

Definition 7. Vertex boundary conditions are callpdoperly connectingiff the vertex
cannot be divided into two (or more) vertices so that the lolauy conditions connect
together only boundary values belonging to each of the netices. Vertex bound-
ary conditions are calleésymptotically properly connectingiff the limit scattering
matrix So° corresponds to certain properly connecting boundary ctons.

Characterization of all properly connecting boundary dtiols via the matrixS
is rather straightforward, which is due to the uniquenessuwsf parametrization of
boundary conditions.

Theorem 8. Boundary conditions (3) are properly connecting iff thetany matrix.S
cannot be turned into block-diagonal form by permutatiothefbasis vectors.

Proof. Assume thatS is block-diagonal after some permutation
_ St 0
1_
oSo —( 0 92 ) (16)
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whereS! andS? are unitary matrices i”* andCv2 respectivelyp, + vy = v,,. Let

us separate the end points forming the vefitgx= {x;, },”, into two classe$/; and
V5V, = V4 U Vs, The permutatiory can be considered acting on the end points
fromV,,,. Let us denote by the union of end-points that after permutatiooccupy
the firstv; positions, and by, - the union of all other end-points. Then it is natural
to consider the vectors of boundary value$’aandV; separately, since the boundary
conditions (16) can be written as

(St = Dyp(V1) = (8" + 1oy (W), an
i(S% = D)p(Va) = (8% + 1)0ntp(V2),

and obviously connect only values#fV;) with 9,3 (V1) and separatelp(13) with
0.9 (Va).

Assume now that boundary conditions at a certain ve¥igare not properly con-
necting. Then the verte,, can be divided into two verticdg andV; and the bound-
ary conditions connect together only boundary values spording to each new ver-
tex. Therefore boundary conditions can be written in thenf¢t7), which leads to
block diagonal form of the matri% corresponding to the original vertéx, . O

We are going to study in more details the relation betweeiptbperly connecting
boundary conditions and the spae ;. In order to do this we will need the notion of
coordinate subspaceany subspace ii” spanned by a certain number of basic vectors
from the standard basis {&¥*, but does not coincide witfi”. This is a straightforward
generalization of the notion of coordinate plane®Rih We say that a subspacé is
perpendicularto a coordinate subspacé iff Px N ¢ NN K andPyK C NNK,
whereP denotes the orthogonal projection.

Theorem 9. The non-resonant boundary conditions corresponding tartagix S are
properly connecting iffV_; is not perpendicular to any coordinate subspace.

Proof. Let K denote some coordinate subspac&€bf and K+ - its orthogonal com-
plement. Assume thaY¥_; is perpendicular td{. ConsiderPx N_; = N*, ¢ K and
similarly P N_y = N2, ¢ K+ (whereK is also a coordinate subspace). Take
S = Ix — 2Py aunitary matrix ink andS® = I;c1 — 2Py2 @ unitary matrix in
K. Then we have that’~ = K @ K+ andS = S' @ S2,i.e. S is a block-diagonal
matrix after certain permutation of coordinates. TBUs not properly connecting.
Assume thab is not properly connecting then it has a block-diagonakstne after
a certain permutation of coordinates, i®= S'@S? whereS* is a unitary matrix in a
certain coordinate subspa&eandS? is a unitary matrix ik -. ThenN_; possesses
the representationN_; = N_;(S') @ N_;(S?). And hencePxN_; = N_{(S1),
i.e. N_y is perpendicular tds. O

This theorem can be generalized to describe all asympligtimaperly connecting
boundary conditions using the fact that the subspéce s stable forS, (k).

Theorem 10. The boundary conditions are asymptotically properly cartimeg iff N_,
is not perpendicular to any coordinate subspace.
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Proof. By Theorem (6) the limit of the scattering mati$% (k) is a certain energy inde-
pendent scattering matriX>°, which has the same eigensubspate, . Then current
theorem follows from Theorem (9). O

The energy independent scattering maffix, is not properly connecting for ex-
ample in the following two cases:

1. Ny = {0}, N_; = C~, which corresponds to Dirichlet boundary conditions at
the endpoints forming the vertex;

2. Ny = C"~,N_; = {0}, which leads to the Neumann boundary conditions at
the endpoints forming the vertex.

Clearly these boundary conditions are not properly commg&nd correspond to the
case where the vertdx,, is maximally decomposed.

