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Mathematical models

Definitions and aim of this lecture

Infectious disease epidemiology

Characterizes the epidemiological analysis of infectious diseases. Interest
lies in the detection and understanding of epidemics. One possible aim
would be the ability to better control outbreaks.

Aims of this lecture:

Give a taste of how statistical modelling can be of use in infectious
disease epidemiology.

Illustrate this by plenty of examples from theory and practice.
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Mathematical models

Statistical modelling of infectious diseases

Three reasons that classical statistical inference is not immediately
applicable for infectious disease data:

1 Data are rarely a result of planned experiments

2 Individuals are not independent (a case may also be a risk factor)

3 The infection process is only partially observable
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Mathematical models

A small outbreak experiment...
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Mathematical models

Mathematical models for communicable diseases (1)

Mathematical modeling of infectious diseases has become a key tool
in order to understand, predict and control the spread of infections.

The intention of epidemic modeling is to model the spread of a
disease in a population made up of a (possible large) integer number
of individuals.

To simplify the description of the population, it is common to use a
compartmental approach to modeling. Here, the population is divided
into classes of susceptible, infective and recovered individuals.
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Mathematical models

Mathematical models for communicable diseases (2)

Disease dynamics can then be characterized by a mathematical
description of each individual’s transitions between classes, subject to
the state of the other individuals in the population.

Mathematical models differ in whether they consider the infection
process as deterministic or stochastic.

Another distinction between models is whether they operate in
continuous-time or discrete-time.
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Mathematical models Discrete time stochastic Reed-Frost model
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Mathematical models Discrete time stochastic Reed-Frost model

The Reed-Frost epidemic model

SIR compartmental model, where individuals are either Susceptible,
I nfectious or Recovered

Closed population with initially x0 = n susceptible and y0 = m
infectious individuals

Dynamics are described in discrete time by evolution of a Markov
chain

Yt+1|xt , yt ∼ Bin(xt , 1− (1− w)yt ),

Xt+1 = Xt − Yt+1,

where w is the probability for an infectious contact of two individuals
during one unit of time and t = 1, 2, . . .

The final size of the epidemic is Z = Y1 + Y2 + Y3 + . . .
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Mathematical models Discrete time stochastic Reed-Frost model

Final size distribution when n = 21
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Mathematical models Discrete time stochastic Reed-Frost model

Final size distribution when n = 100
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Mathematical models Discrete time stochastic Reed-Frost model

Estimation of model parameters (1)

Estimation of w from data for times 0, 1, 2, . . . ,K using maximum
likelihood estimation

L(w) =
K−1∏
t=0

θ
yt+1
t (1− θt)xt−yt+1 ,

where θt = 1− (1− w)yt .

Contribution of statistics: Interest is not only in point estimator ŵ ,
but also in a quantification of the uncertainty of ŵ , e.g. by stating a
95% confidence interval for w .
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Mathematical models Discrete time stochastic Reed-Frost model

Estimation of model parameters (2)
R> ######################################################################

R> # Likelihood function for the reed-frost model

R> #

R> # Parameters:

R> # w.logit - logit(w) to have uncrestricted parameter space

R> # x - vector containing the number of susceptibles at each time

R> # y - vector containing the number of infectious at each time

R> #

R> ######################################################################

R>

R> l <- function(w.logit,x,y) {

+ if (length(x) != length(y)) { stop("x and y need to be the same length") }

+

+ K <- length(x)

+ w <- plogis(w.logit)

+ theta <- 1 - (1-w)^y

+ #Compute loglik

+ return(sum(dbinom( y[-1], size=x[-K], prob=theta[-K],log=TRUE)))

+ }

R> #Observed susceptibles and infected

R> y <- c( 1, 4, 5, 6, 4, 0)

R> x <- c(20,16,11, 5, 1, 1)

R> mle <- optim(par=0,fn=l,method="BFGS",x=x,y=y,control=list(fnscale=-1),hessian=TRUE)

R> #Maximum likelihood estimator

R> (w.hat <- plogis(mle$par))

[1] 0.1365412

R> #95% confidence interval

R> (w.95ci <- plogis( mle$par + c(-1,1)*qnorm(0.975)* sqrt(-1/mle$hess)))

[1] 0.08815311 0.20550400
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Mathematical models Discrete time stochastic Reed-Frost model

Research questions

What effect does a vaccination have?

What effect does an isolation measure have?

How could the model take different age categories into account?

Not every infected does actually become infectious.

The population is not closed, what now?

It’s the rodent, stupid!
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Mathematical models Discrete time stochastic Reed-Frost model

Mathematical challenges

Mathematical abstractions of real world phenomena → equations

No outbreaks are similar → stochasticity

Different modes of transmission: person-to-person, air-borne,
water-borne, food-borne and vector-borne → direct and indirect
transmission

Population heterogeneity (e.g. different places of residence, contact
behaviour, susceptibility) needs to be taken into account

Conflict between observation frequency and speed of the epidemic →
time scale of a model

Not all relevant events for the course of the epidemic are observable
→ partial observability
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Mathematical models Discrete time stochastic Reed-Frost model

Statistical challenges

Statistics in a nutshell:

Stochastic model + data →
Parameter estimation + quantification of uncertainty

Only one realization of the epidemic is observed.

