Outline of todays lecture(s)

Spatial Statistics in Epidemiology
 Tuesday: Geostatistics

Michael Höhle ${ }^{1}$

${ }^{1}$ Department of Statistics Ludwig-Maximilians-Universität München

7 July 2009
IBE, LMU München
(1) Introduction to geostatistics

- Motivating examples
- Generalized linear geostatistical model
(2) Gaussian models for geostatistical data
- Aside: Multivariate normal distribution
- Gaussian spatial process
- Isotropic covariance functions
(3) Parameter estimation
- Semivariogram
- Maximum likelihood estimation
(4) Spatial prediction

Outline

Introduction to geostatistics- Motivating examples
- Generalized linear geostatistical modelGaussian models for geostatistical dataParameter estimation

Spatial prediction

Get a basic understanding of geostatistics, spatial processes, variogram, Kriging and the generalized linear model for geostatistical data

Provide an introduction to the material in Diggle and Ribeiro (2007), which is available as ebook from the University library

Use R! The book concurrently illustrates the theory by the R package geoR available from CRAN

Geostatistical data (1)

- Notation:
y response variable
s location variable, geographical region
x vector of covariates (if available)
- We differ between geostatistical data, lattice data and spatial point process data.
- Focus in this lecture is on geostatistical data. Here, $s=\left(s_{x}, s_{y}\right)$ is a vector of length two denoting the coordinates of the location and $s \in D \subseteq \mathbb{R}^{2}$ is continuous in D
- Forthermore, $Y(s)$ represents the measurement on a given scale (continuous, discrete, ordinal, categorical) at the location s.

Geostatistical data (2)

- Basic format for univariate geostatistical data:

$$
\left\{\left(s_{i}, y_{i}\right): i=1, \ldots, n\right\}
$$

- Sampling design of the observation locations is either deterministic or stochastically independent of the process which generates the measurements.
- Each y_{i} is a realization of a random variable Y_{i} whose distribution is dependent on the location s_{i} of an underlying spatially continuous stochastic process $Z(s)$ which is unobservable.
- Geostatistical model: A random field $\{Z(s): s \in D\}$ and a multivariate distribution for the random vector $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ conditional on $Z(s)$.

Geostatistical data (3)

- Difference between geostatistical model and a discrete spatial model: the former embraces any set of sampling locations, whereas the latter is specific to a particular set of locations.
- Each data point can furthermore include a p-dimensional vector of spatial explanatory variables \mathbf{x}_{i} also known as covariates:

$$
\left\{\left(s_{i}, y_{i}, \mathbf{x}_{i}\right): i=1, \ldots, n\right\}
$$

Example - Calcium content in soil samples

- Data on calcium content measured in soil samples taken from the $0-20 \mathrm{~cm}$ layer at 178 locations within a certain study in Brazil.

Example - Defoliation of beeches

- 100 rainfall measurements made in Switzerland on the 8th of May 1986.

Michael Höhle SpatialEpi2009
9/ 62
Michael Höhle SpatialEpi2009
10/ 62

- Data from Fahrmeir et al. (2007) on the defoliation of beech trees in the forest areas of Rothenbuch (Spessart) 1983-2004.
- Graphics shows 1990 state using a 3-category scale of defoliation percentages

- Also available are location specific covariates such as height,
pH , age, etc.

Introduction to geostatistics

Example - Leukemia survival in Northwest England

Generalized linear geostatistical model (1)

- Following Diggle and Ribeiro (2007) our main concern shall be a model based approach to geostatistics
- The generalized linear geostatistical model is a random-effects version of the GLM consisting of two parts:
(1) A stationary Gaussian spatial process $Z(s)$
(2) Conditional on $Z(s)$ the y_{1}, \ldots, y_{n} are mutually independent random variables with

$$
h\left(\mu_{i}\right)=Z\left(s_{i}\right)+\sum_{k=1}^{p} \beta_{k} x_{k}\left(s_{i}\right)=Z\left(s_{i}\right)+\mathbf{x}\left(s_{i}\right)^{\prime} \boldsymbol{\beta},
$$

where $\mu_{i}=\mathrm{E}\left(Y_{i} \mid Z\left(s_{i}\right)\right), h(\cdot)$ is a link function and the β_{k} are unknown spatial regression parameters.

