Stockholms universitet

Spectral Theory of PDEs

3. problem sheet. Each problem gives max. 4 points. Submission via e-mail before 14 April, 1pm.

Problem 1

On the rectangle $\Omega = (0, \pi) \times (0, 1)$, show that each eigenvalue of the Laplacian on Ω with Dirichlet boundary conditions has multiplicity one. Moreover, determine the lowest eigenvalue which is not Courant-sharp.

Problem 2

Is it possible that the Dirichlet Laplacians on two domains of different dimensions are isospectral? If it is, provide an example; otherwise show that it is not possible.

Problem 3

Let \mathcal{H} be a Hilbert space and $T : \mathcal{H} \supset \text{dom } T \to \mathcal{H}$ a symmetric operator (i.e. dom T is dense in \mathcal{H} and $T \subset T^*$. Show that T is self-adjoint (i.e. $T = T^*$) if and only if

$$\operatorname{ran}(T-\lambda) = \mathcal{H} = \operatorname{ran}(T-\overline{\lambda})$$

holds for each $\lambda \in \mathbb{C} \setminus \mathbb{R}^1$.

Problem 4

Prove that the differential operator in $L^2(\mathbb{R}^2)$ given by

$$Tu=-\frac{\partial^2 u}{\partial x^2}-3\frac{\partial^2 u}{\partial x\partial y}-\frac{\partial^2 u}{\partial y^2},\qquad \mathrm{dom}\,T=H^2(\mathbb{R}^2),$$

is self-adjoint and compute its spectrum.

Problem 5

Prove that the inverse operator of $-\Delta + I$ (where I denotes the identity operator) in $L^2(\mathbb{R}^3)$ is given by

$$\left((-\Delta+I)^{-1}g\right)(x) = \frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{e^{-|x-y|}}{|x-y|} g(y) \mathrm{d}y$$

for $g \in L^2(\mathbb{R}^3)$.

¹This is actually equivalent to this equation being true for one fixed $\lambda \in \mathbb{C} \setminus \mathbb{R}$.