On the other hand it is possible to define the following two amant families of
properly connecting non-resonant boundary conditions:

1. Hyperplanar Neumann conditions - defined by a certain vectas™ < C'm
with all components different from zero

Y(Vin) [ w™,
{ Ontb(Vin) L w™ (18)

2. Hyperplanar Dirichlet conditions - defined by a certain vecta™ € C¥ with
all components different from zero

Y(Vin) Lu™,
{ an,‘/}(vm) || um (19)

These boundary conditions correspond to the case wheref dine subspaced’; and
N_; is one dimensional. For hyperplanar Dirichlet conditidvis, is spanned by™
and, since all components af* are different from zeroN_; is not perpendicular to
any coordinate subspace. For Neumann conditionsV; ithat is spanned by™ and
again/Ny, and thereforeV_; as well, is not perpendicular to any coordinate subspace.
It follows that both hyperplanar Neumann and Dirichlet dtiods are non-resonant
properly connecting boundary conditions. In the case ofexeformed by one end
point hyperplanar Neumann and Dirichlet conditions redoadassical Neumann and
Dirichlet conditions respectively, which motivates the&me. The word "hyperplanar”
reflects the fact that one of the corresponding subspsices N_; has codimensioi.
Note that if the vectow™ is chosen equal t6l, 1, ..., 1), then hyperplanar Neumann
conditions coincide with the standard boundary condit{gvisich are sometimes called
Neumann conditions in the literature).

7. Trace formula for non-resonant boundary conditions

The trace formula connects together the spectrum of a qoegtaph and the set of
periodic orbits for the underlying metric graph. It was fissiggested independently
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by J.-P. Roth and B. Gutkin and U. Smilansky [15; 5]. In 2005 #luthors provided a
rigorous proof of this formula [13] discovering importaetations with the Euler char-
acteristic of the graph [11]. For considered there stanbatthdary conditions it was
used that the vertex scattering matfx is independent of the energy. Thus one can
easily generalize the proof of the trace formula for any haploperator on a metric
graph with any properly connecting non-resonant boundanglitions. The only diffi-
culty appears when one tries to calculate the spectral grethedic multiplicities of the
zero eigenvalue.

Let L be the Laplace operator on a metric grdpformed by N edges connected
at M verticesV,, of valencev,, and havingC' connected components. The set of
all edges will be denoted biy = {Ay,...,Anx}, Aj = [225_1.4,,] and the set of
verticesV = {V4,... V) } is a partition of the set of endpoin{ssj}iﬁl. The maxi-
mal Laplace operatak,,. is defined on the Sobolev spadéf (" \ V). Consider the
vectors of boundary values and normal partial derivatissoeiated with each vertex
Vin, I. €.v,,-dimensional vectorg(V;,) and 0,4 (V,,,) with components)(z;) and
On(x;) respectively forz; € V;,. Then the boundary form of the maximal Laplace
operator operator is given by

(Lmaxth, ) = (0, Linax®?) = Y (@ (Vin), 000 (Vi) = (0np(Vin), (Vi)
Vim

m

The theorems for a star graph can now be easily generalizechjoarbitrary graph'.

Theorem 11. The family of self-adjoint restrictions af,,.. can be described by
boundary conditions connecting the boundary vales- (¥(V1),...,%(Vys)) and

Ot = (Onp(V1), ..., 0n(Vir))
i(S — 1) = (S + 1)op. (20)
This boundary conditions are properly connecting iff thaydathe form
i(S™ = DYp(Vim) = (5™ + 1)0ntp(Vin), (21)

whereS™ is a unitaryv,, x v, matrix with N_; (S™) not perpendicular to any coor-
dinate subspace i@V.
The non-resonant boundary conditions are given by:

PN{’lan/‘/)(V;n) == 07 PNTJL’(Vm) == 07 (22)
whereN{" @ N™ = C¥m.

Assume that the boundary conditions at the vertices areresmnant. Then ev-
ery eigenfunction)(z, k), corresponding to the energy = k2 is a solution to the
differential equation ,

0w ) = B B, 23)
on the edges, satisfying the boundary conditions (20) avehiices. Foik # 0 every
solution to (23) can be written using either a basis of ina@mr one of outgoing
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waves

Yz k) = agj_ieMrm il pagelrralp e A = (2950, 2]
— sz_lefikmfxzj_ﬂ + b2j67ik|m712j|
(24)
The amplitudes = {a; fﬁl andb = {b, ?51 are related by the edge scattering matrix
Stlo

€

| "
b=S.a, whereS, (k)= | 0 [SZ]... ,sg(k)<ei2dj ¢ ) (25)

0

whered; are the lengths of the edge;. The amplitudes are also related by the vertex
scattering matrices, which are obtained from the requirgriaty (x, k) satisfies (3).
For that purpose it is convenient to use the following repnéstion for the solution to
(23), using only amplitudes related to every end paintrom V/,,

w(x, k) = ajeik‘wfzj‘ + bjefikkrf:v”

and corresponding vectotg”,b™ € C'~ of amplitudes. Then for alk # 0 the

boundary conditions (22) are equivalent to
PNZLl (am + bm) = O7
{ Pym(a™ —b™) = 0. (26)

It follows thata™ andd™ are related by the corresponding vertex scattering maffix
as follows

a™ = S"b,,, m=1,2,.. M. (27)
The last equation implies that
1 1
, b Sl o ...
a b >
=S,| . |,withs,=|_ 9 1S |- |. (28)
aflw bM : Sl

Note that the matriceS, and S,, possess the block representations (25) and (28) in
different bases. Clearly a vect@idetermines an eigenfunction of the Laplace operator
if and only if the following equation holds

det (S(k) — I) = 0, whereS(k) = S,S.(k). (29)

The matrixS(k) is unitary for realk since it is a product of two unitary matrices. It is
easy to see that

| S(k) ||< 1 for Imk > 0, and || S™*(k) ||< 1 for Imk < 0, (30)

since the (independent &) matrix S, is unitary and the matri$. (k) satisfy (30).