Location of the 1043 cases

- For a linear Gaussian model h is the identity function and the error distribution is normal

$$
Y_{i} \mid Z\left(s_{i}\right) \sim N\left(\mu_{i}, \tau^{2}\right)
$$

- For a Poisson log-linear model we have $h\left(\mu_{i}\right)=\log \left(\mu_{i}\right)$ and

$$
Y_{i} \mid Z\left(s_{i}\right) \sim \operatorname{Po}\left(\mu_{i}\right)
$$

- For a logit-linear model we have $h\left(\mu_{i}\right)=\log \left(\mu_{i} /\left(1-\mu_{i}\right)\right)$ and

$$
Y_{i} \mid Z\left(s_{i}\right) \sim B\left(\mu_{i}\right)
$$

Outline

- Generalized linear geostatistical models (GLGMs)
- assume a given distribution of $Y(s) \mid Z(s)$
- formulate a model for $E(Y(s) \mid Z(s))$ based on covariates:

$$
\mu(s)=h^{-1}\left(Z(s)+\mathbf{x}(s)^{\prime} \boldsymbol{\beta}\right)
$$

- To use such models we need to
- understand what a Gaussian spatial process is
- figure out how to determine the unknown parameters of the model from data $\left\{s_{i}, y_{i}, \mathbf{x}_{i}\right\}$
- The difference between GLGM modeling and usual LM/GLM modeling is that we take the spatial dependency of the data into account
(1) Introduction to geostatistics
(2)

Gaussian models for geostatistical data

- Aside: Multivariate normal distribution
- Gaussian spatial process
- Isotropic covariance functions
(3) Parameter estimation
(4) Spatial prediction

Aside: Multivariate normal distribution (1)

- A p-dimension vector $\mathbf{X}=\left(X_{1}, \ldots, X_{p}\right)^{\prime}$ follows a multivariate normal distribution $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ when its density is

$$
f(\mathbf{x})=(2 \pi)^{-\frac{p}{2}}|\boldsymbol{\Sigma}|^{-\frac{1}{2}} \exp \left(-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\prime} \boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right)
$$

where $\boldsymbol{\mu} \in \mathbb{R}^{p}$ and the $p \times p$ matrix $\boldsymbol{\Sigma}$ is positive semidefinite.

- Positive semidefinite means that for all $\mathbf{z} \in \mathbb{R}^{p}$ we want

$$
\mathbf{z}^{\prime} \boldsymbol{\Sigma} \mathbf{z} \geq 0
$$

i.e. any linear combination of the elements in \mathbf{x} has valid variance.

Properties of the multivariate normal distribution:

- Expectation and covariance: $E(\mathbf{X})=\boldsymbol{\mu}$ and $\operatorname{Cov}(\mathbf{X})=\boldsymbol{\Sigma}$.
- The covariance of a pair $\left(X_{i}, X_{j}\right)$ is defined as

$$
\operatorname{Cov}\left(X_{i}, X_{j}\right)=\mathrm{E}\left(\left(X_{i}-\mu_{i}\right)\left(X_{j}-\mu_{j}\right)\right)
$$

- The correlation $\rho_{i j}$ of a $\left(X_{i}, X_{j}\right)$ pair is

$$
\rho_{i j}=\frac{\operatorname{Cov}\left(X_{i}, X_{j}\right)}{\sqrt{\operatorname{Var}\left(X_{i}\right) \operatorname{Var}\left(X_{j}\right)}}
$$

Aside: Multivariate normal distribution (2)

- Example $p=2$, i.e. the bivariate normal distribution with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and correlation $\rho . \rightarrow \mathbb{R}$

Michael Höhle SpatialEpi2009
21/ 62

Aside: Multivariate normal distribution (2)

- Example $p=2$, i.e. the bivariate normal distribution with variances $\sigma_{1}^{2}, \sigma_{2}^{2}$ and correlation $\rho . \rightarrow \mathbb{R}$

Gaussian models
Aside: Multivariate normal distribution (3)

Gaussian spatial process (1)

