Stockholms universitet

Spectral Theory of PDEs

2. problem sheet. Each problem gives max. 4 points. Submission via e-mail before 18 March, 1pm.

Problem 1

Let \mathcal{K}, \mathcal{H} be Hilbert spaces with $\mathcal{K} \subset \mathcal{H}$ and let $a(\cdot, \cdot) : \mathcal{K} \times \mathcal{K} \to \mathbb{C}$ be an additional scalar product on \mathcal{K} . Show that the function

$$\mathbb{R} \ni t \mapsto F(t) := \frac{a(u+tv, u+tv)}{\|u+tv\|_{\mathcal{H}}^2} \in \mathbb{R}$$

is differentiable for all $u, v \in \mathcal{K}$ and compute its derivative. In particular, what is F'(0)?

Problem 2

Let $\Omega \subset \mathbb{R}^d$ be a bounded domain, $d \geq 1.^1$

- (i) Prove that there exists an orthonormal basis of eigenfunctions of the Dirichlet Laplacian on Ω which consists of real-valued functions only.²
- (ii) Let $t\Omega$ be the domain obtained from Ω by scaling with a factor t > 0. Prove that the Dirichlet Laplacian eigenvalues satisfy $\lambda_k(t\Omega) = \frac{1}{t^2}\lambda_k(\Omega)$.

Problem 3

Let $\Omega, \widetilde{\Omega} \subset \mathbb{R}^d$ be bounded domains with Dirichlet Laplacian eigenvalues $\lambda_k(\Omega), \lambda_k(\widetilde{\Omega})$, respectively. Assume that N disjoint domains that are congruent to Ω fit into $\widetilde{\Omega}$. Show that

$$\lambda_{kN}(\Omega) \le \lambda_k(\Omega)$$

holds for all k.

Problem 4 Let $\Omega = (0, \sqrt{\pi}) \times (0, \sqrt{\pi}) \subset \mathbb{R}^2$ and

$$u: \Omega \to \mathbb{R}, \quad u(x,y) = x + y.$$

Compute the Schwarz symmetrization u^* of u. Furthermore, check by hand that the integrals

$$\int_{\Omega} |u|^2 dx$$
 and $\int_{\Omega^*} |u^*|^2 dx$

coincide.

Problem 5

Show that...

- (i) ... among all bounded domains $\Omega \subset \mathbb{R}^2$ of fixed area there exists no maximizer of the first Dirichlet Laplacian eigenvalue $\lambda_1(\Omega)$.³
- (ii) ... among all bounded domains $\Omega \subset \mathbb{R}^2$ of fixed area there exists no minimizer of the first nontrivial Neumann Laplacian eigenvalue $\mu_2(\Omega)$.
- (iii) ... among all bounded domains $\Omega \subset \mathbb{R}^2$ with fixed perimeter there exists no maximizer of the first nontrivial Neumann Laplacian eigenvalue $\mu_2(\Omega)$.

 $^{^{1}}$ The statements of this problem are formulated for Dirichlet boundary conditions but are true for the Neumann and Robin cases as well.

 $^{^{2}}$ Recall that, a priori, the eigenfunctions we get from the discrete spectral theorem are complex-valued.

³In other words, sup $\lambda_1(\Omega) = +\infty$ where Ω ranges over all bounded domains of a given fixed area.