1. problem sheet. Each problem gives max. 4 points.

Submission via e-mail before 25 February, 1pm.

Problem 1

Compute the eigenvalues of $-\Delta$ with Dirichlet boundary conditions on the triangle in \mathbb{R}^{2} with corners at the origin, in $(\pi, 0)$ and in $(0, \pi)$.
Recipe: Argue that each eigenfunction can by (odd) reflection be extended to an eigenfunction on the square $(0, \pi)^{2}$ and use your knowledge on the eigenfunctions and eigenvalues of the square.

Problem 2

Let \mathcal{H} be an infinite-dimensional Hilbert space and $B: \mathcal{H} \rightarrow \mathcal{H}$ a bounded, linear operator which is compact and self-adjoint. Assume, moreover, that $\left\{u_{j}: j \in \mathbb{N}\right\}$ is an orthonormal basis of \mathcal{H} and γ_{j} are real numbers such that

$$
B u_{j}=\gamma_{j} u_{j}, \quad j \in \mathbb{N}
$$

Prove directly, without referring to the spectral theorem for compact, self-adjoint operators, that the sequence $\left\{\gamma_{j}\right\}$ converges to zero.

Problem 3

Let $\Omega \subset \mathbb{R}^{d}$ be a domain (= open, connected set). Prove the following statements:
(i) $H^{1}(\Omega)$ is complete. Hint: Use the completeness of $L^{2}(\Omega)$.
(ii) $H_{0}^{1}(\Omega)$ is dense in $L^{2}(\Omega)$ (and so is $H^{1}(\Omega)$).

Problem 4

(i) Find a function $f \in L^{2}(-1,1)$ such that $f \notin H^{1}(-1,1)$ (and verify that this is true).
(ii) Let $g \in L^{2}(a, b)$, where $-\infty<a<b<+\infty$, and let

$$
f(x):=\int_{a}^{x} g(t) \mathrm{d} t, \quad x \in(a, b) .
$$

Show that f belongs to $H^{1}(a, b)$ and $f^{\prime}=g$ in the sense of weak derivatives.
(iii) Conversely, let $f \in H^{1}(a, b)$. Show that there exists a constant c such that $f(x)=c+$ $\int_{a}^{x} f^{\prime}(t) \mathrm{d} t$ for almost all $x \in(a, b)$.

Problem 5

Let $\Omega \subset \mathbb{R}^{d}$ be a bounded domain with sufficiently regular boundary, e.g. C^{1}-smooth. For $\sigma \in \mathbb{R}$, $\sigma>0$, consider the Laplacian eigenvalue problem $-\Delta u=\xi u$ with a Robin boundary condition

$$
\frac{\partial u}{\partial \nu}+\sigma u=0 \quad \text { on } \partial \Omega
$$

Show that this problem implies ${ }^{1}$

$$
\int_{\Omega} \nabla u \cdot \overline{\nabla v} \mathrm{~d} x+\sigma \int_{\partial \Omega} u \bar{v} \mathrm{~d} S=\xi \int_{\Omega} u \bar{v} \mathrm{~d} x \quad \text { for all } v \in H^{1}(\Omega)
$$

(Here $\mathrm{d} S$ indicates integration with respect to the natural surface measure on $\partial \Omega$ and u and v in the boundary integral refer to the traces of u and v, respectively.) Moreover, use the discrete spectral theorem to show that the above problem has an infinite sequence of positive eigenvalues converging to $+\infty$ and a corresponding orthonormal basis of eigenfunctions.

[^0]
[^0]: ${ }^{1}$ They are actually equivalent.

