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Abstract. We give a simple proof of an important special case of the famous
theorem of Jósef Siciak on separate analyticity.

1. Introduction

The well-known theorem of Hartogs states that a function u(z1, z2) of two complex
variables which is separately analytic must be analytic. By separately analytic
we mean here that z1 !→ u(z1, z2) is analytic for each fixed z2 and vice versa.
Similar statements are also true if the “fixed” variables are restricted to sets of
real dimension 1, or even to arbitrary sets of positive capacity. An important
theorem of that kind was proved by Siciak in 1969, [11]. In the same paper Siciak
gave a precise description of the maximal domain in C2 to which the function can
be analytically continued. Many sharpenings and extensions of Siciak’s theorem
have been given later, for instance in [15], [13], [14], and [8], and a couple of years
ago Jarnicki and Pflug wrote a whole book on the subject, [4]. Surveys of results
related to separate analyticity can be found in [10] and [5]. The purpose of this
note is to give a short proof of the most important special case of Siciak’s theorem
(Theorem 1′ in Section 3) using only very well-known tools. More exactly, we shall
treat the special case when the “fixed” variables range over bounded intervals on
the real line. We will treat only the case of functions of two variables; the extension
to functions on Cn ×Cm is straightforward.

The well-known example x1x2/(x2
1+x2

2) shows that a separately real analytic
function need not be real analytic. Let us say that a function u(x1, x2) is uniformly
separately real analytic in the domain D ∈ R2, if the functions x1 !→ u(x1, x0

2) and
x2 !→ u(x0

1, x2) are analytically continuable to complex disks with radius r(x0
1, x

0
2)

around x0
1 and x0

2, respectively, where r is some positive continuous function on
D. It is a corollary of Siciak’s theorem that a uniformly separately real analytic
function is real analytic. If the additional assumption is made that the continued
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136 J. Boman

function u is locally bounded, then this statement is easy to prove and very well
known, but in its general form we think the theorem is not as well known as it
deserves to be. Here we give a proof of that theorem (Proposition 1′) using an
important lemma of Lelong (Lemma 2), which is a sharpening of the well-known
Hartogs lemma.

The notation and terminology used here follows that of Siciak’s papers. Let E
be an open bounded interval on the real axis R and let G be a simply connected
bounded domain in C which contains E, the closure of E. If G is regular with
respect to the Dirichlet problem we define the function hG,E(z) onG as the solution
to the Dirichlet problem in G \E with boundary values 0 on E and 1 on ∂G, the
boundary of G. Note that the domain G \E is also regular, since E is an interval.
We remark that a bounded domain inCmust be regular if it has finite connectivity
and ∂G contains no isolated point.

A first version of this paper was written in 1994 while my student Ozan Öktem
was writing the paper [9] and we both were struggling to understand Siciak’s proof
from his original paper [11]. Having learnt from Christer Kiselman about Lelong’s
lemma (Lemma 2) and its relevance in this context I wrote a new version containing
Theorem 1′ in 2004. In submitting the paper I made a new revision and added
references to the book [4] and a couple of articles that have appeared after 2004.

I am indebted to two referees for a number of very valuable comments leading
to a considerably improved article.

2. Separate analyticity with boundedness assumption

We shall begin by making the simplifying assumption that the original function
is locally bounded. In Section 3 we shall discuss the case when no boundedness
assumptions are made.

Theorem 1. Let E1 and E2 be open bounded intervals on R, and let G1 and G2 be
simply connected bounded regular domains in C such that Gj ⊃ Ej for j = 1, 2.
Let u be defined in the set

X = (E1 ×G2) ∪ (G1 × E2) ⊂ C2,

and assume that u is separately analytic in X; by definition this means that for
every x2 ∈ E2 the function z1 !→ u(z1, x2) is analytic in G1, and for every x1 ∈ E1

the function z2 !→ u(x1, z2) is analytic in G2. Assume furthermore that u is locally
bounded on X. Then u can be continued analytically to the set

X̃ = {z ∈ G1 ×G2; hG1,E1(z1) + hG2,E2(z2) < 1}. (1)

