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MARIA ASTUDILLO

Abstract. Pseudo-Hermitian Laplace operators on graphs are constructed
using the method of point perturbations. We study whether all such operators
with purely real spectrum are self-adjoint or not.

1. Introduction

Recently there has been a great interest in substituting the mathematical con-
dition of Hermicity for Hamiltonians by a weaker and sometimes more relevant
condition of spacetime reflection symmetry (PT -symmetry), which can be further
extended to a more general mathematical context known as pseudo-Hermicity. As
a result, a wide range of Hamiltonians which a decade ago would have been unfit
for the theories of quantum mechanics can now be considered in a new extended
pseudo-Hermitian quantum mechanics.[3, 4, 6] It has been proven that Hamilto-
nians with the pseudo-Hermicity property either have real or conjugated pairs of
eigenvalues [13]. Therefore, it is important to investigate the relation between the
pseudo-Hermitian Hamiltonians and the reality of their spectra [3, 4, 5, 6, 12, 13, 14].
The present work is a generalization of the studies carried out in [3] on PT -self-
adjoint point interactions with the support at the origin and at points ±l, l > 0
for the second derivative operator in one dimension. In this instance, a particular
pseudo-Hermitian point interaction at the vertex of the star graph for the Laplace
operator will be studied.
The growing interest in non-Hermitian Hamiltonians was motivated when many
researchers found by considering various examples that such Hamiltonians could
still have only real spectra. It was then in 1998 that Bender and Boettcher based
on the results of various numerical studies, established the field of PT -symmetric
quantum mechanics [5, 12]. They showed the existence of a huge class of non-
Hermitian Schröndiger eigenvalues problems whose entirely real and positive spec-
tra was due to an unbroken space-time reflection symmetry [5, 6]. It was later that
Znojil, Japaridize, Kretcher, and Szymanowski among others carried out analyti-
cal studies to investigate the mathematical structure and the interpretation of the
PT -symmetric quantum mechanics [10, 11, 12, 17].
However, PT -symmetry is neither a necessary nor a sufficient condition for a Hamil-
tonian to have a real spectrum. Actually, classes of non PT -symmetric Hamiltoni-
ans with real spectra have been constructed [7, 12].
It was Mostafazadeh who first pointed out that because the parity operator P is
Hermitian, it may be used as an intertwining operator [6]. He then showed that the
remarkable spectral properties of the PT -symmetric Hamiltonians follow from their
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pseudo-Hermicity [14]. He also considered the class of pseudo-Hermitian hamil-
tonians that have a complete biorthonormal eigenbasis and showed that pseudo-
Hermicity is a necessary condition for having a real spectrum [12].
Our aim is to study the generalization of pseudo-Hermicity for the case of the
Laplace operator on the star graph. Natural generalization for the space reflection
P is the rotation operator R which performs cyclic permutation of the edges of the
graph. We are interested in the discrete spectrum of pseudo-Hermitian operators
using R as the intertwining operator. It is proven that the discrete spectrum is
formed by pairs of eigenvalues conjugated to each other.
Conditions for which the spectrum is real are investigated. In the first step we con-
struct a certain family of pseudo-Hermitian operators (described by the boundary
conditions of type (7)). It appears that if the number of edges of the star-graph is
odd, then all operators from the constructed family have non-trivial discrete spec-
trum which is real if and only if they are self-adjoint. If the number of edges is
even, then there exists a rich set of non-self adjoint pseudo-Hermitian operators
having real spectrum.

2. Definitions

Pseudo-Hermitian. According to the literature the definition of a pseudo-Hermitian
operator is as below:
A linear densely defined operator A acting in a Hilbert space H is pseudo-Hermitian
if there exists a Hermitian invertible linear operator η : H → H such that

(1) A∗ = ηAη−1,

where A∗ is the adjoint operator, and η is called the intertwining operator. The
condition of pseudo-Hermicity coincides with the ordinary Hermicity when η is the
identity and reduces to PT symmetry when η = P [6].
It was suggested in [3] to call such operators pseudo-self-adjoint. In the present
article we reserve the name of pseudo-Hermitian to a slightly different family of
operators.