Equation (29) determines the spectrumidI’) with correct multiplicities for all
nonzero values of the energy, but the multiplicity, (0) of the zero eigenvalue given by
this equation, i.e. the dimensionkdr (S(k) — I), to be calledalgebraic multiplicity
may be different from the dimension,(0) of the zero eigensubspace bfI"), to be
calledspectral multiplicity
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Theorem 12. (Trace formula) Lef" be a compact finite metric graph with the total
length£ and letL be the Laplace operator iy (T") determined by properly connect-
ing non-resonant boundary conditions at the vertices. Timenfollowing two trace
formulae establish the relation between the spectfiéth; of L(T') and the seP of
closed paths on the metric graph

u(k) = 2mg(0)3(k) + Y (6(k — kn) +0(k + kn)) (31)
kpn#£0
= (2ms(0) — m4(0))d(k) + % + % > U(prim (p)) (S(p)e™P) + S*(p)e~*'P)),
peEP
and
Veri(l) = 2ms(0) + Y | 2cosk,l (32)
kn#0
= 2m(0) —mq(0) +2£5(1) + Y _ I(prim (p)) (S(p)5(l —1(p)) +S*(p)5(l+l(p))),
pEP
where

e ms(0) and m,(0) are spectral and algebraic multiplicities of the eigenwalu
zero;

e pis aclosed path offr;
e [(p) is the length of the closed path
e prim (p) is one of the primitive paths for,
e S(p) is the product of all vertex scattering coefficients along plathp.
Proof. The proof follow step by step the proof of Theorem 2 from [11]. O

This theorem shows, that both spectral and algebraic rnligitips of the eigen-
value zero may be calculated from the spectrum of the Lappeeator: the spectral
multiplicity is trivially equal to the multiplicity of A\ = 0, the algebraic multiplicity
is determined by the spectral asymptotics. Therefore irfdli@wving section we are
going to study spectral and algebraic multiplicites fofatiént types of boundary con-
ditions.

8. Spectral and algebraic multiplicities of the ground
state for hyperplanar Neumann and Dirichlet condi-
tions

8.1. On the ground state eigenfunction

We show first, that every eigenfunction corresponding taztire eigenvalue is piece-
wise constant.
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Lemma 13. Let L be the Laplace operator on a metric graph defined on the fansti
satisfying non-resonant boundary conditions. Then eviggngunction corresponding
to A = 0 is a piecewise constant function.

Proof. Every such function is a solution to the equatieft’ () = 0 and therefore is
a piecewise linear function on every edge

Y(r) =z + B, €A

Consider the corresponding Dirichlet integral

N
/F (@) P = 3 Jay[2d; > 0,
j=1

whered; denotes the length of the eddg. On the other hand integrating by parts we
get

/F V@@ = - / w”<x>¢<x>dx—szanwxijj)

M
- Z Z 3n¢(l’y)m

m=1 z;EV,,

M
= o Z <an¢m71/)m>(cvm = 07
m=1

since for everyV,,, the vectora)™ andd,¥™ belong to two mutually orthogonal sub-
spaces. Hence; = 0 and every such function is piecewise constant. O

8.2. Hyperplanar Neumann boundary conditions

In this subsection we will investigate in more details thedrplanar Neumann bound-
ary conditions defined as (18). We shall calculate the spleard algebraic multiplic-
ities of the eigenvalué. Moreover we will need to consider two cases of hyperplanar
boundary conditions: consistent and inconsistent.

Consider a closed paghof discrete lengt(p). Every such path can be uniquely
defined by a sequence of endpoitits, , zi,, . . ., 71,,,,) that the path comes across,
wherez,,, andzy,, ., as well ast;,, , andz;, belong to the same vertex whilg,,
andz,,, are endpoints of the same edge.

Definition 14. We say that hyperplanar Neumann boundary conditions arsistant

iff for every closed pathp = (z,, 21,, ..., 21,,,, ) it holds
n(p) n(p)—1
H w(xlm-,) = H w(xl2k+l)' (33)
k=1 k=0

Lemma 15. The spectral multiplicity of the eigenvalue= 0 of the Laplace operator
with consistent hyperplanar Neumann boundary conditisnsqual to the numbet
of connected componentsIof
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Proof. Consider any connected graprand assume that (33) holds. Lgbe any zero
energy eigenfunction. Lemma 13 implies thais piecewise constant and therefore
the second condition in (18) for every vectoiis trivially satisfied.