- An important theorem used in the computation of Kriging is the computation of marginals for the multivariate normal
- Let $\mathbf{X} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and consider a partition of \mathbf{X} into the subvectors $\mathbf{X}_{1}=\left(X_{1}, \ldots, X_{r}\right)^{\prime}$ and $\mathbf{X}_{2}=\left(X_{r+1}, \ldots, X_{p}\right)^{\prime}$, i.e.

$$
\mathbf{X}=\binom{\mathbf{X}_{1}}{\mathbf{X}_{2}}, \quad \boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}}, \quad \boldsymbol{\Sigma}=\left(\begin{array}{cc}
\boldsymbol{\Sigma}_{1} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{2}
\end{array}\right)
$$

- Then $\mathbf{X}_{1} \sim N_{r}\left(\boldsymbol{\mu}_{1}, \boldsymbol{\Sigma}_{1}\right)$ and $\mathbf{X}_{1} \mid \mathbf{X}_{2} \sim N_{r}\left(\boldsymbol{\mu}_{1 \mid 2}, \boldsymbol{\Sigma}_{1 \mid 2}\right)$ with

$$
\begin{aligned}
& \mu_{1 \mid 2}=\boldsymbol{\mu}_{1}+\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{2}^{-1}\left(\mathbf{X}_{2}-\mu_{2}\right) \\
& \boldsymbol{\Sigma}_{1 \mid 2}=\boldsymbol{\Sigma}_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{2}^{-1} \boldsymbol{\Sigma}_{21}
\end{aligned}
$$

A Gaussian spatial process $\left\{Z(s): s \in \mathbb{R}^{2}\right\}$ is a stochastic process such that

- For any finite collection of locations s_{1}, \ldots, s_{n} with $s_{i} \in \mathbb{R}^{2}$ the distribution of $\mathbf{Z}=\left(Z\left(s_{1}\right), \ldots, Z\left(s_{n}\right)\right)^{\prime}$ is multivariate normal.
- The process is characterized by its mean function $\mu(s)=\mathrm{E}(Z(s))$ and its covariance function

$$
\gamma\left(s, s^{\prime}\right)=\operatorname{Cov}\left(Z(s), Z\left(s^{\prime}\right)\right)
$$

- For s_{1}, \ldots, s_{n} let $\boldsymbol{\mu}=\left(\mu\left(s_{1}\right), \ldots, \mu\left(s_{n}\right)\right)^{\prime}$ and let the $n \times n$ matrix $\boldsymbol{\Sigma}$ have entries $\Sigma_{i j}=\gamma\left(s_{i}, s_{j}\right)$. Then $\mathbf{Z} \sim N_{n}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.

Gaussian spatial process (2)

- A spatial Gaussian process is stationary if $\mu(s)=\mu$ and $\gamma\left(s, s^{\prime}\right)=\gamma(u)$ where $u=s-s^{\prime}$.
- A stationary process is isotropic if $\gamma\left(s-s^{\prime}\right)=\gamma\left(\left\|s-s^{\prime}\right\|\right)$, where $\|\cdot\|$ denotes the Euclidean distance.
- The variance of a stationary process is $\sigma^{2}=\gamma(0)$ and the correlation function is $\rho(u)=\gamma(u) / \sigma^{2}$.
- A process is called covariance stationary if $Z(s)-\mu(s)$ is stationary.

Isotropic covariance functions (2)

- An important class of covariance functions with the desired properties is the Matérn family:

$$
\gamma(u)=\sigma^{2} \frac{1}{2^{\kappa-1} \Gamma(\kappa)}\left(\frac{u}{\phi}\right)^{\kappa} K_{\kappa}\left(\frac{u}{\phi}\right),
$$

where K_{κ} denotes the Bessel function of order $\kappa>0$ and Γ the gamma function.

- The parameter $\kappa>0$ in the Matérn family controls the smoothness of the process and $\phi>0$ controls the range of spatial dependence.
- Plot on previous slide shows Matérn functions for $\sigma^{2}=1$, $\kappa=\{0.5,1.5,2.5\}$ and with ϕ tuned such that $\gamma(0.75)=0.05$ in each case.
- A desirable property of a covariance function is that the correlation between $Z(s)$ and $Z\left(s^{\prime}\right)$ decreases as the distance u between s and s^{\prime} increases.