Star graph. The star graph ΓN = Γstar = (E, V ) is a metric graph formed by
a finite set E of semi-infinite closed intervals ∆j = [0,∞), j = 1, 2, · · · , N called
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edges, joined together at the unique vertex V := {0}.
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Fig.1 Star-like graph.

V

With ΓN we associate the following Hilbert space

(2) L2(ΓN ) = ⊕
N∑

j=1

L2(∆j) = ⊕
N∑

j=1

L2[0,∞).

Every function F ∈ L2(ΓN ) can be seen as a vector function with components
fj ∈ L2(∆j) on the edges j = 1, · · · , N :

F = {fj}N
j=1.

Laplace operator. By the Laplace operator in L2(Γ) we mean the (minus) second
derivative operator:

(3) L = ⊕
N∑

j=1

− d2

dx2
,

defined on the domain:
(4)

Dom (L) = {f ∈ ⊕
N∑

j=1

W (∆j) : f is continuous at the vertex V and
N∑

j=1

f ′j(0) = 0}.

Circulant matrix. A circulant matrix is a special case of a Toeplitz matrix. The
value of the entry aij of the N ×N circulant matrix depends only on the difference
(j − i)mod N , i.e,
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A =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0




.

The family of pseudo-Hermitian Hamiltonias in L2(ΓN ) will be constructed as point
perturbations of the standard Laplace operator.

3. R- pseudo-hermicity of Point Interactions

The method of point-interaction presented in this section is very similar to the
one described in [2], which is based on the extension theory of symmetric operators.
It is well known that to determine an operator in the Hilbert space, its domain
must be specified. To determine the symmetric extensions of a densely defined
operator then reduces to determining its domain of definition, since every symmetric
extension is a restriction of the adjoint operator. As in [3], we start with the Laplace
operator restricted to a certain densely defined operator, and extend the operator, in
this case, to a pseudo-Hermitian operator which has non trivial spectrum structure.
The bounded linear operator which will be used is the rotation R with center at
the vertex of a star graph , which performs a cyclic permutation of the edges,i.e,

R




f1

f2

...
fn


 =




f2

f3

...
f1


 .

We will then define what appears to us to be a natural generalization for the PT -
symmetric operator
The Laplace operator with the standard domain described in (4) on the star graph
is both self-adjoint and R pseudo-self-adjoint.We will now study point interactions
at the vertex to get pseudo-Hermitian operators. In general, all point interactions
of L at the vertex can be obtained by restricting L to the set of functions having
support separated from the vertex [2]. Then a linear operator L̃ would be a point
perturbation at the vertex of the operator L if and only its restriction to C∞0 (ΓN\V )
coincides with the restriction of the operator L:

L̃|C∞0 (ΓN\V ) = L|C∞0 (ΓN\V ) ≡ L0.

All self-adjoint extensions of the operator L0 determined by the last equation can
be described by the boundary condition:

(5) B ~f ′(0) + C ~f ′(0) = 0

where B, C are certain N ×N matrices satisfying the following two conditions:
1. rank (B, C) = N
2. BC∗ is Hermitian.[15]
In the current article we are going to study extensions of L0 described by the bound-
ary conditions of the same form (5), with the matrices B, C satisfyng condition 1,
but the second condition will be substituted by:

RT L = LRT
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where T is the antilinear operator of complex conjugation:

(T f)(x) = f(x)

More precisely:

Definition 3.1. An operator L is a pseudo-Hermitian extension of L0 if and only if
it is a restriction of L∗0 to the domain of functions satisfying the boundary condition:

Bf ′ + Cf = 0

with the matrix (B,C) having rank N and satisfying the condition RT L = LRT .

