Spectral Theory of PDEs

3. problem sheet. Each problem gives max. 4 points.

Submission via e-mail before 14 April, 1pm.

Problem 1

On the rectangle $\Omega=(0, \pi) \times(0,1)$, show that each eigenvalue of the Laplacian on Ω with Dirichlet boundary conditions has multiplicity one. Moreover, determine the lowest eigenvalue which is not Courant-sharp.

Problem 2

Is it possible that the Dirichlet Laplacians on two domains of different dimensions are isospectral? If it is, provide an example; otherwise show that it is not possible.

Problem 3

Let \mathcal{H} be a Hilbert space and $T: \mathcal{H} \supset \operatorname{dom} T \rightarrow \mathcal{H}$ a symmetric operator (i.e. dom T is dense in \mathcal{H} and $T \subset T^{*}$. Show that T is self-adjoint (i.e. $T=T^{*}$) if and only if

$$
\operatorname{ran}(T-\lambda)=\mathcal{H}=\operatorname{ran}(T-\bar{\lambda})
$$

holds for each $\lambda \in \mathbb{C} \backslash \mathbb{R} .{ }^{1}$

Problem 4

Prove that the differential operator in $L^{2}\left(\mathbb{R}^{2}\right)$ given by

$$
T u=-\frac{\partial^{2} u}{\partial x^{2}}-3 \frac{\partial^{2} u}{\partial x \partial y}-\frac{\partial^{2} u}{\partial y^{2}}, \quad \operatorname{dom} T=H^{2}\left(\mathbb{R}^{2}\right)
$$

is self-adjoint and compute its spectrum.

Problem 5

Prove that the inverse operator of $-\Delta+I$ (where I denotes the identity operator) in $L^{2}\left(\mathbb{R}^{3}\right)$ is given by

$$
\left((-\Delta+I)^{-1} g\right)(x)=\frac{1}{4 \pi} \int_{\mathbb{R}^{3}} \frac{e^{-|x-y|}}{|x-y|} g(y) \mathrm{d} y
$$

for $g \in L^{2}\left(\mathbb{R}^{3}\right)$.

[^0]
[^0]: ${ }^{1}$ This is actually equivalent to this equation being true for one fixed $\lambda \in \mathbb{C} \backslash \mathbb{R}$.