Our proof consists of three steps. The first step is to use the above-mentioned
fact that a uniformly separately real analytic function is real analytic, in the easy
special case when the function is assumed bounded (Proposition 1). It follows
that u must be real analytic on E1 × E2, which means by definition that u can
be continued to an analytic function on some neighborhood of E1 × E2 in C2.
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Siciak’s Theorem on Separate Analyticity 137

In the second step (Proposition 2) we construct an analytic extension of u to an
open neighborhood Σ in C2 of the set X . The third step is to prove that any
function which is analytic in Σ can be extended to an analytic function on X̃
(Proposition 3).

Proposition 1. Let E1 and E2 be open bounded intervals on R with open complex
neighborhoods V1 and V2, respectively, and assume that z1 !→ u(z1, x2) is analytic
on V1 for each x2 ∈ E2 and that z2 !→ u(x1, z2) is analytic on V2 for each x1 ∈ E1.
Assume furthermore that u is bounded on (E1×V2)∪ (V1 ×E2). Then there exists
an analytic function ũ on some complex neighborhood of E1×E2 in C2 that agrees
with u on E1 × E2.

This theorem is well known; for the proof we refer for instance to [6].
Using the notion of analytic wave front set one can give a short proof of

Proposition 1 as follows.1 Let u be a compactly supported integrable function
or distribution in Rn. It is known that (x0, ξ0) ∈ T ∗(Rn), ξ0 ̸= 0, belongs to the
complement of the analytic wave front set of u, WFA(u), if and only if the so-called
FBI transform of u,

Fu(x, ξ) =

∫

Rn

u(y)e−|ξ||y−x|2e−iy·ξdy,

decays exponentially as |ξ| tends to infinity for ξ in a conic neighborhood of ξ0

uniformly for x in some neighborhood of x0. It follows immediately from the def-
inition that the analytic wave front set is conic in the second variable, i.e., that
(x0, ξ0) ∈ WFA(u) if and only if (x0,λξ0) ∈ WFA(u) and λ > 0. It is a basic
fact that a function (distribution) is real analytic in some neighborhood of x0 if
and only if (x0, ξ0) /∈ WFA(u) for every ξ0 ̸= 0. Assume now that u ∈ L1(R2) is
uniformly separately real analytic in some neighborhood of x0. Write Fu(x, ξ) as
a repeated integral with inner integral

∫

R
u(y1, y2)e

−|ξ|(y1−x1)
2

e−iy1ξ1dy1. (2)

By the assumption of real analyticity with respect to x1 we can use Cauchy’s
theorem to deform the path of integration a little bit into the complex near y1 = x0

1

and thereby prove that the integral (2) tends to zero exponentially as |ξ1| tends
to infinity for x1 close to x0

1, and hence the same is true of Fu(x, ξ). Similarly, real
analyticity with respect to x2 implies that Fu(x, ξ) is exponentially decreasing as

1The analytic wave front set for distributions was introduced by Hörmander 1970 in connection
with a new proof of Holmgren’s uniqueness theorem for partial differential equations with real
analytic coefficients. A parallel theory was developed independently by M. Sato. There the so-
called singular support of a hyperfunction was defined in terms of the possibility to represent
the (hyper-)function as a sum of boundary values of analytic functions in regions {x + iy; x ∈
U ⊂ Rn, y ∈ Γk, |y| < ε}, where U is open and Γk are certain cones in Rn; see [1], ch. 9. The
fact that the concepts were equivalent for distributions was proved a few years later. The third
equivalent definition used here was given by Bros and Iagolnizer in 1975; see [1], Theorem 9.6.3.
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138 J. Boman

|ξ2|→∞ for x2 close to x0
2. Hence (x

0, ξ0) /∈WFA(u) for every ξ0 ̸= 0, so u is real
analytic in a neighborhood of x0.

The second step consists in using the assumption of separate analyticity to
extend the region of joint analyticity in one direction at the time.