The data used for estimation can contain serious problems, e.g.
under-reporting, changes in the test behaviour.

The analysis is conducted using all available covariables, but the
central risk covariates might be missing in the analysis.
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Mathematical models Continuous time deterministic SIR model

Outline

1 Mathematical models for communicable diseases
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Mathematical models Continuous time deterministic SIR model

The basic SIR model (1)

When the considered population is large, it can be sufficient to
disregard the stochasticity of the epidemic process and use
deterministic models.

Can formulate a continuous time deterministic SIR model by using
ordinary differential equations (ODEs).

The deterministic system intends to model the mean behaviour of the
underlying stochastic system.

We assume a closed population (i.e. no demographics turnover) of
size N.
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Mathematical models Continuous time deterministic SIR model

Example: CSFV in The Netherlands (1)

Classical swine fever virus (CSFV) is a highly contagious disease of
pigs and wild boar.

Characteristics of the disease are
I Symptoms after infection: dullness and anorexia.
I Acute form: rapid mortality often without clinical symptoms.
I Secondary symptoms: diarrhea or respiratory problems.

A huge outbreak in the Netherlands lasted from 4 February 1997 to
May 1998.

I 429 infected farms detected and stamped out (∼ 700,000 pigs)
I 1286 herds pre-emptively-slaughtered (∼ 1.1 million pigs)
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Mathematical models Continuous time deterministic SIR model

Example: CSFV in the Netherlands (2)
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Mathematical models Continuous time deterministic SIR model

The basic SIR model (2)

Divide population into three groups (S)uscpetibles, (I)nfectious, and
(R)ecovered. At all times S(t) + I (t) + R(t) = N + a.

Describe dynamics using an ordinary differential equation system

dS(t)

dt
= −βS(t)I (t)

dI (t)

dt
= βS(t)I (t)− γI (t)

dR(t)

dt
= γI (t)

Solve ODE with initial condition (N, a, 0) using numerical routines,
e.g. an Euler or Runge-Kutta scheme.
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Mathematical models Continuous time deterministic SIR model

The basic SIR model (3)

Number of infected I (t) as a function of β when γ = 0.3 and
N = 21500.
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Mathematical models Continuous time deterministic SIR model

The basic SIR model (4)

Number of susceptibles S(t) as a function of β when γ = 0.3 and
N = 21500.
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Mathematical models Continuous time deterministic SIR model

The basic reproduction rate R0

Definition: R0 is the number of new infections produced by one
infection in a virgin population, i.e. the initial growth rate.

If R0 < 1 the number of infected is expected to fade out right after
introduction. If R0 > 1 an epidemic will result.

In a simple SIR model

R0 =
βN

γ
.
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Mathematical models Continuous time deterministic SIR model

The final size of an epidemic

In a closed population the number of susceptibles can only decrease,
hence it must have a limit for t →∞.

Is the limit zero? Or will some fraction of the population escape from
ever getting infected?

Let f be the fraction of the (initially susceptible) population that got
infected. This is also called the final size of the epidemic.

It can be found as the solution to the equation

1− f = exp(−R0f ).
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Mathematical models Continuous time deterministic SIR model

How to estimate parameters from data?

Parameter estimation depends on the available data from the epidemic.

Final size data ⇒ use Equation (9), i.e.

R0 = − log(1− f )

f

Some function of recovery and infection times is observed at k discrete
time points ⇒ formulate a likelihood of the available observations by
characterizing the distributional family of the observations and
assume that the ODE system determines the expectation
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Mathematical models Continuous time deterministic SIR model

Estimating parameters (1) – Gaussian observations

We have k observations of type yi = g(x(ti ,θ)), where θ = (β, γ)′,
x(t) = (S(t), I (t))′ and g(·) is a function indicating that we might
only observe part of the state.

Least squares aims at finding θ, which minimizes the function

l(θ) =
k∑

i=1

(yi − g(x(ti ,θ)))2 ,

Solution θ̂ is found using numerical optimizing routines.

If g((S(t), I (t))′) = I (t) least squares corresponds to MLE for
Gaussian observations with

yi ∼ N(I (t), σ2).

where σ is variance of the observation noise (kept fixed).
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Mathematical models Continuous time deterministic SIR model

Estimating parameters (2) – MLE for CSFV Data

Example: SIR model fitted to CSFV curve by Gaussian likelihood
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Mathematical models Continuous time deterministic SIR model

Estimating parameters (3) – Poisson observations

Assuming Gaussian observation ignores the fact that we actually
observe count data. For small counts this may become problematic.