Choose any edgé; and lety)(z)[.ea, = 1. LetV; be one of the two vertices that
Aj connects. Then the values ¢fon all the edges connectedigtcan be calculated
since the vectog (V) is proportional taw’ and one of the coordinates is known. In this
way the values of the function on all neighboring edges may be calculated and hence
on the whole graph, since it is connected.Condition (33)ayptaes that no contradic-
tion occurs. Constructed in this wayis unique for any connected. It is clear that
suche cannot vanish on any edge, since all components of veattrare different
from zero.

For any not necessarily connectédhe number of linearly independent vectors is
then equal to the number of connected componénts O

Lemma 16. The algebraic multiplicity of the eigenvalue= 0 of the Laplace operator
with consistent hyperplanar Neumann boundary conditisrequal ta2C' + N — M

Proof. The algebraic multiplicity of\ = 0 is equal to the dimension of the space of
solutions to the system of equations (26) and (25) with

Sg’(O):((l) é) j=1,2,...,N.

First of all the vectob can be excluded leading to the following systermaon

D aevy, (@5 — a1y )w™(z;) = 0

The equations can be separated by introducing pMedimensional vectorg ands
wheref; = as; —ag;—1 ands; = ag; +az;—1. The valuesf; ands; can be interpreted
as flows and values of the eigenfunction on the efige

The equations or; are just the same as the equations determining the fungtion
in Lemma 15. Therefore the dimension of corresponding sebhitions is jusC' as
before, since the conditions are consistent.

The equations orf; can be written as a “balance of flows”(see footnote 1 in [11]):

Z f] ™ ($2J) _ Z fj Tl («/L'2j71)- (35)

7,225 €Vin 7525 —1€Vm

Consider the case whdhnis a tree. Then on all loose edggs= 0, since hyper-
planar Neumann boundary conditions at loose endpoints @tténg else than usual
Neumann conditions. Considering the balance equationyavenexV,,, connecting
togetherv,, — 1 loose edges, we conclude thgtis equal to zero on every edge con-
nected only to the loose edges (remember thatél(x;) are different from zero).
Continuing in this way we conclude that &Il are zero.

Consider now an arbitrary gragh It can be turned into a forest (a sum of sev-
eral trees)I" with the same number of connected components by deletingtlgxa
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g = N — M + C edges. Let us denote those edgesty A,,...,A,. For ev-
ery such edge denote lpy the shortest closed path dhuU A;. Let us prove that
there exists a solutiofi’ supported just by,;. Assume for the sake of simplicity that
pj = (T1,22,...,T2,)). and it runs through the verticd§, Va, ..., V, . Then
boundary conditions at these vertices build a system oftemsa

fw' (22) = fow'(x3)
f2w?(x4) = fswi(ws)
Fa TP @20)) = [T (1)

Multiplying both sides we get the following relation

wh(wo)w?(xy) . .. w”(p)*l(:pgn(p)_g)w"(”) (Zon(p))

=1

w (zg)w?(z5) ... wP) = (@9 )1 )w™P)(21) ’
which is exactly the consistency relation (33) for the hyteemar Neumann boundary
conditions. Therefore there exists a unique (up to muttgtlon by a constant) solution
f7 of (35) for each basic cyclg; in the graph. Consider now

F=> s 1. (36)
j=1

Obviously this function is supported 4 and satisfies equation (26). Therefore it is
zero and it follows that every can be written as a combination ¢f which are of
course linearly independent.

Thus the algebraic multiplicity oX = 0 is equal to the number of basic cycledin
plus the number of connected componetitdHence the algebraic multiplicity is equal
to(N-M+C)+C=2C+N—-M. O

The algebraic multiplicity can be characterized by the Eglearacteristicy =
M — N,mY(0) =2C — x.

8.3. Hyperplanar Dirichlet boundary conditions

Consider nowN_; spanned by one vectar™ = (uy,us, ..., u,, ) With all compo-
nents different from zero. Then we obtain the hyperplanaicBliet boundary condi-
tions described before by (19). To calculate the spectrdlagebraic multiplicities
one has to perform the same steps as for hyperplanar Neunoamadry conditions
arriving at the following system (instead of (34)) :

{ dj — (Nlj_(_l)j = ﬂm’u,m(irj), T; € Vin m=1 .. M (37)

ijev,” (@5 + aj_(1ys)u™(z;) = 0

wherea; denote the corresponding amplitudes in representation (24
Consider the following mapping:

w(zy) = (=1)tu(zy),
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which establishes a one-to-one correspondence betweetiossl to (34) and (37).
In the case of hyperplanar Neumann boundary conditionsphetial and algebraic
multiplicities satisfy

mN0)=cC, mY0)-mN0)=C+N-M. (39)
As a result of mapping (38) we get the following relationsvestn spectrai? (0)

and algebraion? (0) multiplicities of the zero eigenvalue for hyperplanar Birfiet
boundary conditions:

—

=

=
\

=ml'(0) —m
mP m

(40)

Thereforem? (0) = C + N — M andm? (0) = 2C + N — M.
We have proven the following theorem.