Proposition 2. Let G be a simply connected bounded domain in C, U an open
disk with U ⊂ G, and F a compact interval in R ⊂ C. Let u be an analytic
function in a complex neighborhood of U ×F . Assume that the function U ∋ z1 !→
u(z1, x2) can be extended to an analytic function in G for every x2 ∈ F and that
the extended function u(z1, x2) is locally bounded in G × F . Then there exists an
analytic function ũ on some complex neighborhood of G×F that agrees with u on
U × F .

As a preparation for the proof of Proposition 2 we shall first consider the
case when G is the open disk UR = {ζ ∈ C; |ζ| < R} and U is a smaller disk
containing the origin. This lemma is part of the standard proof of Hartogs’ theorem
on separate analyticity (see, e.g., [2], Lemma 2.2.11), but we include it here for
the sake of completeness and in order to facilitate the discussion in Section 3.

Lemma 1. Let Uε = {ζ ∈ C; |ζ| < ε} and let F be a compact interval in R ⊂ C.
Let u be analytic in some complex neighborhood of Uε × F and assume that Uε ∋
z1 !→ u(z1, x2) can be extended to an analytic function in UR for every x2 ∈ F .
Assume moreover that the function u(z1, x2) is bounded for (z1, x2) ∈ UR × F .
Then there exists an analytic function ũ on some complex neighborhood of UR×F
that agrees with u on Uε × F .

Proof. By the first assumption u can be expanded in a Taylor series with respect
to z1

u(z1, z2) =
∞∑

k=0

ak(z2)z
k
1 , (3)

where ak(z2) are analytic in some neighborhood of F . Denoting by Vδ(F ) the
complex δ-neighborhood of F ⊂ C we choose δ > 0 and ε > 0 so that u is analytic
and bounded in Uε × Vδ(F ). By Cauchy’s inequality we then obtain

|ak(z2)| ≤ C1ε
−k, z2 ∈ Vδ(F ), k = 0, 1, . . . . (4)

By the second assumption we also have the estimates

|ak(x2)| ≤ C0R
−k, x2 ∈ F, k = 0, 1, . . . . (5)

Let g(w) be the solution to the Dirichlet problem in Vδ(F )\F with boundary values
0 on F and 1 on the boundary of Vδ(F ). The function log |ak(w)| is subharmonic
in Vδ(F ) and ≤ A0 in F and ≤ A1 in Vδ(F ), where A0 = log(C0R−k) and A1 =
log(C1ε−k). Hence log |ak(w)| ≤ A0 + (A1 −A0)g(w) in Vδ(F ), or

|ak(w)| ≤ CR0(w)
−k,

where R0(w) = R1−g(w)εg(w) and C = max(C0, C1). But R0(w) is continuous and
R0(w) = R for w ∈ F , hence for any given r < R there exists a neighborhood Wr
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Siciak’s Theorem on Separate Analyticity 139

of F such that R0(w) > r for w ∈ Wr. This proves that the series (3) converges in
Ur ×Wr for every r < R, which completes the proof of the lemma. !
Proof of Proposition 2. Since G is simply connected it is easy to see that one can
construct a locally finite covering G = ∪∞

k=0Gk of G by open disks Gk ⊂ G with
Gk ⊂ G such that G0 = U and for every k the union ∪k

j=0Gj is simply connected

and contains the center of Gk+1. Set Hk = ∪k
j=0Gj for all k. We claim that

for every k there exists a complex neighborhood Vk of F and
an analytic function ũk in Hk × Vk that agrees with u on U × F . (Pk)

