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Outline of todays lecture(s)

1 Introduction to Spatial Point Processes

2 Point process theory

3 Point process models and inference

4 Application in epidemiology
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Michael Höhle STEpi2010 3/ 48

Intro Theory Models and inference Application References

Goals for today’s module

Get a basic understanding of spatial point process theory:
Intensity and Poisson process.

Provide an appetizer for further reading in e.g. Gatrell et al.
(1996) or Diggle (2003).

Use R! Packages for the analysis of spatial point process data
are splancs and spatstat – both available from CRAN.
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Point Process data (1)

Notation:

Z Random locations {s1, . . . , sn} of events in D ⊂ R2

Y Possible mark of events, Y = (Y1, . . . ,Yn) with Yi having
given support (continuous, discrete, categorical)

x(s) vector of covariates continuously observed in S (if available)

Contrary to geostatistical data, focus is now on where the
event occurs

Spatial point processes are an extension to temporal point
processes known from e.g. survival analysis.
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Example: Location of lightnings, 17-20 April 2003

Location of lightning strikes within
approximately 200 miles of US east
coast mentioned in (Schabenberger
and Gotway, 2005).
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Example: Location of Norwegian spruce trees

Point pattern of tree locations in a 56 x 38 metre sampling
region in a natural forest stand in Saxonia, Germany.

Each tree is marked with its diameter at breast height.
spruces

●
●

●
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Example: UXO locations
Location of unexploded ordnance device (UXO) at the former US
military training range Fort Ord, CA, USA described in Macdonald
and Small (2006)
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Example: Cancer cases in Chorley-Ribble, UK, 1973-1984
Investigation of a risk elevation around a putative source of
environmental pollution in Diggle (1990).
57 larynx cases in Ribble Health Authority, Lancashire,
England. Collateral information on 917 lung cancers cases.
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Example: Asthma in North Derbyshire
Case-control study on the incidence of asthma in children in
North Derbyshire described in Diggle and Rowlingson (1994).
215 cases and 1076 controls from 10 schools.
Risk factors: Proximity to main roads and three putative
pollution sources. Other relevant covariates at the individual
and household levels.

Case
Control
Source
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Example: Location of infection of tick-borne encephalitis
Data reported in Benes et al. (2005) on the locations of infection
of 446 cases of tick-borne tick-borne encephalitis in Central
Bohemia, Czech Republic.
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Example: Burkitt’s lymphoma

Spatio-temporal data on Burkitt’s lymphoma cases in West Nile
district district of Uganda 1960-1975.
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Example: Infected premises during 2001 FMD epidemic

Location of infected farms during the 2001 foot and mouth
epidemic in the UK. Taken from Jewell et al. (2009).
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Outline

1 Introduction to Spatial Point Processes

2 Point process theory

3 Point process models and inference

4 Application in epidemiology
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Types of point patterns (1)

Realizations of a (a) completely random pattern, (b) a Poisson
cluster process and (c) a regular process with inhibition

All patterns have n = 100 points on [0, 1]× [0, 1].
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Types of point patterns (2)

Complete spatial random (CSR) pattern:

The average number of events per unit area is homogeneous
throughout D.
The number of events N(A) in a subregion A is Poisson
distributed.
The number of events N(A1) and N(A2) in two
non-overlapping patterns A1 and A2 are independent.

Clustered pattern: the average distance between an event si

and its nearest neighbour event is smaller than the same
average distance in a CSR pattern.

Regular pattern: the average distance between an event si

and its nearest neighbour is larger than in a CSR pattern.
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Testing for complete spatial randomness (1)

Null-hypothesis: Observed pattern is a realization of a
homogeneous Poisson process.

Partition study region D into non-overlapping regions
(quadrants) A1, . . . ,Ak of equal size. Specifically, use a
rectangle with r rows and c columns.

Let nij be the observed number of counts in cell (i , j),
i = 1, . . . , r , j = 1, . . . , c.

The expected number of events of quadrant under the
null-hypothesis is n = n/(r × c).
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Testing for complete spatial randomness (2)

Use a χ2-test to investigate the null hypothesis based on the
test statistic

X 2 =
r∑

i=1

c∑

j=1

(nij − n)2

n
.

Under the null hypothesis X 2 ∼ χ2(rc − 1).

Alternatively, one could use a Monte Carlo test to compute
the p-value. →
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Testing for complete spatial randomness (3)

csr
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5 3 1 3 4

2 3 8 3 5

5 5 5 5 4

1 4 2 3 4

> quadrat.test(csr, nx = 5, ny = 5)

Chi-squared test of CSR using quadrat counts

data: csr

X-squared = 17, df = 24, p-value = 0.8487
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Research questions formulated in Gatrell et al. (1996)

Is observed clustering mainly due to natural background
variation in the population from which events arise?

Over what spatial scale does any clustering occur?