Theorem 17. The spectral and algebraic multiplicities of the groundtetaigenvalue
A = 0 for the Laplace operator with consistent hyperplanar Neamand Dirichlet
boundary conditions are equal to:

mN0)=C,  md(0) =mP(0) =20 —x,
mP(0) = C -y, (41)

whereC' is the number of connected components grd M — N.

Formulas (31) and (32) show that the knowledge of the specallows one to
calculatem(0) and2m(0) — m,(0) following ideas of [11] and [12]. This means
that the algebraic multiplicityn, (0) is determined by the spectrum of the Laplacian.
Observe thatn, (0) for both hyperplanar Neumann and Dirichlet conditions isado
2C — x. In particular for connected graphs the Euler charactesst determined by
the spectrum for both hyperplanar Neumann and Dirichlehbdaty conditions without
knowing a priori which class of conditions occurs.
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On the Reconstruction of the Boundary Conditions
for Star Graphs *

Sergei Avdonin, Pavel Kurasov and Marlena Nowaczyk

ABSTRACT. The Laplace operator on a star graph is considered. fdi#em to
recover the vertex matching boundary conditions from a part of theesicey matrix is
investigated.

1. Introduction

Differential operator on geometric graphs have been studied froretiating of 80-ies [8; 11],
but recent interest in nano-structures has led to enormous intereathiematical studies of the
problem [14; 16; 17; 19]. In this article we discuss the possibility to rettoasthe matching
(boundary) conditions at the unique vertex of a star graph from theegmonding scattering
matrix. This problem can easily be solved if the total scattering matrix is kn@ee [15]),
and it has been shown recently that the scattering matrix at a particular ofallne energy can
effectively be used to uniquely parameterize the matching conditions [IB§ problem we
are interested in is the possibility to reconstruct the matching conditions if opgrteof the
scattering matrix is known, more precisely the principal- 1) x (v — 1) block (S, (ko)) v;v,
wherew is the valency of the vertex. This problem can be considered as thetéipstasvards
reconstruction of the vertex matching conditions for trees from the sporeling scattering
matrix.

The problem of reconstructing the Sodinger operator on a star graph was first discussed by
N.l. Gerasimenko and B.S. Pavlov [11; 12] using the Gelfand-Lewitanchenko method. The
inverse spectral and scattering problems for trees have intensivefystedied in recent years
by M. Belishev, M. Brown, R. Carlson, G. Freiling, A. Vakulenko, R.iWéd, V. Yurko, and the
authors [1; 2; 4; 5; 6; 7; 9; 10; 21]. It has been proven that theMedge of the Dirichlet-
to-Neumann map, or Titchmarsh-Weyl matrix function allows one to caleube potential for
standard boundary conditions at the vertices. The case of moreafjpoandary conditions has

*Submitted to Proceedings @uantum Graphs, their Spectra and Applicatida$ April 2007, Cam-
bridge.
1991 Mathematics Subject classificatidrimary 81C05, 35R30, 35L05, 93B05, 49E15.
Key words and phraseguantum graphs, inverse problems, matching conditions.
S.A’s research is supported in part by the National Sci€ocmdation, grants OPP 0414128, ARC 0724860
and DMS 0648786; P.K.'s research is supported in part byridwetg from Swedish Research Council and The
Swedish Royal Academy of Sciences. The authors would likeaok V. Ufnarovski for helpful discussions.
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been discussed in [10], but the whole family of boundary conditionsnbabeen investigated
yet.

In the current article we consider the most general family of propemyecting self-adjoint
boundary conditions. It is discovered that so-calsymptotically properly connectingpn-
ditions play a very important role. Such boundary conditions correspovertex scattering
matricesS, (k) tending to the limit matrixS;° ask — oo, which cannot be written in the block-
diagonal form (after a certain permutation of the coordinates). Itamepehat for such boundary
conditions the principalv — 1) x (v — 1) block of the scattering matrix known for one particular
value of the energy essentially determines the boundary conditions (upetoeal parameter,
which in principle cannot be recovered and provided one additiondy eecked condition is
satisfied). Explicit interpretation of this free parameter is given using iynéquivalent opera-
tors. In the second part of the paper it is shown that knowing in additioditg®nal elements of
the principal block for a finite number of energies one may reconstinedboundary conditions
even in the case of jugroperly connectindgpoundary conditions.

All results are proven so far for the Laplace operator on the star gréthhmost general
self-adjoint matching conditions at the vertex, but it is not hard to géimerthese conditions
to include potentials with compact support using Boundary Control mgjddllowing ideas
already developed in [1]. It is our future aim to apply these results to shkenost general
inverse problem for trees consisting of recovering the geometric toéential on it and boundary
conditions at the vertices.

The paper is organized as follows. In the following section main notaticthd@finitions are
given. The cases of asymptotically properly connecting and just gyopennecting matching
conditions are considered in sections 3. and 4..