L∗0 is the maximal operator Lmax, where Lmax is the second derivative operator
in L2(ΓN\V ) with the domain Dom (Lmax) = W 2

2 (ΓN\V ). It can then be proven
that the following boundary conditions define pseudo-Hermitian point interactions
of L on the star-graph:

Definition 3.2. Let A be a certain N ×N matrix, we denote by LA the restriction
of Lmax = −( d2

dx2 ) defined originally on W 2
2 (ΓN\V ), to the domain of functions

satisfying the following additional boundary conditions at the vertex of the star-
graph:

(6)




f ′1(0)
f ′2(0)

...
f ′N (0)


 = A




f1(0)
f2(0)

...
fN (0)


 .

LA is a certain point perturbation of the Laplace operator L.

Theorem 3.1. Consider the operator LA defined previously, definition 3.2.
If N is odd then the operator LA is pseudo-Hermitian if and only if A is a circulant
matrix with real entries:

A =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0




, aj ∈ R , j = 0, · · · , N − 1.

If N is even, then the operator LA is pseudo-Hermitian if and only if A is a
complex block circulant matrix of the following form:

A =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0




, aj ∈ C , j = 0, · · · , N − 1.

Proof. Let us recall that any pseudo-Hermitian extension of L0 is a restriction of
L∗0, which in this case is Lmax. We can then consider the vector space C2N of
boundary values of functions from the domain of Lmax and the map Λ assigning to
any funtion F ∈ W 2

2 (ΓN\V ) its boundary values:
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Λ: F →




f1(0)
f ′1(0)
f2(0)
f ′2(0)

...
fN (0)
f ′N (0)




∈ C2N .

Similarly the operator of complex conjugation T is mapped by Λ into the oper-
ator T of complex conjugation in C2n.
The closure of the operator L0 is defined on the functions having trivial boundary
values at the vertex and vice-versa any function from the domain of Lmax with
trivial boundary values belong to Dom (L0).
Let us study every edge separately and consider fi ∈ ∆i, i = 1, · · · , N . It can then
be seen that letting g1, g2 ∈ W 2

2 (R+), such that:

g1(0) = 1, g2(0) = 0,
g′1(0) = 0, g′2(0) = 1.

f − fi(0)g1 − f ′i(0)g2 ∈ Dom(L0).
Then, defining Lmax and L0 on each edge, the dimension of the quotient space
Dom (Lmax)\Dom(L0) is 2. As a result, the dimension of Dom (Lmax)\Dom(L0)
on the star-graph is 2N .
Extending L0 amounts to removing certain boundary conditions, thereby enlarg-
ing the Dom (L0) and reducing Dom (Lmax). Functions belonging to the pseudo-
Hermitian extensions of L0 have boundary values from an N dimensional subspace
L of C2N and belong to the domain of the restriction of Lmax. Every such subspace
can be described by N (linearly independent) boundary conditions using a N ×2N
dimensional rank N matrix Q = {qij} as follows:

(7) ΛF ∈ L ⇔





q11f1(0) + q12f
′
1(0) + · · ·+ q1(2N)f

′
N (0) = 0,

...
qN1f1(0) + qN2f

′
1(0) + · · ·+ qN(2N)f

′
N (0) = 0

.

The restriction of the maximal operator to a N -dimensional subspace L posseses
the pseudo-Hermitian property if and only if

X ∈ L ⇔ RTX ∈ L.

Let us start by observing that since the Q appearing in (9) has rank N , at least
one of its N ×N minors is non degenerate. Let us suppose that:∣∣∣∣∣∣∣

q11 q13 · · · q1(2N−1)

...
...

. . .
...

qN1 qN3 · · · qN(2N−1)

∣∣∣∣∣∣∣
6= 0.

The boundary condition can then be written using a N ×N matrix

A =




a00 a01 · · · a1(N−1)

a10 a11 · · · a2(N−1)

...
...

