Introduction Spatial Statistics

Simon Rückinger Institut für Soziale Pädiatrie und Jugendmedizin Abteilung für Epidemiologie

simon.rueckinger@med.uni-muenchen.de

- Motivation for spatial statistics
- Learn some real-life examples
- Get first insights to the variety of modeling approaches

Motivation: A historical example

Cholera outbreak in London 1854 (Map by Dr. John Snow)

Motivation: A historical example

Cholera outbreak in London 1854 (Map by Dr. John Snow)

Motivation: A historical example

Cholera outbreak in London 1854 (Map by Dr. John Snow)

- Water was contamined by feces.
- One water pump was contamined with the cholera pathogen *Vibrio cholerae*.
- This explains the clustering of deaths from cholera.
- Is this a trivial example?
- No, at the beginning of the 19th century the "miasma theory of diseases" was still well established.

Germ theory of disease

John Snow (1813-1858) Robert Koch (1843-1910)

Talk by Robert Koch at the 10th Medical Congress in Berlin 1890: "Koch's postulates"

- When the pathomechanism of a disease is unclear careful evaluation is crucial.
- Spatial correlation can provide important evidence.
- There are plenty of diseases where the pathomechanism is unknown or unclear.

Childhood cancer and nuclear power plants

Spix C et al. European Journal of Cancer 2008; 44: 275-284

Childhood cancer and nuclear power plants

	Cases		Controls	
Distance from nearest				
nuclear power plant (km)	Ν	%	Ν	%
<5	77	4.8	148	3.1
5-<10	158	9.9	464	9.8
10-<20	523	32.9	1589	33.6
20-<30	403	25.3	1181	24.9
30–<40	225	14.1	726	15.3
40–<50	137	8.6	371	7.8
>=50	69	4.3	256	5.4

Methods applied in the paper

- Matched case-control study
- Conditional logistic regression
- Independent variable: <u>1</u>
 <u>Distance from nearest power plant in km</u>
- Further covariates: None

Results

Subgroup	Coef	Lower 95% CL
All malignancies 1980-2003	1.18	0.46
Diagnostic groups 1980–2003		
Leukaemia	1.75	0.65
Central nervous system tumours	-1.02	-3.40
Embryonal tumours	0.52	-0.84
All malignancies except leukaemia	0.76	-0.20
First half of operation period	1.89	0.85
Second half of operation period	0.54	-0.47

Open questions/limitations

- Biologically plausible?
- Confirmed by other studies?
- Confounding?
- Attributable Risk: 0.2%

Lung cancer mortality in Germany

- How are maps of cancer mortality generated?
- Age standardization is crucial.
- Stratification by sex seems useful.

Lung cancer mortality in Germany

http://www.dkfz.eu/de/krebsatlas/organe/162_map.html

Open questions/limitations

- How complete are cancer registries?
- Is completeness comparable between regions?
- On how many cases are the most extreme rates based?
- What are the underlying mechanisms that cause different lung cancer mortalities:
 - Different social status and lifestyle?
 - Exposure to cancer pathogens?
 - ...

Morbus Hodgkin and deprivation

Methods

- Cases from cancer registry
- Analysis on community level
- Poisson regression, outcome: cases per community
- Offset: Log(expected cases)
- Independent variable, e.g. Townsend deprivation score (mean on community level)
- ecological study!!

McNally RJQ et al. Geographical and ecological analyses of childhood acute leukaemias and lymphomas in north-west England. British Journal of Haematology 2003; 123, 60-65

Trisk of Morbus Hough	in by rownse	na acpintation mac
Quintile	RR	95% CL
1	1	-
2	5.02	(0.59–43.00)
3	3.02	(0.31-29.04)
4	4.09	(0.46-36.58)
5	13.08	(1.71 - 100.02)
Test for linear trend	<i>P</i> = 0.001	. ,

Risk of Morbus Hodgkin by Townsend deprivation index

McNally RJQ et al. Geographical and ecological analyses of childhood acute leukaemias and lymphomas in north-west England. British Journal of Haematology 2003; 123, 60-65

Open questions/limitations

- Biologically plausible?
- Ecological fallacy?
- Confounding?

• ...

McNally RJQ et al. Geographical and ecological analyses of childhood acute leukaemias and lymphomas in north-west England. British Journal of Haematology 2003; 123, 60-65

Parkinson Cluster

- 3 Parkinson "cluster" in Canada
 - 4 Parkinson cases among a TV crew of 125 people
 - 4 Parkinson cases who were teching over a longer period in a mobile classroom of a college (out of 30 teachers).
 - 3 Parkinson cases, among a group of 7 employees in a garment factory.