To prove this we use induction over k. For k = 0 there is nothing to prove. Assume
that the statement (Pk) is true. Let ζ0 be the center of Gk+1. Since ζ0 ∈ Gk we can
choose ε > 0 so that Uε(ζ0) = {ζ ∈ C; |ζ − ζ0| < ε} is contained in Gk ∩Gk+1. By
the induction assumption ũk is then analytic in Uε(ζ0) × Vk. Applying Lemma 1
with UR = UR(ζ0) and Uε = Uε(ζ0) and R chosen so that Gk+1 ⊂ UR(ζ0) ⊂ G we
can find a complex neighborhood Vk+1 of F and a function ũk+1 that is analytic
in Gk+1 × Vk+1 and agrees with ũk on Uε(ζ0) × F . Shrinking Vk+1, if necessary,
we may assume that Vk+1 ⊂ Vk. Extending ũk+1 suitably we therefore get an
analytic function on Hk+1 × Vk+1, that we also denote by ũk+1. Since Hk+1 is
simply connected, analytic continuation from G0 to Gk+1 along a different chain
of disks would give the same values in Gk+1×Vk+1. This proves (Pk+1) and hence
shows that the statement (Pk) is true for all k.

To finish the proof of the proposition we observe that the union W of all
Hk × Vk is a complex neighborhood of G × F and that all the ũk agree on their
common domains, which shows that they define an analytic function on W . This
completes the proof. !
Proposition 3. Let G1 and G2 be simply connected bounded regular domains in C
and let E1 and E2 be open bounded intervals on the real axis such that Ej ⊂ Gj

for j = 1, 2. Let X and X̃ be defined as in Theorem 1, and let u be analytic in
some open neighborhood Σ of X. Then there exists an analytic function ũ on X̃
that agrees with u on X.

Proof. Set h(z) = hG1,E1(z1) + hG2,E2(z2), and for ε > 0 and 0 < t < 1 define the

region X̃ε(t) by

X̃ε(t) = {z ∈ G1 ×G2; h(z) < min(1− ε, t+ ε|z|2}.
Choose M > 1 so that |z|2 ≤ M in G1 × G2. We shall prove that, for every
sufficiently small ε > 0, there exists an analytic function ũε on

X̃ε(1− 2εM) (6)

that agrees with u on X . Since the union of all the regions (6) is equal to X̃ and
all the functions ũε agree on their common domains of definition, this proves the
assertion of the proposition. We first claim that

X̃ε(t) ⊂ Σ
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140 J. Boman

if ε and t are sufficiently small. To prove this we observe that the continuous
function h(z) is positive on the compact set (G1 × G2) \ Σ, hence h(z) ≥ δ on
that set for some δ > 0. It follows that X̃ε(t) ⊂ Σ if ε and t are so small that
t+ εM < δ. Fix an arbitrary ε > 0 with 2εM < δ < 1 and set

t0 = sup{t < 1− 2εM ; there exists a function ũε,t that is analytic in X̃ε(t)

and is equal to u on X}.
Assuming that t0 < 1 − 2εM we shall obtain a contradiction. It is clear that all
the functions ũε,t with t < t0 define a function ũε,t0 that is analytic on X̃ε(t0).

On the other hand, by the definition of t0 there must exist z0 ∈ ∂X̃ε(t0) such that
ũε,t0 cannot be continued to any neighborhood of z0. We claim that

∂X̃ε(t) ⊂ {z ∈ C2; h(z) = t+ ε|z|2}, if t < 1− 2εM. (7)

Indeed, if h(z) < t+ε|z|2 and t < 1−2εM , then h(z) < 1−2εM+εM = 1−εM <
1− ε, so z cannot belong to the boundary of X̃ε(t), which proves (7).

The functions hGj ,Ej are harmonic in Gj \ Ej , hence h(z)− ε|z|2 is strictly

plurisuperharmonic, so (7) implies that the domain X̃ε(t0) is strictly pseudocon-
cave. This implies that u must be continuable to an analytic function in some
neighborhood of z0. This is a contradiction and hence completes the proof of the
proposition. !
Proof of Theorem 1. By Proposition 1 there exists an analytic function ũ0 in some
open neighborhood W0 of E1×E2 that agrees with u on E1×E2. We may assume
that W0 is connected, and then it is clear that ũ0 agrees with the given function
u on X ∩W0. Applying Proposition 2 to G = G1, an arbitrary closed subinterval
F ⊂ E2, and an open disk U ⊂ G1 such that U × F ⊂ W0 we can then find ũ1

that is analytic in some complex neighborhood of G1 × F and agrees with u on
U ×F , hence agrees with u on G1 ×F . Varying F ⊂ E2 we get a function ũ1 that
is analytic in some complex neighborhood W1 of G1 × E2 and agrees with u on
G1 ×E2. Similarly we can find ũ2 that is analytic in some complex neighborhood
W2 of E1 × G2 and agrees with u on E1 × G2. Since ũ1 and ũ2 agree on an
open set, it is clear that they together define an analytic function ũ in a complex
neighborhood Σ of X . An application of Proposition 3 now completes the proof of
the theorem. !