. . .
...

aN−1(0) aN−1(1) · · · a(N−1)(N−1)


 ,
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


f ′1(0)
f ′2(0)

...
f ′N (0)


 = A




f1(0)
f2(0)

...
fN (0)


 .

Suppose the function F satisfies the boundary conditions. The boundary condi-
tions for the function RTF are given by:




f ′1(0)
f ′2(0)

...
f ′N (0)


 =




a(N−1)(N−1) a(N−1)(0) · · · a(N−1)(N−2)

a0(N−1) a00 · · · a0(N−2)

...
...

. . .
...

a(n−2)(n−1) a(N−2)(0) · · · a(N−2)(N−2)







f1(0)
f2(0)

...
fN (0)


 .

Then we have the following equality:
(8)


a(N−1)(N−1) a(N−1)(0) · · · a(N−1)(N−2)

a0(N−1) a00 · · · a0(N−2)

...
...

. . .
...

a(N−2)(N−1) a(N−2)(0) · · · a(N−2)(N−2)


 =




a00 a01 · · · a1(N−1)

a10 a11 · · · a2(N−1)

...
...

. . .
...

aN−1(0) aN−1(1) · · · a(N−1)(N−1)


 .

Consider the entries on the main diagonal to obtain the following set of N equal-
ities

(9)

a(N−1)(N−1) = a00,
a00 = a11,

...
a(N−3)(N−3) = a(N−2)(N−2),
a(N−2)(N−2) = a(N−1)(N−1).

When N is odd, the previous set of equalities (10) can be rewritten as

a(N−1)(N−1) = a00 = a11 = · · · = a(N−3)(N−3) = a(N−2)(N−2) = a(N−1)(N−1).

Then, all entries on the diagonal are equal and real and will be denoted by a0,
i.e,

a0 = a00 = a11 = · · · = a(N−1)(N−1) ∈ R.

Similarly,

a1 = a(N−1)(0) = a01 = a12 = · · · = a(N−2)(N−1) ∈ R,
...

aN−1 = a0(N−1) = a10 = a21 = · · · = a(N−1)(N−2) ∈ R
.

This shows that when N is odd the entries aij of A depends only on the difference
(j − i)mod N , therefore it is a circulant matrix and ai ∈ R for i = 0, · · · , N − 1.

If N is even, let us consider again the set of N equalities in (10) to obtain the
following equalities :

a00 = a11 = a22 = · · · = a(N−2)(N−2) = a(N−1)(N−1).
7



The entries in the odd rows of the main diagonal are all equal. Let us denote them
by a0. Then, a0 are the entries of the main diagonal in the even rows, i.e,

a0 = a00 = a22 = · · · = a(N−2)(N−2),
a0 = a11 = · · · = a33 = a(N−1)(N−1).

Similarly,
a1 = a01 = a23 = · · · = a(N−2)(N−1),

a1 = a12 = a34 = · · · = a(N−1)0,
...

aN−1 = a21 = a43 = · · · = a0(N−1),
aN−1 = a21 = a32 = · · · = a(N−1)(N−2).

Then each row of the matrix A is the conjugated of the previous row shifted to the
right, i.e,

A =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0




,

as claimed. ¤

The family LA describes almost all pseudo-Hermitian extensions of the operator
L0. However, there exist other extensions which are not considered in the present
article.

4. The spectrum of the pseudo-hermitian operator

We can now look at the discrete spectra of the constructed pseudo-Hermitian
operators on the star graph. A function F is an eigenfunction of LA if and only if
it satisfies the differential equation:

(10) −F′′ = EF,

where E = −r2, and the boundary conditions described in (6).
The differential equation can be easily calculated and it solution belonging to the
domain L2(ΓN\V ) on each edge is as follows:

(11) fi = cie
−rx , < r > 0.

i = 1, · · · , N

Let us then find the eigenvalues of the pseudo-Hermitian operator.
Again, we look first at the odd case:
We recall that we have the following boundary conditions:




f ′1(0)
f ′2(0)

...
f ′N (0)


 =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0







f1(0)
f2(0)

...
fN (0)


 .