Kumar A et al. Clustering of Parkinson Disease: Shared Cause or Coincidence? Archives of Neurology 2004; 61: 1057-1060

Methods

- Calculation of the probability of Parkinson for each individual in the cluster based on the incidence (Probability of disease: p).
- Binomial probability mass function:

$$P(4 \times \text{Parkinson out of } 125|p) = \binom{n}{k} p^k (1-p)^{n-k}$$
$$= \binom{125}{4} \cdot p^4 \cdot (1-p)^{125-4}$$

Kumar A et al. Clustering of Parkinson Disease: Shared Cause or Coincidence? Archives of Neurology 2004; 61: 1057-1060

Results for the 3 clusters:

- $P = 7.9 \cdot 10^{-7}$
- $P = 2.6 \cdot 10^{-7}$
- $P = 1.5 \cdot 10^{-7}$

Kumar A et al. Clustering of Parkinson Disease: Shared Cause or Coincidence? Archives of Neurology 2004; 61: 1057-1060

- This is multiple testing!
- The clusters were chosen retrospectively.
- Clustering may be expected.
- If one searches long enough one may find clusters of any disease in certain groups.

Figure 3 Locations of cases of childhood leukaemia in west-central Lancashire, 1954-92

Figure 3 Locations of cases of childhood leukaemia in west-central Lancashire, 1954-92

- K function: The average number of events within a certain distance of a randomly chosen event divided by the average number of events per unit area.
- Calculate K function for cases.
- Calculate K function for controls.
- Difference between K functions points to clustering.

Figure 2 Estimation of a K function

Figure 4 Difference between K functions (bold line) and simulation envelope (lighter lines) for childhood leukaemia and 'population at risk'

- Indication of clustering.
- However, no significant deviation from spatial randomness.
- Statistical Power?

Leukemia in Upstate New York

Figure 1. The 592 cases of leukaemia in Upstate New York

Kulldorff M et al. Spatial Disease Clusters: Destection and inference. Statistics in Medicine 1995; 14: 799-810

Leukemia in Upstate New York

Kulldorff M et al. Spatial Disease Clusters: Destection and inference. Statistics in Medicine 1995; 14: 799-810

- Likelihood ratio test based on defined zones
- p is the probability of being a case in a zone
- q is the probability of being a case outside this zone

•
$$H_0: p = q$$

• *H*₁: *p* > *q*

Leukemia in Upstate New York

Figure 3. The most likely cluster 'A' and four other non-overlapping clusters on a map

Kulldorff M et al. Spatial Disease Clusters: Destection and inference. Statistics in Medicine 1995; 14: 799-810

Zone z	Number of cases c _z	Population n _z	Incidence rate per 1000	Relative likelihood L(z)/L ₀	Radius in km	Rank	County
A	95.3	99608	0.96	472976	6.3	5	Broome
B	43.2	36629	1.18	21088	10.2	27	Cortland
С	55.2	56806	0.97	1911	2.9	174	Onondaga
D	26.4	23682	1.11	187	2.8	781	Cavuga
Ε	3.4	793	4.29	51	0	996	Onondaga

Table I. The most likely cluster A and four other non-overlapping clusters. The incidence rate for the population as a whole is 0.56

Kulldorff M et al. Spatial Disease Clusters: Destection and inference. Statistics in Medicine 1995; 14: 799-810

County	Obs cases	Exp cases	Perc. in agric.	Adjacent counties
	Уi	Ei	Xi	
1	9	1.4	16	5,9,11,19
2	39	8.7	16	7,10
56	0	1.8	10	18,24,30,33,45,55

Tabelle: The Scottish lip cancer data.

Clayton DG et al. Empirical bayes estimates of age-standardized relative risks for use in disease mapping. Biometrics 1987; 43: 671-681

Estimation of SMR?

- via maximum likelihood: $SMR_i = \frac{y_i}{E_i}$
- via Bayesian inference?
- What a priori information do we have?

Which a priori assumptions are plausible?

- General similarity of counties?
- Similarity of adjacent counties?
- Combination adjacent and general similarity?

Tabelle: Results for the area-specific relative risks from 4 different methods for the Scotish lip cancer data

Area	ML	exchangeable model	CAR prior	Convolution prior
1	6.43	4.67	4.72	4.81
2	4.48	4.20	4.47	4.44
56	0	0.65	0.87	0.83

Lip cancer in Scotland

(a) ML estimation

(b) exchangeable prior on log relative risk

- There are plenty diseases with unknown pathomechanism.
- Spatial correlation can provide important insights.
- There exists a broad variety of methods.
- There are also plenty of possibilities for wrong interpretations.