Are clusters associated with proximity to specific features of
interest, such as transport arteries or possible point sources of
pollution?

Are events that aggregate in space also clustered in time?
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Bernoulli and Binomial Processes

Let ν(A) measure the area of a region A ⊂ D.

Assume a single event s is distributed in D such that

P(s ∈ A) =
ν(A)

ν(D)

for all sets A ⊂ D. This process is termed a Bernoulli process

The superposition of n Bernoulli processes is termed a
Binomial process. If N(D) = n then for A ⊂ D

N(A) ∼ Bin

(
n,
ν(A)

ν(D)

)
.
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First-order intensity function

First-order intensity of a spatial point process

λ(s) = lim
ν(ds)→0

E (N(ds))

ν(ds)

Interpretation: λ(s)ν(ds) for a small area ds describes the
probability for an event in ds.

The above definition of intensity for a process in R2 (space) is
similar to the definition the hazard rate for a process in R
(time).

Intensity function for the binomial process? (�)
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Homogeneous Poisson process

A spatial point process is called homogeneous Poisson process if it
has the following two properties:

(i) N(A) ∼ Po(λν(A)), where 0 < λ <∞ denotes the constant
intensity function and A ⊂ D.

(ii) If A1 and A2 are two disjoint subregions of D, then N(A1)
and N(A2) are independent.

The homogeneous Poisson process acts as reference process
defining complete spatial randomness (CSR).
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Inhomogeneous Poisson process

If the intensity function λ(s) varies spatially, then property (i) of
the homogeneous Poisson process is violated, but (ii) may still hold.

The inhomogeneous Poisson process is defined by the following
two properties:

(i) N(A) ∼ Po(
∫
A λ(s)ds), where 0 < λ(s) <∞ is the intensity

of the process at s ∈ D.

(ii) If A1 and A2 are two disjoint subregions of D, then N(A1)
and N(A2) are independent.
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Simulation from Poisson process

Two Poisson process realizations on the unit square having the
same

∫
D λ(s)ds = 99.9955.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

99
.9

95
46

00
1

99
.9

95
46

00
10

00
06

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

0
20

0
40

0
60

0
80

0

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(a) Homogeneous (b) Inhomogeneous
λ(s) = 1000 exp(−10sx)
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Aside: Kernel density estimation (1)

Given an independent and identical distributed sample
(x1, . . . , xn) of a univariate random variable X , kernel density
estimation is a non-parametric procedure to estimate the
density f (·) of X .

f̂ (x) =
1

n h

n∑

i=1

K

(
x − xi

h

)

The function K (·) is called the kernel and is a probability
density function.

The bandwidth controls the smoothness of the resulting
density function estimator.
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Aside: Kernel density estimation (2)
Graphical illustration of univariate kernel density estimation for a
sample of size n = 11 using a standard normal kernel :
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Kernel estimation of the intensity function (1)

Estimating the intensity of a spatial point pattern is similar to
estimating a bivariate probability density.

Kernel smoothing is a technique to estimate a bivariate
probability density function of a random variable Y based on a
sample (y1, . . . , yn).

An estimate of the density at y can be found as the
(weighted) number of sample realizations within a certain
distance h from y:

f (y) =
1

nh2

n∑

i=1

K

(
yi − y

h

)
,

where K (·) is a kernel function and h is the bandwidth. →
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Kernel estimation of the intensity function (2)

The expression for kernel smoothing of the intensity function
at location s0 becomes

λ̂(s) =
1

h2

n∑

i=1

K

(
si − s

h

)

One can use an additional edge correction by additionally
dividing with h−2

∫
D K (s/h)ds.

Source: Gatrell et al. (1996)
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Kernel estimation of the intensity function (3)

Kernel estimated λ̂(s) for the Norwegian spruce data using the
density{spatstat} function.
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Second-order intensity

The second-order properties of a point process involve the
relationship between number of events in two subregions of D

The second-order intensity of a spatial point process is defined
as

γ(si , sj) = lim
ν(dsi ),ν(dsj )→0

{
E [N(dsi )N(dsj)]

ν(dsi ) · ν(dsj)

}

Interpretation: For small dsi , dsj

γ(si , sj) · ν(dsi ) · ν(dsj)

is approximately the probability that we will have an event in
dsi and an event in dsj .
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Stationary and isotropic process

We call a point process stationary if the intensity is constant
over D, i.e. λ(s) = λ, s ∈ D, and γ(si , sj) = γ(si − sj), i.e.
depends only on direction and distance.

A stationary point process termed isotropic if

γ(si , sj) = γ(||si , sj ||),

i.e. the second-order properties only depend on distance.
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K-function

If the process is stationary and isotropic an alternative
characterization of the γ(si , sj) is the K-function of the point
process:

λK (h) is the expected number of extra events within distance
h from an arbitrary event.