8



Substituting the corresponding values of the functions at the edges, we obtain:




−rc1

−rc2

...
−rcN


 =




a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0







c1

c2

...
cN


 ,

(12)







a0 a1 a2 a3 · · · aN−1

aN−1 a0 a1 a2 · · · aN−2

aN−2 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0




+




r
r
...
r










c1

c2

...
cN


 = 0.

Letting λ = −r, then the last equation has non trivial solutions if and only if

det (A− λI) = 0.

Remembering that A is a circulant matrix, it is known that for these type of matrices
the determinant and the eigenvalues can be nicely calculated as follows [8]:

(13) det A =
n−1∏

j=0

(a0 + a1z
j + a2z

2j + · · ·+ aN−1z
(N−1)j),

and the eigenvalues λj are

(14) λj = a0 + a1z
j + a2z

2j + · · ·+ aN−1z
(N−1)j ,

j = 0, · · · , N − 1,

where z is the N − th root of the unity:

z = e
2πi
N .

It is easily seen that (a0 +a1 +a2 +a3 + · · ·+aN−1) is an eigenvalue of the circulant
matrix, by simple column operations

det (A− λI) =

∣∣∣∣∣∣∣∣∣∣∣

a0 − λ a1 a2 a3 · · · aN−1

aN−1 a0 − λ a1 a2 · · · aN−2

aN−2 aN−1 a0 − λ a1 · · · aN−3

...
...

...
...

. . .
...

a1 a2 a3 a4 · · · a0 − λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a0 − λ + a1 + a2 + · · ·+ aN−1 a1 a2 a3 · · · aN−1

aN−1 + a0 − λ + a1 + · · ·+ aN−2 a0 a1 a2 · · · aN−2

aN−2 + aN−1 + a0 − λ + · · ·+ aN−3 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

a1 + a2 + a3 + · · ·+ a0 − λ a2 a3 a4 · · · a0

∣∣∣∣∣∣∣∣∣∣∣
9



= (a0 − λ + a1 + · · ·+ aN−1)

∣∣∣∣∣∣∣∣∣∣∣

1 a1 a2 a3 · · · aN−1

1 a0 a1 a2 · · · aN−2

1 aN−1 a0 a1 · · · aN−3

...
...

...
...

. . .
...

1 a2 a3 a4 · · · a0

∣∣∣∣∣∣∣∣∣∣∣

.

Now, following [1] let Ω = diag (1, z, z2, · · · , zN−1) where

z = e
2πi
N .

Then

Ωk = diag (1, zk, z2k, · · · , z(N−1)k).
The matrix Ω−kAΩk is also a circulant matrix determined by the entries ajz

j−1

instead of aj , j = 1, · · · , N . Now using that det (A− λI) = det (Ω−k(A− λI)Ωk)
,then the value of det (A− λI) can be calculated as follows:

det(A− λI) = det(Ω−kAΩk − λI)

=

∣∣∣∣∣∣∣∣∣∣∣

a0 − λ a1z
k a2z

2k · · · aN−1z
(N−1)k

aN−1z
−k a0 − λ a1z

k · · · aN−2z
(N−2)k

aN−2z
−2k aN−1z

−k a0 − λ · · · aN−3z
(N−3)k

...
...

...
. . .

...
a1z

(1−N)k a2z
(2−N)k a3z

(3−N)k · · · a0 − λ

∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

a0 − λ a1z
k a2z

2k · · · aN−1z
(N−1)k

aN−1z
(N−1)k a0 − λ a1z

k · · · aN−2z
(N−2)k

aN−2z
(N−2)k aN−1z

(N−1)k a0 − λ · · · aN−3z
(N−3)k

...
...

...
. . .

...
a1z

k a2z
2k a3z

3k · · · a0 − λ

∣∣∣∣∣∣∣∣∣∣∣

.