2. Scattering on a star graph

Let us denote by . the star graph formed by edgesA; = [z2;-1, 00) joined together at
one vertexV = {z2;_1};j_;. Consider the Laplace operatbr= —% in L2(Dstar) defined
on the set of functions fro3 (Isar \ V) satisfying the following matching conditions at the
vertex

i(S=DYp(V) = (S +1)onp(V), @)

whereS is av x v unitary matrix andp (V') andd,y (V') arev-dimensional vectors of the values
of ¢y and its normal derivative at the vertexThe unitary matrix appearing in (1) is just the vertex
scattering matrixs, (k), k> = E for k = 1. The vertex scattering matrix may be defined by con-
sidering scattering waves dh... Every solution to the equationy” (k, ) = k*¢(k, ) can
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2. SCATTERING ON A STAR GRAPH

be written as a combination of the incomiag**!*~*2i-1! and outgoing:**!*~*2i-1! waves:
’l/)(k,l’) _ bje—ik\z—zzj_ﬂ +aj€ik|z—a:23_1\, = A]’-

Substitution into the matching conditions (1) determines connection betweamibigudes of
incoming and outgoing waves
a = S,(k)b, 2

whereS, (k) is the vertex scattering matrix

(k+1)S+k—1

W= s v R T

k #0. ?3)
This formula allows one to establish explicit connection between vertex songttaatrices for
different values of the energy parameter (see [15])

(k + ko)Sv(k'o) +k—ko

Su(k) = (k — ko) Sy (ko) + k + ko’

ko # 0. (4)

The unitary matrixS parameterizes the boundary conditions in the unique way and therefore
encodes all information concerning these conditions. In particulanr@yeunderstand whether
the boundary conditions connect all edges properly or not. In whiatfe we shall need the
notion of asymptotically properly connecting boundary conditions. It ssjiide to prove that

for k — oo the vertex scattering matrig, (k) tends to a certain limit. If the boundary condi-
tions are properly connecting there is no guarantee, that the limit scatteatrx corresponds

to properly connecting conditions. In other words it may happen thataheection between
certain channels becomes weak and therefore for large energiestesponding vertex is seen

as two (or more) independent vertices. Let us therefore use the fofow

Definition 1. Vertex boundary conditions are callgaoperly connecting if the vertex cannot
be divided into two (or more) vertices so that the boundary conditionsemrtngether only
boundary values belonging to each of the new vertices. Vertex bogrdaditions are called
asymptotically properly connectingif the limit scattering matrixS;° corresponds to certain
properly connecting boundary conditions.

Itis clear that every asymptotically properly connecting boundary itionds properly con-
necting. In the rest of this article we consider first asymptotically propenhnecting and then
just properly connections matching conditions.

Criteria for S to be properly connecting is rather simple: the matching conditions are prop
erly connecting if and only if the matri cannot be transformed into a block-diagonal form by
a permutation of the indices. To understand whetfiés asymptotically properly connecting
or not one has to use its spectral representation as a unitary matrixs detiote byV s, the
eigensubspace corresponding to the eigenvelllie Then it is possible to prove that the limit
scattering matrixs;° = limy_. Sv(k) has eigenvalues1 with the following eigensubspaces
[13; 18]

< =N_; and N°=C"© N_; = N4, (5)

Then itis not hard to prove the following

Proposition 2 (Theorem 6.5 from [18]). The boundary conditions are asymptotically properly
connecting if and only ifV_; is not perpendicular to any coordinate subspace.

By coordinate subspace we mean any subspad€‘ispanned by one or several vectors
from the standard basis, but doesn’t coincide wth
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3. Recovering of the asymptotically properly connect-
ing matching conditions

In this section we discuss the possibility to reconstruct the matching conditionshe principal

(v —1) x (v— 1) block (S, (k))v;v Of the vertex scattering matrix. This part of the matrix is
obtained when we send plane waves along theidfirstl edges and measure the reflected waves
coming along the same edges. Let us discuss first whether this remtiwstris unique or not.
Consider the following unitary transformation Iy (I's¢ar )

mnE={ ), Tear Tt ©

This transformation does not change the differential operator butaoge the matching condi-
tions at the vertex, i. e. the operatbf = Tg‘lLTe is given by the same differential expression
—d?/dz?, but the matrixS in boundary conditions (1) has to be substituted with

S% = RyS°R_y, S° =5, (7)

whereRy is the followingv x v matrix:

10 0 0
01 ... 0 0
Ro =diag{1,1,..,1,"}y=| = © . 1 |. (8)
00 ... 1 0
0 0 ... 0 €

It is clear that this transformation does not change the b(étKk)).;., of the matrixS. The
same holds for the vertex scattering matrix, since (3) implies that

S9(k) = RSO (k)R_s, )

whereS?¢ (k) is the vertex scattering matrix corresponding to the new conditions.