Isotropic covariance functions (1)

Isotropic covariance functions (3)

- For $\kappa=0.5$ the Matérn covariance function reduces to the exponential covariance function

$$
C(u)=\sigma^{2} \exp (-u / \phi)
$$

- For $\kappa \rightarrow \infty$ it reduces to the Gaussian covariance function

$$
C(u)=\sigma^{2} \exp \left(-(u / \phi)^{2}\right)
$$

- The function cov.spatial in geoR contains an implementation of further covariance function such as spherical

Simulation of Gaussian processes (1)
Simulation of a Gaussian process on \mathbb{R}^{1} with the three Matérn covariance functions:

Simulation of Gaussian processes (2)

Simulation of the Gaussian process on \mathbb{R}^{2} using the function grf.

Michael Höhle SpatialEpi2009
28/62

$\kappa=1.5, \phi=0.16$

X Coord

Gaussian models
 Simulation of the Gaussian process on \mathbb{R}^{2} using the function grf.
 Simulation of Gaussian processes (2)

Simulation of Gaussian processes (2)

 Gaussian modelsSimulation of the Gaussian process on \mathbb{R}^{2} using the function grf.

Semivariogram (1)

- The semivariogram is defined as:

$$
V\left(s, s^{\prime}\right)=\frac{1}{2} \operatorname{Var}\left(Z(s)-Z\left(s^{\prime}\right)\right)
$$

- For a stationary and isotropic process the semivariogram reduces to

$$
V(u)=\sigma^{2}\{1-\rho(u)\}
$$

- For these processes the semivariogram and the covariance function contain the same information.

Semivariogram (2)

- $\lim _{u \rightarrow \infty} V(u)=\sigma^{2}$ is also called the sill.
- The practical range is the distance u where $V(u)=0.95 \cdot \sigma^{2}$.

Michael Höhle SpatialEpi2009

Gaussian models

Nugget effect

30/ 62

- In geostatistical practice one often works with a nugget effect, which can be interpreted as measurement error variance τ^{2}.
- This means that the correlation function of the observations has a discontinuity at zero, i.e.

$$
\operatorname{Corr}\left(Y(s), Y\left(s^{\prime}\right)\right)= \begin{cases}1 & \text { if } s=s^{\prime} \\ \frac{\sigma^{2}}{\sigma^{2}+\tau^{2}} \cdot \rho\left(\left\|s-s^{\prime}\right\|\right) & \text { otherwise }\end{cases}
$$

- Illustration

[^0]
Outline

Introduction to geostatisticsGaussian models for geostatistical dataParameter estimation- Semivariogram
- Maximum likelihood estimation

4 Spatial prediction
Spatial prediction

Estimating the Semivariogram (1)

- To learn about the semivariogram one could plot $v_{i j}=\frac{1}{2}\left(Y\left(s_{i}\right)-Y\left(s_{j}\right)\right)^{2}$ against $u=\left\|s_{i}-s_{j}\right\|$
- However, this semivariogram cloud is usually not very informative (why?)
- Alternative: smoothing of the cloud by defining K bins with $\left[u_{k-1}, u_{k}\right], k=1, \ldots, K$, and $u_{0}=0$. Let

$$
N_{k}=\left\{(i, j):\left\|s_{i}-s_{j}\right\| \in\left[u_{k-1}, u_{k}\right]\right\}
$$

Matheron's semivariogram estimator is defined as

$$
\widehat{V}_{k}=\frac{1}{2\left|N_{k}\right|} \sum_{i, j \in N_{k}}\left(Y\left(s_{i}\right)-Y\left(s_{j}\right)\right)^{2}
$$

Data

- Assume observed data $Y\left(s_{1}\right), \ldots, Y\left(s_{n}\right)$ are generated by a stationary and isotropic spatial process Z with mean μ and variance σ^{2} as follows

$$
Y_{i}=Z\left(s_{i}\right)+\epsilon_{i}, \quad i=1, \ldots, n
$$

where the ϵ_{i} are independent and identically distributed with zero mean and variance τ^{2}.

- The semivariogram of the observation process is

$$
\begin{aligned}
V_{Y}\left(u_{i j}\right) & =\frac{1}{2} \mathrm{E}\left[\left(Y_{i}-Y_{j}\right)^{2}\right], \quad u_{i j}=\left\|s_{i}-s_{j}\right\| \\
& =\tau^{2}+\sigma^{2}\left\{1-\rho\left(u_{i j}\right)\right\} .
\end{aligned}
$$

Here, $\rho(\cdot)$ denotes the autocorrelation function of the process Z.

