Disease Mapping Spatial Statistics

Simon Rückinger Institut für Soziale Pädiatrie und Jugendmedizin Abteilung für Epidemiologie

simon.rueckinger@med.uni-muenchen.de

- Recall basic concepts of standardisation
- Apply these to some examples
- Learn about limitations of standardisation

- Incidence of most diseases is age-dependent
- Mortality is age-dependent
- Age structure differs between countries or regions
- Age-standardization is important when comparing rates!

- Direct standardization
- Indirect standardization

- Direct standardization refers to the age distribution in a standard population.
- Indirect standardization refers to the age-specific rates in a reference population.

Direct standardization

Standardised Rate =
$$\frac{\sum_{i=1}^{k} N_i \cdot p_i}{\sum_{i=1}^{k} N_i}$$

- *N_i*: Number of individuals in i-th age stratum of the standard population
- *p_i*: Age specific rate in the i-th age stratum of the population of interest

Indirect standardization

Standardised Rate =
$$rac{\sum_{i=1}^{k} r_i}{\sum_{i=1}^{k} n_i \cdot P_i}$$

- *n_i*: Number of individuals in i-th age stratum of the population of interest
- *P_i*: Age specific rate in the i-th age stratum of the reference population
- *r_i*: Age specific rate in the i-th age stratum of the population of interest

$$\sum_{i=1}^{k} n_i \cdot P_i : \mathsf{Expected number of events}$$

- Direct standardization: Results in rates
- Indirect standardization: Results in a ratio without dimension ("SMR")

Direct standardization: Please calculate!

Number at Risk in Age Stratum	Case Age St	Rate (per 100,000)			
10,000	6		60		
20,000	15		75		
30,000	75		250		
40,000	160		400		
50,000	30	600			
Number at Risk	Cases in				
of Standard Population	Percent in Age Stratum	of Standard Population	Rate (per 100,000)		
12,000,000	12	NA	NA		
16,000,000	16	NA	NA		
20,000,000	20	NA	NA		
24,000,000	24	NA	NA		
28,000,000	28	NA	NA		

Waller LA et al. Applied Spatial Statistics for Public Health Data. Wiley (New York) 2004

Indirect standardization: Please calculate!

Number at Risk in Age Stratum	Cases in Age Stratum		Rate (per 100,000)	
10,000	NA		NA	
20,000	NA		NA	
30,000	NA		NA	
40,000	NA		NA	
50,000	N	NA		
10	(total =	= 556)		
Number at Risk in Age Stratum	Cases in Age Stratum			
of Standard	Percent in	of Standard	Rate (per	
Population	Age Stratum	Population	100,000)	
12,000,000	12	7,200	60	
16,000,000	16	16,000	100	
20,000,000	20	40,000	200	
24,000,000	24	72,000	300	
28,000,000	28	140,000	500	

Waller LA et al. Applied Spatial Statistics for Public Health Data. Wiley (New York) 2004 Standardization is no cure-all solution:

- Crude rates reflect the real situation (irrespective of underlying causes)
- What if rates vary in different ways across various strata?
- Stratification may be useful...
- ...but only if numbers in strata are not too small...
- ...and if there are not too many strata.

For examples regarding different ways of variation across different strata see e.g.:

- Kitagawa EM. Theoretical considerations in the selection of a mortality index, and some empirical comparisons. Human Biology 1966; 38: 293-308
- El-Badry MA. Higher female than male mortality in some countries of south Asia: A digest. Journal of the American Statistical Association 1969; 64:1234-1244

Age-specific rates of abnormal lung functioning in males employed in manufacturing or service industries.

	Manufacturing		Service	
Age interval	N	% Abnormal	Ν	% Abnormal
20-<29	403	2.2	256	4.8
30–<39	688	3.2	525	3.2
40–<49	683	2.2	599	2.8
50-<59	539	6.9	453	6.6
60 +	133	12.8	155	9.0

Fleiss JL. Statistical Methods For Rates And Proportions. Wiley (New York) 1981

- Standardization accounts for e.g. different age distribution in regions.
- Crude rates reflect the real public health situation.
- Standardization is no cure-all solution.
- Results have to be evaluated with care.