Mathematical definition:

K (h) =
2π

λ2

∫ h

0
xγ(x)dx

K (h) for a homogeneous Poisson process? (�)
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Estimating the K-function (1)

For a stationary process the natural estimator of the constant
intensity function λ(s) = λ is

λ̂ = N(D)/ν(D).

A naive moment estimator of E (h), i.e. the expected number
of extra events within distance h, is

Ê (h) =
1

n

n∑

i=1

n∑

j=1

I (||si − sj || ≤ h).

Then K̂ (h) = λ̂−1Ê (h) → : Kest{spatstat}.

Because events outside the observation region D are not
observed, this estimator is negatively biased → edge
correction.
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Estimating the K-function (2)

Reconsidering the Norwegian spruce data. Furthermore, we
compare with 99 simulated K -functions under the null model.
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Estimating the K-function (2)

Reconsidering the Norwegian spruce data. Furthermore, we
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Outline

1 Introduction to Spatial Point Processes

2 Point process theory

3 Point process models and inference

4 Application in epidemiology
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Inhomogeneous Poisson process model (1)

A regression approach for point process modelling aims at
parameterizing λ(s) by covariates:

λ(s) = exp(x(s)′β),

where x(s) denotes the p-dimensional covariate vector at
location s ∈ D.

Contrary to geostatistical data, the covariates have to be
known at each s ∈ D.
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Inhomogeneous Poisson process model (1)

The loglikelihood of an observed point patterns (s1, . . . , sn) is
given by:

l(θ) =
n∑

i=1

log λ(si ; θ)−
∫

D
λ(s; θ)ds

Find the maximum likelihood estimator θ̂ using numerical
optimization.

By clever handling of the numerical integration the
optimization problem can be translated into one which can be
solved by a Poisson GLM.
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Inhomogeneous Poisson process model (1)

> data(demopat)

> pfit <- ppm(demopat, ~polynom(x, y, 1), Poisson())

> plot(pfit, se = FALSE)

Fitted trend 
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2 Point process theory
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Spatial variation of relative risk (1)

Comparison of spatial risk by the relative intensities

ρ(s) =
λcase(s)

λcontrol(s)

Compute kernel estimators of intensity functions λ̂case(s) and
λ̂control(s). Then determine ratio ρ̂(s).

Visualization of ρ̂(s) provides descriptive plot for generating
hypotheses.

The example is taken from Bivand et al. (2008, Chapter 7).
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Spatial variation of relative risk (2)

Application to the asthma data in North Derbyshire:
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Spatial variation of relative risk (2)

Under the null hypothesis of equal spatial distribution

ρ(s) = ρ0 =
n1

n0
= 0.20

A Monte Carlo test for the hypothesis of equal spatial risk is
described in Bivand et al. (2008). In the asthma example the
null hypothesis can not be rejected (p = 0.69).

Michael Höhle STEpi2010 43/ 48

Intro Theory Models and inference Application References

Point source pollution (1)

Diggle and Rowlingson (1994) investigate point source
pollution by formulating the following intensity model:

λ1(s) = ρλ0(s)f (s− s0; θ),

where ρ measures the overall number of events per unit area,
λ0(s) is the spatial variation of the underlying population and
f (u; θ) is a function of the distance between between the
point and the source located at s0.

The distance function could e.g. be a decaying function

f (u; α,β) = 1 + α exp(−βu2),

where β ∈ R and α ≥ 0 describes the exposure effect.
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Point source pollution (2)

Estimation can be performed by maximum likelihood with
kernel estimated λ̂0(s).

Alternative: Condition on the location of cases and controls
and determine the probability of becoming a case at location s

p(s) =
λ1(s)

λ0(s) + λ1(s)
=

ρf (s− s0; θ)

1 + ρf (s− s0; θ)
.

Estimation of ρ and θ by maximum likelihood
→ : tribble{splancs}.

The framework also handles multiple pollution sources and
allows for additional covariates.
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Point source pollution (3)

> case <- ifelse(spasthma$Asthma == "case", 1, 0)

> d2source2 <- as.matrix(sqrt(spasthma$d2source2))

> RHO <- ncases/ncontrols

> m.dr <- tribble(ccflag = case, vars = d2source2, rho = RHO, alphas = 1,

+ betas = 1)

Call:

tribble(ccflag = case, vars = d2source2, alphas = 1, betas = 1,

rho = RHO)

Kcode = 2

Distance decay parameters:

Alpha Beta

[1,] 1.305824 25.14672

rho parameter : 0.163395847627903

log-likelihood : -580.495955916672

null log-likelihood : -581.406203518987

D = 2(L-Lo) : 1.82049520462942

Michael Höhle STEpi2010 46/ 48

Intro Theory Models and inference Application References

Literature I

Benes, V., Bodlák, K., Møller, J., and Waagepetersen, R. (2005). A case study on
point process modelling in disease mapping. Image Analysis and Stereology,
24:159–168.
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