Again by simple column operations it can be seen that (a0 − λ + a1z + a2z
2k +

· · ·+aN−1z
(N−1)k) is a factor of det (A−λI) for k = 1 · · ·N −1, and together with

the factor a0 − λ + a1 + · · ·+ aN−1, these are the N factors in det (A− λI).

det(A− λI) =
N−1∏

j=0

(a0 − λ + a1z
j + a2z

2j + · · ·+ aN−1z
(N−1)j)

= (a0 − λ + a1 + a2 + · · ·+ aN−1)×



N−1
2∏

j=1

(a0 + λ + a1z
j + · · ·+ aN−1z

(N−1)j)× (a0 + λ + a1z
−j + · · ·+ aN−1z

−(N−1)j)


 .

The following theorem concerning the spectrum of the operator can then be
proven:

Theorem 4.1. When N is odd, consider the pseudo-hermitian operator LA on
the star-graph ΓN defined in 3.2. If the operator has N eigenvalues and these
eigenvalues are real then the operator is self-adjoint.
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Proof. If N is odd, A is a circulant matrix with the characteristic polynomial

det(A + λI) =
N−1∏

j=0

(a0 + λ + a1z
j + a2z

2j + · · ·+ aN−1z
(N−1)j)

= (a0 + λ + · · ·+ aN−1)×



n−1
2∏

j=1

(a0 + λ + · · ·+ an−1z
(n−1)j)× (a0 + λ + · · ·+ an−1z

−(n−1)j)


 .

Let

µj = a0 + a1z
j + a2z

2j + · · ·+ aN−1
2

z
N−1

2 j + aN+1
2

z
N+1

2 j + · · ·+ aN−21z(N−2)j + aN−1z
(N−1)j

= a0 + a1z
j + a2z

2j + · · ·+ aN−1
2

z
−j
2 + aN+1

2
z

j
2 + · · ·+ aN−21z−2j + aN−1z

−j ,

µN−j = a0 + a1z
N−j + a2z

2(N−j) + · · ·+ aN−1
2

z
N−1

2 (N−j) + aN+1
2

z
N+1

2 (N−j) + · · ·+ aN−2z
(N−2)(N−j)

+aN−1z
(N−1)(N−j)

= a0 + a1z
−j + a2z

−2j + · · ·+ aN−1
2

z−
N−1

2 (j) + aN+1
2

z−
N+1

2 (j) + · · ·+ aN−2z
2j + aN−1z

j

= a0 + a1z
−j + a2z

−2j + · · ·+ aN−1
2

z
j
2 + aN+1

2
z−

j
2 + · · ·+ aN−2z

2j + aN−1z
j ,

j = 1, · · · , N − 1.

Therefore, µj = µN−j .
Let us then consider the following linear combination of µj ’s

P1(z) = µ0 + zN−1µ1 + zN−2µ2 + · · ·+ z2µN−2 + zµN−1,

and taking into account that
∑N−1

k=0 zk = 0, we obtain that P1(z) = Na1.
Similarly,

PN−1(z) = µ0 + zµ1 + z2µ2 + · · ·+ zN−2µN−2 + zN−1µN−1 = NaN−1.

If λ ∈ R, then µj = µN−j and

P1(z) = PN−1(z),

which means that a1 = aN−1.
In the same way linear combinations of µj ’s can be found such that Pj(z) = Naj

and then use the reality of the eigenvalues to show that

a2 = aN−2,
a3 = aN−3,

...
aN−1

2
= aN+1

2
.

aj = aN−j , j = 1, · · · , N − 1. The matrix A must be symmetric. ¤
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Let us now look at the even case:
We recall that we have the following boundary conditions

(15)




f ′1(0)
f ′2(0)

...
f ′N (0)


 =




b0 b1 b2 b3 · · · bk−1

bk−1 b0 b1 b2 · · · bk−2

bk−2 bk−1 b0 b1 · · · bk−3

...
...