3. The general case

We shall now discuss the situation when no boundedness assumption is made
in Theorem 1. We shall use the convention that a primed theorem, proposition
etc. is the analogue without boundedness assumption of the unprimed theorem
(proposition etc.) with the same number.

Theorem 1′. The statement of Theorem 1 is true without the assumption that u is
locally bounded.
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Siciak’s Theorem on Separate Analyticity 141

The proof of this theorem consists of three steps, analogous to those of the
proof of Theorem 1. Only the first two steps need to be modified. The following
lemma of Lelong is essential for both those steps ([7], Théorème 10; see also [11],
Theorem 2.1). It is an important extension of the well-known Hartogs lemma.

Lemma 2. Let F be a compact interval on R and let G ⊂ C be an open set
containing F . Let ϕk(z), k = 1, 2, . . ., be a sequence of subharmonic functions in
G satisfying

ϕk(z) ≤ B, z ∈ G, k = 1, 2, . . . , (8)

and
lim
k→∞

ϕk(x) ≤ A, x ∈ F.

Then for every η > 0 there exists a complex neighborhood U of F and a number
k0 such that

ϕk(z) < A+ η, z ∈ U, k ≥ k0. (9)

The neighborhood U depends only on the numbers η, B, A, and on the sets F and
G (not on the sequence ϕk).

We shall sketch a proof of this lemma using facts from [3]. Let us first make
a couple of remarks. If we knew that the function ϕ(z) = limϕk(z) were subhar-
monic, then ϕ would be majorized in G by the function h(z) = A+ (B −A)hG,F ,
the solution to the Dirichlet problem in G \ F with boundary values A on F and
B on ∂G. Then (9) could be proved just as the classical Hartogs lemma (use the
mean value property of ϕk and Fatou’s lemma to find k0 independent of z such
that ϕk(z) < ϕ(z) + ε for k > k0). But the limes superior of a sequence of sub-
harmonic functions is not always subharmonic. (What is true is that it must be
subharmonic if it is upper semicontinuous; more generally, the upper semicontin-
uous regularization ϕ of limϕk is subharmonic, but we do not know that ϕ ≤ A
on F .) Lelong proves Lemma 2 by establishing the majorization just mentioned
for a class of functions which includes upper limits of sequences of subharmonic
functions.

Sketch of proof of Lemma 2. As was indicated above it is sufficient to prove the
estimate

lim
k→∞

ϕk(z) ≤ h(z) = A+ (B −A)hG,F (10)

for z ∈ G. It is clearly sufficient to prove (10) for z ∈ G \ F . Assume (10) is false
at some point z ∈ G \ F . Then there exists a number c such that

ϕk(z0) > c > h(z0) (11)

for infinitely many k. Since ϕk is bounded from above, we can take a subsequence
ϕ̃ν = ϕkν satisfying (11) and converging in D′(G) to some subharmonic function
ψ (Theorem 3.2.12 in [3]). Then lim ϕ̃ν ≤ ψ (Theorem 3.2.13 in [3]), and according
to Theorem 3.4.14 in [3] the set

M = {z ∈ G; lim ϕ̃ν(z) < ψ(z)}
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is polar (a polar set is by definition any set on which a subharmonic function can
be equal to −∞ without being identically −∞). But lim ϕ̃ν ≤ limϕk ≤ A on F
by assumption, hence ψ must be ≤ A on F \M , and it is clear that ψ ≤ B on all
of G. Since M is polar, and ψ is subharmonic in G this implies in fact that ψ ≤ h
in G (M is so small that the boundary values on M do not influence the solution
to the Dirichlet problem). On the other hand

ψ(z0) ≥ lim ϕ̃ν(z0) ≥ c > h(z0).