Michael Höhle SpatialEpi2009
35/ 62

Estimating the Semivariogram (2)

- Cloud and Matheron's estimator for the soil calcium data

u
- The variog function from package geoR does the work in R

Gaussian models (1)

Recall the Gaussian model from the introduction:

- Let Z be a zero mean stationary and isotropic Gauss process and let $\mathbf{Z}=\left(Z\left(s_{1}\right), \ldots, Z\left(s_{n}\right)\right)^{\prime}$.
- Conditionally on \mathbf{Z}, the observations \mathbf{Y} are independent and follow a normal distribution

$$
Y_{i} \mid Z\left(s_{i}\right) \sim N\left(\mu_{i}, \tau_{i}^{2}\right)
$$

where

$$
\mu_{i}=Z\left(s_{i}\right)+\mathbf{x}\left(s_{i}\right)^{\prime} \boldsymbol{\beta}
$$

- Let \mathbf{X} be a $n \times p$ matrix having rows $\mathbf{x}\left(s_{i}\right), i=1, \ldots, n$. For $\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{n}\right)$ we can write

$$
\boldsymbol{\mu}=\mathbf{Z}+\mathbf{X} \boldsymbol{\beta}
$$

Gaussian models (2)

Gaussian models (3)

- The interesting part of the loglikelihood function is

$$
I\left(\boldsymbol{\beta}, \tau^{2}, \sigma^{2}, \phi\right)=-\frac{1}{2} \log (|\mathbf{S}|)+(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})^{\prime} \mathbf{S}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta})
$$

where $\mathbf{S}=\sigma^{2} \mathbf{R}(\phi)+\tau^{2} \mathbf{I}$ and $|\cdot|$ denotes the determinant.

- Let $\nu^{2}=\tau^{2} / \sigma^{2}$ and $\mathbf{V}=\mathbf{R}(\phi)+\nu^{2} \mathbf{I}$. Given \mathbf{V} the above likelihood is maximized in β and σ^{2} using weighted least squares

$$
\begin{aligned}
\boldsymbol{\beta}(\mathbf{V}) & =\left(\mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{V}^{-1} \mathbf{y} \\
\sigma^{2}(\mathbf{V}) & =\frac{1}{n}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}(\mathbf{V}))^{\prime} \mathbf{V}^{-1}(\mathbf{y}-\mathbf{X} \boldsymbol{\beta}(\mathbf{V}))
\end{aligned}
$$

Gaussian models (5)

- Plugging this result back into the loglikelihood yields the profile loglikelihood for ϕ and ν^{2} :

$$
I_{p}\left(\nu^{2}, \phi\right)=-\frac{n}{2} \log \left(\sigma^{2}(\mathbf{V})\right)-\frac{1}{2} \log (|\mathbf{V}|)
$$

- By numerically optimizing $I_{p}\left(\nu^{2}, \phi\right)$ one obtains $\widehat{\phi}$ and $\widehat{\nu}^{2}$.
- By back substitution one obtains $\widehat{\boldsymbol{\beta}}$ and $\widehat{\sigma}^{2}$.
- An alternative for estimating $\left(\nu^{2}, \sigma^{2}, \phi\right)$ is restricted maximum likelihood estimation.
- When using a Matérn covariance function, the order parameter κ is often poorly identified. Therefore, one often estimates κ by choosing the value from a discrete set, e.g. $\kappa=\{0.5,1.5,2.5\}$, which obtains the highest likelihood.
- An advantage of the likelihood framework is that, based on asymptotic normality, the variability of the estimators can be quantified, e.g. using $\operatorname{Cov}\left(\widehat{\beta}_{i}\right)$.
- A $(1-\alpha) \cdot 100 \%$ Wald confidence interval for a regression parameter $\beta_{i}, i=1, \ldots, p$, is then

$$
\widehat{\beta}_{i} \pm 1.96 \sqrt{\operatorname{Var}\left(\widehat{\beta}_{i}\right)}
$$