...
...

. . .
...

b1 b2 b3 b4 · · · b0







f1(0)
f2(0)

...
fN (0)


 ,

where k = N
2 , and

bi =
(

a2i a2i+1 mod N
a2i−1 modN a2i

)
.

Now letting

w =




v
zv
z2v
...

zk−1v




,

where v is a non-zero 2-vector and z is the k − th root of the unity :

z = e
2π
k j , j = 0, · · · , k − 1.

The vector w is an eigenvector of A with eigenvalue λ if and only if

(16) Aw = λw.

Extending (16) the following set of k equations are obtained:

(b0 + b1z + b2z
2 + b3z

3 + · · ·+ bk−1z
k−1)v = λv,

(bk−1 + b0z + b1z
2 + b2z

3 + · · ·+ bk−2z
k−1)v = zλv,

...
(b1 + b2z + b3z

2 + b4z
3 + · · ·+ b0z

k−1)v = zk−1λv.

Diving the kth equation by zk, k = 2, . . . , N
2 , then every equation reduces to the

first one. Let us now rewrite it as an eigenvector equation:

(17) Hv = λv,

where the square matrix H is

(18) H = b0 + b1z + b2z
2 + b3z

3 + · · ·+ bk−1z
k−1

=
(

a0 a1

aN−1 a0

)
+

(
a2 a3

a1 a2

)
z + · · ·+

(
aN−2 aN−1

aN−3 aN−2

)
zk−1

=
(

a0 + a2z + · · ·+ aN−2z
k−1 a1 + a3z + · · ·+ aN−1z

k−1

aN−1 + a1z + · · ·+ aN−3z
k−1 a0 + a2z + · · ·+ aN−2z

k−1

)
.

Now for each value of z corresponding to different j’s the eigenvectors v of H, give
eigenvectors w of the block circulant matrix A, with that eigenvalue λ [16].
The following theorem concerning the spectrum of the pseudo-hermitian operators
can then be proven.
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Theorem 4.2. Let the number of edges of the star-graph ΓN be even. Then among
the pseudo-Hermitian operators LA there are non self-adjoint operators with N real
eigenvalues.

Proof. Since each eigenvector of H, gives an eigenvector w of A with the same λ,
we shall now calculate the eigenvalues of H and as a result the eigenvalues of A:

(19) det (H − λI) = (a0 + · · ·+ aN−2z
k−1 − λ)(a0 + · · ·+ aN−2z

k−1 − λ)
−(a1 + · · ·+ aN−1z

k−1)(aN−1 + · · ·+ aN−3z
k−1).

Let us use the following notations:

Ge(z) = a0 + a2z + · · ·+ aN−2z
k−1,

G0(z) = a1 + a3z + · · ·+ aN−1z
k−1.

Then we have:
Ge(1/z) = a0 + a2z + · · ·+ aN−2z

k−1,

and
zG0(1/z) = aN−1 + a1z + · · ·+ aN−3z

k−1.

The determinant det (H − λI) can then be rewritten as:

det (H − λI) = λ2 − λ(Ge(z) + Ge(1/z)) + (Ge(z)Ge(1/z)− zG0(z)G0(1/z)).

Then the eigenvalues corresponding to each z are as follows:

λ±(z) =
(

Ge(z) + Ge(1/z)±
√

(Ge(z)−Ge(1/z))2 + 4zG0(z)G0(1/z)
)

/2.

Let us consider z 6∈ R+ and use that
√

z = −√z. Let us also introduce the notation
u = 1/z. We obtain that:

λ±(z) =
(

Ge(u) + Ge(1/u)∓
√

(Ge(u)−Ge(1/u))2 + 4uG0(u)G0(1/u)
)

/2.