Thus we have obtained a contradiction and (10) is proved. !

Using Lemma 2 it is easy to prove the analogues of Lemma 1 and Proposi-
tion 2 without boundedness assumptions:

Lemma 1′. Let Uε = {ζ ∈ C; |ζ| < ε} and let F be a compact interval in R ⊂ C.
Let u be analytic in some complex neighborhood of Uε × F and assume that Uε ∋
z1 !→ u(z1, x2) can be extended to an analytic function in UR for every x2 ∈ F .
Then there exists an analytic function ũ on some complex neighborhood of UR×F
that agrees with u on Uε × F .

Proof. Let ϕk be the subharmonic function

ϕk(w) =
1

k
log |ak(w)|,

where ak(·) is defined by (3). By the first assumption the sequence ϕk(w) is uni-
formly bounded from above in Vδ(F ) for some δ > 0. By the second assumption

lim
k→∞

ϕk(x2) ≤ log(1/R), for all x2 ∈ F.

According to Lemma 2 there must then exist for any r < R a number k0 such that

ϕk(x2) < log(1/r), if k > k0, x2 ∈ F,

or equivalently

|ak(x2)| ≤ r−k, if k > k0, x2 ∈ F.

Thus we have estimates corresponding to (4) and (5), and the proof can now be
finished exactly in the same way as the proof of Lemma 1. !

We can now prove Proposition 2 without boundedness assumption:

Proposition 2′. Let G be a simply connected bounded domain in C, U an open disk
with U ⊂ G, and F a compact interval in R ⊂ C. Let u be an analytic function
in a complex neighborhood of U ×F . Assume that the function U ∋ z1 !→ u(z1, x2)
can be extended to an analytic function in G for every x2 ∈ F . Then there exists
an analytic function ũ on some complex neighborhood of G×F that agrees with u
on U × F .

Proof. This statement is proved using Lemma 1′ in exactly the same way as Propo-
sition 2 was proved using Lemma 1. !
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Siciak’s Theorem on Separate Analyticity 143

We are now ready to prove the theorem on separate real analyticity without
boundedness assumptions.

Proposition 1′. Let E1 and E2 be bounded open intervals on R with complex neigh-
borhoods V1 and V2, respectively, and assume that z1 !→ u(z1, x2) is analytic on V1

for each x2 ∈ E2 and that z2 !→ u(x1, z2) is analytic on V2 for each x1 ∈ E1. Then
there exists an analytic function ũ on some complex neighborhood of E1 × E2 in
C2 that agrees with u on E1 × E2.

Proof. It is enough to prove the assertion for arbitrary closed subintervals F1 ⊂ E1

and F2 ⊂ E2. Shrinking V1 and V2, if necessary, we may also assume that V1 and
V2 are simply connected and that z1 !→ u(z1, x2) is bounded on V1 for each x2 ∈ F2

and that z2 !→ u(x1, z2) is bounded on V2 for each x1 ∈ F1. For any natural number
N define the set

KN = {x1 ∈ F1; |u(x1, z2)| ≤ N for all z2 ∈ V2}.
We claim that KN is closed for each N . In fact, let xν

1 ∈ KN for ν = 1, 2, . . . and
limν→∞ xν

1 = x0
1. We have to prove that x0

1 ∈ KN . Since the family of analytic
functions wν(z2) = u(xν

1 , z2) is uniformly bounded, there exists a subsequence of xν
1

such that wν(z2) converges to an analytic function w(z2) on V2 with |w(z2)| ≤ N .
Since E1 ∋ x1 !→ u(x1, x2) must be continuous for each x2 ∈ E2, we must have
w(x2) = u(x0

1, x2) for each x2 ∈ F2 ⊂ E2. But this implies that w(z2) = u(x0
1, z2)

for all z2 ∈ V2, and hence proves our claim that KN is closed. Since V2 ∋ z2 !→
u(x1, z2) is bounded for each x1 ∈ F1, the union of all KN must be equal to all
of F1. By Baire’s theorem KN must have an interior point for some N , in other
words, we can choose N1, x0