Transformed Gaussian models

- The applicability of the Gaussian model can be extended by assuming that the model holds after a marginal transformation of the response variable, i.e. $Y_{i}^{*}=g\left(Y_{i}\right)$.
- Examples are the log, $\sqrt{ }$, logit and probit-transformation of the data. General class is the Box-Cox transformation:

$$
Y_{i}^{*}= \begin{cases}\frac{1}{\lambda}\left(Y_{i}^{\lambda}-1\right) & \text { if } \lambda \neq 0 \\ \log \left(Y_{i}\right) & \text { if } \lambda=0\end{cases}
$$

- Transformations used to be common strategy to model non-Gaussian data. However, a more modern approach is GLM based modelling.
- $\sqrt{ }$-transformed response, Matérn-covariance function with $\kappa=1$
- Likelihood estimation using geoR's likfit function
> data("SIC")
> m <- likfit(sic.all, cov.model = "matern", kappa = 1,
$+\quad$ ini $=c(0.9,0.2)$, lambda $=1 / 2)$
> m\$beta
[1] 20.13396
$>$ (beta.se <- sqrt(m\$beta.var))
[1] 3.834064
$>$ (beta.ci <- m\$beta + c (-1, 1) * $1.96 *$ beta.se)
[1] 12.6192027 .64873

Analysis of Swiss rainfall data (3)

Summary of the parameter estimation
Estimation method: maximum likelihood
Parameters of the mean component (trend):
beta
0.134

Parameters of the spatial component
correlation function: matern
(estimated) variance parameter sigmasq (partial sill) $=105.0$ (estimated) cor. fct. parameter phi (range parameter) $=35.79$ (fixed) extra parameter kappa $=1$
anisotropy parameters:
(fixed) anisotropy angle $=0$ (0 degrees)
(fixed) anisotropy ratio $=1$
Parameter of the error component
(estimated) nugget $=6.921$
Transformation parameter:
(fixed) Box-Cox parameter $=0.5$
Practical Range with cor=0.05 for asymptotic range: 143.0995

Maximised Likelihood:			
log.L n.params	AIC	BIC	
"-2462"	"4"	"4933"	"4949"

non spatial model:
$\begin{array}{cc}\text { log.L n.params } & \text { AIC BIC }\end{array}$
Michael Höhle SpatialEpi2009
46/ 62
Estimation
Michael Höhle SpatialEpi2009
47/ 62

Analysis of the soil calcium data

- Akaike's information criterion (AIC) quantifies a trade-off between model precision and model complexity:

$$
A I C=-2 I(\hat{\theta})+2 k .
$$

- AIC based model selection: Select model with smallest AIC
- Example: $\rightarrow \mathbb{R}$
> data("ca20")
> trends <- list("cte", ~area, ~area + altitude, ~area +
$+\quad$ coords, ~area + altitude)
> m <- lapply(trends, function(trend) likfit(ca20, trend = trend,
$+\quad$ ini $=c(100,200)$, cov.model $=$ "matern", kappa $=0.5)$)
> (AIC <- unlist(lapply(m, function(model) model\$AIC)))
[1] 1273.3631269 .4871271 .3231271 .3411271 .323
> trends[[which.min(AIC)]]
~area
- Unless the elements of \mathbf{Z} are independent, one has to solve a n-dimensional integral!
- Monte Carlo maximum likelihood or Markov Chain Monte Carlo (MCMC) methods are two approaches for solving these integrals.
- MCMC is most conveniently applied in a Bayesian framework. For further details see Chapter 7 in Diggle and Ribeiro (2007).
(1) Introduction to geostatistics
(2) Gaussian models for geostatistical data
(3) Parameter estimationSpatial prediction

Ordinary Kriging for the Gaussian model (1)

- Assume observations $\mathbf{Y}=\left(Y_{1}, \ldots, Y_{n}\right)^{\prime}$ are generated by

$$
Y_{i}=Z\left(s_{i}\right)+\epsilon_{i}
$$

$i=1, \ldots, n$, and where $\epsilon_{i} \sim N\left(0, \tau^{2}\right)$ are iid. variables.