If λ±(z) is an eigenvalue of A then λ± = λ∓(1/z) is also an eigenvalue of A.
Therefore the complex eigenvalues of A come in conjugated pairs. Now let us study
when the eigenvalues are real. Let us use the following notations:

U(z) = Ge(z) + Ge(1/z),
V (z) = Ge(z)−Ge(1/z),
W (z) = zG0(z)G0(1/z).

Then we have:
λ±(z) =

(
U(z)±

√
V 2(z) + 4W (z)

)
/2.

To prove the theorem it is enough to present a family of non self-adjoint pseudo-
Hermitian operators with N real eigenvalues.Therefore we must show that it is
posssible to find entries ai of A such that the following conditions are satisfied:
1. U(z) < 0,
2. V 2(z) + 4W (z) ≥ 0,
3. V 2(z) + 4W (z) ≤ U(z)2.
Let us then take the following values for the ai’s:

(20) a2 = a4 = · · · = aN−2,

(21) a1 = a3 = · · · = aN−1,
13



(22) =a0 = =a2.

In particular:

(23) a0 = −8k + 2 + i, k > 0,

(24) a1 = 1 + i,

(25) a2 = 2 + i,

let us then see that condition 1 is fullfilled, i.e,

(26) U(z) = (a0 + a0) + (a2 + a2)zj + · · ·+ (aN−2 + aN−2)z(k−1)j ∈ R−.

If (20) holds then:
<a2 = · · · = <aN−2.

Then:

U(z) = 2<a0 + 2<a2(
k−1∑
m=1

zm).

Let us now substitute values of a0 and a2 described in (24) and (25) respectively.
If z 6= 1 then:

U(z) = 2(<a0 −<a2) = −16k.

Otherwise z = 1 and:

U(z) = 2(<a0 + (k − 1)<a2) = −12k.

Then in both cases U(z) < 0.
We must also show that V 2(z) + 4W (z) ≥ 0. Let us recall that

V 2(z) + 4W (z)

= ((a0−a0)+(a2−a2)z+· · ·+(aN−2−aN−2)zk−1)2+4(a1+· · ·+aN−1z
k−1)(aN−1+a1z+· · ·+aN−3z

k−1)

= 4[(a1+· · ·+aN−1z
k−1)(aN−1+a1z+· · ·+aN−3z

k−1)−(=a0+=a2z+· · ·+=aN−2z
k−1)2].

Substituting (20),(21), and (22) gives:

V 2(z) + 4W (z) = 4[(a1(
k−1∑
m=0

zm))(a1(
k−1∑
m=0

zm))− (=a0(
k−1∑
m=0

zm))2]

Subtituting values of a1 and a0 described in (23) and (24) respectively we obtain
that: If z 6= 1:

V 2(z) + 4W (z) = 0
otherwise z = 1 and:

V 2(z) + 4W (z) = 4[(ka1)(ka1)− k2(=a0)2] = 4k2(|a1|2 − (=a0)2) = 4k2

Then conditions 2 is satisfied.
We have obtained that if z = 1:

U(z)2 = (12k)2

and
V (z)2 + 4W (z) = 4k2

This means that V 2 + 4W (z) ≤ U(z)2, which is condition 3.
If z = 1 then

U(z)2 = (16k)2

14



and
V (z)2 + 4W (z) = 0

Then it is clear that V 2 + 4W (z) ≤ U(z)2, and condition 3 is also satisfied in this
case.
Therefore, let the entries ai ∈ C, i = 0, · · · , N − 1, be such that they satisfy
(20)-(25), then A is of the following form:

A =




(−8k + 2) + i 1 + i 2 + i · · · 2 + i 1 + i
1− i (−8k + 2)− i 1− i · · · 1− i 2− i
2 + i 1 + i (−8k + 2) + i · · · 2 + i 1 + i

...
...

...
. . .

...
...

2 + i 1 + i 2 + i · · · (−8k + 2) + i 1 + i
1− i 2− i 1− i · · · 1− i −8k + 2)− i




,

and LA is pseudo-Hermitian with N real eigenvalues but it is not self-adjoint. ¤
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