The following theorem implies that the knowledge of the principal- 1) x (v — 1) block
of the vertex scattering matrix allows one to reconstruct the whole matrix apeaeal param-
eter corresponding to the transformatiBy provided the boundary conditions at the vertex are
asymptotically properly connecting.

Theorem 3. Consider the set ob x v vertex scattering matriceS, determined by certain
asymptotically properly connecting vertex boundary conditions and bawi@ same principal
(v—1) x (v —1) block (Sy (ko) )wv;e With det((Sy(ko))wv;o + 1) # 0. This family of matrices
can be described by one real phase parameter so that

Su(k) = RoSy (k)R o, (10)
whereRy is given by(8) and S (k) is a certain particular member of the family.

Proof. Reconstruction of an unitary matrix from its princigal— 1) x (v — 1) block in general
contains two arbitrary phase parameters and can be carried out usifagtthat the entries of
an unitary matrix satisfy the normalization and orthogonality conditions:

SlsuslP =1, i lsylP =1
> j=1 85 =0, 377, sijsa = 0.
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4. RECOVERING OF THE PROPERLY CONNECTING M.C.

Assume that the princip@b — 1) x (v — 1) block (S, (ko))w;» Of the matrixS,, (ko) is known.
Consider the last row ii¥, (ko). The absolute values &f,;(ko),j = 1,2, ...,v — 1 can be cal-
culated from the normalization conditions. At least one of these numbdiffeeent from zero,
otherwise the matrix§, (ko) is block-diagonal and does not correspond to asymptotically prop-
erly connecting boundary conditions. Consider any such differem fzero element, say with
the indexwv1. All possible values of this element can be described by one real phasmeter
« as followss,1 = |s,1]e’®. Then all other elements, ;, j = 2, ...,v — 1 can be reconstructed
using orthogonality conditions. In the same way one may consider theolashig and introduce
a parameteB € R such thats;, = |s1,|e’®. Then the element,, is uniquely determined:

Let us summarize our calculations by stating the following result: the famiedéx scat-
tering matrices having the same princigal— 1) x (v — 1) block can be described by two real
parameters so that

S0P (ko) = RaSo(ko)Rg, (1)

where S (ko) is a certain particular member of the family. It remains to prove that the sub
family corresponding to asymptotically properly connecting matching itiong is described

by just one parameter using (10). Assume thatko) is a particular member of the subfamily.
Every vertex scattering matrix corresponding to asymptotically properyecting boundary
conditions has eigenvaluel, which implies that

det (S5 (ko) + 1) = 0 = det(SI(ko) + R—_(atp)) = 0.

In the last equality we may use that the determinant is linear with respect emthewith the
indexwvv to get

0 = det(S9(ko) + 1) + (e ™ — 1) det(Sy (ko)) v = (T — 1) det(Su (ko)) wew,

where we have taken into account tilet (S0 (ko) 4+ I) = 0. It follows thata = —3, since
det(Sy(ko))wv;e # 0. We have proven that all possible, (k) satisfy (10) fork = ko. Then
formula (4) implies that (10) holds for any real a

It follows that in the case of asymptotically properly connecting matchinglitions the
vertex scattering matrix for all values of the energy can be recoveosd its principal(v —

1) x (v — 1) block given for a certain value of the energy paramétap to one real parameter
connected with the unitary transformation given by (9) (providet| (Sy (ko))wv:w + I) # 0).
The corresponding Laplace operators are all unitary equivalenttoaher.

We would like to mention that the result just proven is an extension of Thedrérom
[15], where it is shown that the knowledge of the (whole) scattering métdria certain energy
allows one to reconstruct the boundary conditions at the vertex anddtedetermine the vertex
scattering matrix for all other values of the energy.

4. Recovering of the properly connecting matching con-
ditions

In the rest of this article we discuss the possibility to recover the matchingjtomrs from the
principal (v — 1) x (v —1) block of the scattering matrix given for different energies, but without
assuming that the boundary conditions are asymptotically properly ctingelt is assumed that
the boundary conditions are just properly connecting. This restrictiontiessential, since in

**Only if the matrixS, (ko) is block-diagonal, the element,, has to be chosen with unit absolute value
but otherwise arbitrarily, but this case cannot occur umderassumptions.
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the case of not properly connecting conditions one may solve the inmeyskem for each block
separately. The only case that has to be excluded is where the last adgedanected to the rest
of the star graph. Itis clear that in this case no information concerningabedary condition
for edge numbep is contained in the principgb — 1) x (v — 1) block of the scattering matrix.

In the following theorem we are proving that the knowledge of the printifeak (S, (k))v;v
for several energies allows one to reconstruct the boundary corslétdhe vertex up to the uni-
tary transformation given by (7) and (8).