- S is a stationary and isotropic Gaussian model with mean μ, variance σ^{2} and correlation function $\rho(\|\cdot\|)$.
- Let $\mathbf{Z}=\left(Z_{1}, \ldots, Z_{n}\right)^{\prime}$. Then

$$
\begin{aligned}
& \mathbf{Z} \sim N_{n}\left(\mu \mathbf{1}, \sigma^{2} \mathbf{R}\right), \\
& \mathbf{Y} \sim N_{n}\left(\mu \mathbf{1}, \sigma^{2} \mathbf{R}+\tau^{2} \mathbf{I}\right)
\end{aligned}
$$

where \mathbf{R} is an $n \times n$ matrix with $r_{i j}=\rho\left(\left\|s_{i}-s_{j}\right\|\right)$ and \mathbf{I} is the $n \times n$ identity matrix.

- Suppose we want to predict the linear target

$$
T=\int_{D} w(s) Z(s) d s
$$

where $w(s)$ is a known weighting function.

- One can show that the optimal predictor is

$$
\widehat{T}=\int_{D} w(s) \widehat{Z}(s) d s
$$

- For non-linear targets one has to resort to Monte Carlo simulation for a grid of prediction points to estimate the target.

Spatial prediction
$1\|\|\|\|\|\|$

Kriging for Swiss rainfall data (1)

- We use a Box-Cox transform with $\lambda=\frac{1}{2}$ and plugin of the estimated covariance parameters.

- The term Trans-Kriging is used for Kriging of transformed Gaussian models.
- Kriging with non-constant mean $\mu(s)=\mathbf{x}(s)^{\prime} \boldsymbol{\beta}$ is called universal Kriging.
- Note the plugin of $\boldsymbol{\beta}$ and variance function parameters means that their estimation uncertainty is ignored \rightarrow Bayesian Kriging
> \#Perform parameter estimation on the entire dataset
> m <- likfit(sic.all, ini=c (100,40), nug=10, lambda=0.5, kappa=1)
> \#Define prediction grid
> gr <- pred_grid(sic.borders, by=7.5)
> \#Setup Kriging parameters
> KC <- krige.control (obj.model=m)
> OC <- output. control(n.pred=1000, simulations.predictive=TRUE,
> \#Perform Kriging with fixed seed
> set.seed (2419)
> pred <- krige.conv(sic.all, loc=gr, borders=sic.borders,
$+\quad$ krige=KC, out=OC)

Kriging for Swiss rainfall data (3)

- Proportion of the total area for which rainfall exceeds 20 mm is calculated by 1000 Monte Carlo simulations.

Kriging for the soil calcium data (1)

- Prediction in calcium data with trend model $\mu(s)=x_{\text {area(s) }}$.

Michael Höhle SpatialEpi2009
58/ 62
Michael Höhle SpatialEpi2009
59/ 62

Spatial prediction
(2)

Outlook

> \#Fit area model
> m.ca20 <- likfit(ca20, trend $=\sim$ area, ini=c $(100,60)$)
> \#Create prediction grid
> gr <- pred_grid(ca20\$borders, by=10)
> \#Determine area status of each point in prediction region
> regions <- with (ca20, list (reg1, reg2, reg3))
> in.region <- function(reg) .geoR_inout(gr, reg)
> which <- matrix(unlist(lapply(regions,in.region)),ncol=3)
> \#Create factor (problem: points can be in several polygons)
> gr.area <- as.factor (ifelse(which[,1], 1, ifelse(which[,2], 2,
$+\quad$ ifelse(which[,3],3,NA))))
> \#Kriging
$>K C<-$ krige.control(trend.d $=\sim$ area, trend.l= ~gr.area,
$+\quad$ obj.model=m.ca20)
> ca20pred <- krige.conv(ca20, location=gr, krige=KC)

- Other R packages also implement Kriging, e.g. gstat.
- Further information can be found in Bivand et al. (2008) or on the book's (brilliant!) website .

Literature I

Bivand, R. S., Pebesma, E. J., and Gómez-Rubio, V. (2008). Applied Spatial Data Analysis with R. Springer.
Diggle, P. J. and Ribeiro, P. J. (2007). Model-based Geostatistics. Springer.
Fahrmeir, L., Kneib, T., and Lang, S. (2007). Regression. Springer.
Held, L. (2008). Methoden der statistischen Inferenz. Spektrum.
Pawitan, Y. (2001). In All Likelihood. Oxford University Press.

[^0]: Michael Höhle SpatialEpi2009