1 ∈ F1 and δ1 > 0 such that {x1; |x1 − x0
1| < δ1} ⊂ F1

and
|u(x1, z2)| ≤ N1 whenever |x1 − x0

1| < δ1 and z2 ∈ V2. (12)

Set Iδ1 = {x1; |x1 − x0
1| < δ1}. Applying the same argument to the function u

on (Iδ1 × V2) ∪ (V1 × F2) with the variables interchanged we can find a number
N ≥ N1, x0

2 ∈ F2, and δ2 > 0 such that {x2; |x2−x0
2| < δ2} ⊂ F2 and, in addition

to (12),
|u(z1, x2)| ≤ N whenever |x2 − x0

2| < δ2 and z1 ∈ V1.

Set Jδ2 = {x2; |x2 − x0
2| < δ2}. Now we can apply Proposition 1 to conclude that

u must be real analytic on Iδ1 × Jδ2 . By definition this implies that there exist
complex neighborhoods U1 of Iδ1 and U2 of Jδ2 and an analytic function ũ0 in
U1 × U2 that agrees with u on Iδ1 × Jδ2 . Applying Proposition 2′ (Proposition 2
would actually suffice here) with G = V1, F = F2 equal to a closed subinterval of
Jδ2 , and a disk U ⊂ U1, we can find an analytic function ũ1 in some neighborhood
of V1 × F2 that agrees with ũ0 on U × F2, hence agrees with u on (U ∩ E1)× F2.
Since E1 ∋ x1 !→ u(x1, x2) is real analytic for each x2, ũ1 must agree with u on
E1 × F2. Thus for an arbitrary closed subinterval F1 ⊂ E1 we can now choose
a disk U ⊂ U2 such that ũ1 is analytic in a complex neighborhood of F1 × U .
Then we can apply Proposition 2′ with those choices of F1 and U and G = V2 to
conclude that there exists an analytic function ũ2 that is analytic in a complex
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neighborhood of F1 × V2 that agrees with ũ1 on F1 × U , hence agrees with u on
F1 ×E2. Since F1 was an arbitrary closed subinterval of E1 this gives an analytic
function in a complex neighborhood of E1×E2 that is equal to u on E1×E2. The
proof is complete. !

Proof of Theorem 1′. We argue in the same way as in the proof of Theorem 1. By
Proposition 1′ there exists an analytic function ũ0 in some neighborhood W0 of
E1 × E2 that agrees with u on E1 × E2. Applying Proposition 2′ to G = G1, an
arbitrary closed subinterval F ⊂ E2, and open disks U ⊂ G1 such that U×F ⊂W0

we find ũ1 that is analytic in some complex neighborhood W1 of G1 × E2 and
agrees with u on G1 × E2. Similarly we can find ũ2 that is analytic in a complex
neighborhood W2 of E1 × G2 and agrees with u on E1 × G2. It is clear that ũ1

and ũ2 together define an analytic function ũ in a complex neighborhood Σ of
X . The proof is completed by means of Proposition 3 exactly in the same way as
before. !

In [11] Siciak treats also the case when E1 and E2 are allowed to be general
compact subsets of G1 and G2, respectively, not necessarily subsets of the real
line. It is assumed that the boundaries of E1 and E2 are regular for the Dirichlet
problem, which implies in particular that E1 and E2 are not too small. An anal-
ogous statement in n dimensions where u(x1, . . . , xn) is assumed to be separately
analytic in each variable is also proved in [11]. Extension to the case when G1

and G2 may be higher-dimensional manifolds is given in [15]. In [13] Siciak gave
a new proof of his main result in [11], based on his theory of so-called extremal
plurisubharmonic functions. A theorem analogous to Theorem 1 where u is allowed
to have singularities on an algebraic curve Γ in C2 was given in [14]; this proved a
conjecture by Öktem, who treated the special case when Γ is a complex line, [9].
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