Theorem 4. Consider the set ob x v vertex scattering matriceS, determined by certain
properly connecting vertex boundary conditions and having the sameipal (v —1) x (v—1)

block (Sv(ko))v;w, ko > 0. Assume in addition that these matrices have the same diagonal
elements;;(k»), 7 = 1,2,...,v—1for certain different,, > 0, k», # ko, n =1,2,...,20—3.
Then this family of matrices can be described by one real phase panasoeteat

Su(k) = RoS)(k)R—o, (12)
whereR, is given by (8) ands! (k) is a certain particular member of the family.

Proof. Assume that one particular unitary matsS§ (ko) has been calculated from the value of
its principal (v — 1) x (v — 1) block. Then any other unitary matrix with the same principal
block is given by (11). This formula includes two arbitrary parametatsiaremains to show,
that the knowledge of — 1 diagonal elements allows one to eliminate one of these parameters.
Consider one of the matrice®? (ko) from the two-parameter family described by (11).
Then the scattering matrix for all values of the energy paranietan be calculated using (4)
(k + ko) S5 (ko) + k — ko

a,fB _
Sv (k) = (k — ko)SSP (ko) + k + ko (13)

In particular, its element with the index is

k+ko  4kko k+ko\ "
s20) = - (ssﬁwo) " )
( )11 k—ko K2 — K2 F=ko)y 14

k + ko 4kko 0 k + ko
= - ki —a— )
K—ko kK2 (S“( )+ @)11

where we used the fact that the matri¢gsdo not change the principle — 1) x (v — 1) block
and, in particular, the element with the indek In what follows we are going to use the notion
of rejected minor. Letd be any quadratiz x n matrix, then the rejected minot;; is the
quadratic matrix of dimensiofr — 1) x (n — 1) obtained fromA by rejecting the row and the
columnj. Similarly the rejected mino#;, ;,;,,;, IS obtained from the matrixl by rejecting
the rowsiy,i2 and the columngy, j2 [20]. With these notations the diagonal element of the
scattering matrix can be calculated

<Sa”6(k)) P l det(Sg(ko) + 0')1;1 + U(eii’Y — 1) det(SS(ko) + 0')1,1,;1’1,
v 11 o det(S%(ko) + o) + o(e~v — 1) det(S9(ko) + 0)viw
15

k-+ko )

whereo = Ry ) = at [ andk # ko. All determinants appearing in this formula are
different from zero, since the matrig (ko) is unitary ando > 1 (remember that > 0).
This formula shows that in general situation the knowledgé&ﬁf"’(k:))11 for a certaink #

ko allows one to calculate (up to unessential factdr). This is impossible if and only if
(5P (k)),, does not depend o i.e. the equality

det (S (ko) + o) det(SY (ko) +0)1.v:1,0 — det(S9 (ko) + o) 1.1 det(SY (ko) + 0) v = 0 (16)
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holds. It might happen that cannot be recovered even if the eleméniof S&-° (k) is known
for all £ > 0. This occurs if (16) holds for alk > 0 (remember that = % ). Using Jacobi
identity (Section 3.6.1 from [20])

det(Sg(ko) + 0’) det(SB(ko) + U)l,v;l,u

= det(Sy (ko) + )11 det(Sy (ko) + 0)viw — det(Sy (ko) + )10 det(Sy (ko) + 0)uat
17)

condition (16) can be written as

det(Sy (ko) + o) 1,0 det(S9 (ko) + o)1 = 0, (18)
and it holds foro = ’;:f’;g, n=1,2,...,2v — 3. This implies that at least one of the determi-
nants, saylet (S5 (ko) +a).;1 is equal to zero foo — 1 different values of. But this determinant
is a polynomial inr of ordery — 2 with the zero and leading coefficients equadlta (SO (ko)) w1
and(S9(ko))1. respectively. It follows thadlet (S (ko))v:1 = 0 = (S9(ko))10, but taking into
account thats (ko) is unitarydet(S9(ko))»;1 = 0 implies that(S9(ko)).,1 = 0. Summing
up we see that the parametercannot be recovered froifS, (k)11 only if (SO (ko))1» =
(Sy(ko))or = 0.

Consider now any elemeitS, (k))mm, m = 2,...,0 — 1. Similar analysis implies that
the parametety can be recovered fror(S, (k»))mm, n = 1,2,...,2v — 3 unless the entries
(S9(ko))1m and(S9(ko))m1 are equal to zero. In other words the parametean be calculated
from one of the diagonal elemer(tS, (k))mm, m = 1, ...,v — 1, unless all entrieS (ko)) 1m
and(S9(ko))m1 m = 1,...,v — 1 are equal to zero. But this means ti#fi(ko) has a block
diagonal form and hence the corresponding boundary conditionsoangroperly connecting.

O

This theorem can be improved, which we would like to illustrate by the followixeyre
ple. Letv = 3. Then the parameter cannot be recovered froif, (k.))11,n = 1,2, 3 only
if (S9(ko))13 = 0 anddet(S9(ko))s.1 = 0, which implies that at least one of the entries
(SY(ko))12 and(SY (ko))23 is equal to zero. Henc§, (ko) is block-diagonal and the boundary
conditions are not properly connecting.
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