An alternative is to use a count data distribution:

yi ∼ Po(I (ti ))

As a consequence the log-likelihood is

log(L(θ)) =
k∑

i=1

yi log(I (ti ))− I (ti ),

Since for the Poisson distribution E (yi ) = Var(yi ), it might be
necessary to address additional over-dispersion in the data using, e.g.
a negative binomial distribution.
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Mathematical models Continuous time deterministic SIR model

Estimating parameters (4) – MLE for CSFV Data

Example: SIR model fitted to CSFV curve by Poisson likelihood
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Mathematical models Stochastic continuous time SIR model

Outline

1 Mathematical models for communicable diseases
Discrete time stochastic Reed-Frost model
Continuous time deterministic SIR model
Stochastic continuous time SIR model
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Mathematical models Stochastic continuous time SIR model

Stochastic continuous time SIR model (1)

If the population under study is large enough, deterministic
approximations are reasonably valid to obtain an understanding of the
disease.

In small populations, however, stochasticity plays an important role
for extinction, which cannot be ignored.

Stochastic epidemic modeling is described e.g. in Becker (1989),
Daley and Gani (1999) and Andersson and Britton (2000), who all
rely heavily on the theory of stochastic processes.
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Mathematical models Stochastic continuous time SIR model

Stochastic continuous time SIR model (2)

The stochastic SIR model can be described as a birth and death
process, where the event rates for infection and removal are:

Event Rate

(S(t), I (t))→ (S(t)− 1, I (t) + 1) βS(t)I (t)

(S(t), I (t))→ (S(t), I (t)− 1) γI (t)

Again, R(t) is implicitly given, because a fixed population of size
S(0) + I (0) is assumed.

The integer size of the population is now taken into account: Once
I (t) = 0, the epidemic ceases.

Point process viewpoint: piecewise constant conditional intensities for
the process of infection, while the length of the infective period is
given by independent and identically distributed exponential variates.
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Mathematical models Stochastic continuous time SIR model

The basic reproduction number (1)

A further important difference between deterministic and stochastic
modeling is the interpretation of R0:

The basic reproductive ratio in the stochastic setting

Average number of secondary cases directly caused by an infectious case in
an entirely susceptible population.

For the simple stochastic SIR model R0 can be calculated as

R0 =
β

γ
· S(0).

As in the deterministic setting, the epidemic goes extinct if R0 ≤ 1.
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Mathematical models Stochastic continuous time SIR model

The basic reproduction number (2)

In the deterministic setting one can show that an outbreak can only
occur if R0 > 1.

In the stochastic SIR model setting the formulation is different: When
R0 > 1, a major outbreak occurs with probability

p = 1−
(

R0

S(0)

)I (0)

,

and with probability 1− p the epidemic goes extinct (Andersson and
Britton, 2000).

When assessing the risk of an infectious disease the difference
between the deterministic and the stochastic interpretation of R0 can
have important consequences.
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Mathematical models Stochastic continuous time SIR model

Likelihood inference (1)

Assume that the epidemic process is completely observed over the
interval (0, τ ], where τ is the duration of the epidemic.

Let the K exposure times in this interval be T 1
E , . . . ,T

k
E and the joint

PDF of incubation and infectious shedding duration fTD ,TS
(tD , tS ).

Likelihood of the data
{

(t i
E , t

i
D , t

i
S ), i = 1, . . . , k

}
is

L =

[
k∏

i=1

fTD ,TS
(t i

D , t
i
S )

][
k∏

i=1

λ(t i
E |Ht i

E
)

]
exp

(
−
∫ τ

0
λ(u|Hu)du

)
,

where λ(t|Ht) = βI (t−)S(t−) is the conditional intensity function
(CIF) and t− denotes the time just prior to ti (left-continuous CIF).
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Mathematical models Stochastic continuous time SIR model

Likelihood inference (2)

The exposure times t i
E , i = 1, . . . , k, are unlikely to be observed, i.e.

the previous likelihood can not be constructed since S(t) is unknown.

To make inference tractable assume that the incubation period is a
constant µD (known or to be estimated) and denote by t i

I the
observed start of an individual’s infectious period.

In this case t i
E = t i

I − µD and hence

S(t−) = S(0)−
k∑

i=1

1(t i
I−µD ,∞)(t)

The likelihood is now

L =

[
k∏

i=1

fTS
(t i

S )

][
k∏

i=1

λ(t i
E |Ht i

E
)

]
exp

(
−
∫ τ

0
λ(u|Hu)du

)
.
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Mathematical models Stochastic continuous time SIR model

Likelihood inference (3)

Further assumptions are needed if also the t i
S are unobservable, i.e. if

only the removal times t i
R = t i

E + t i
D + t i

S are observed.

Let also TS be equal to a constant, say µS . Now, t i
E = t i

R − µD − µS

and hence

I (t−) = 1(t i
R−µS ,t

i
R )(t)

S(t−) = S(0)−
k∑

i=1

1(t i
R−µD−µS ,∞)(t)

The likelihood is

L =

[
k∏

i=1

λ(t i
E |Ht i

E
)

]
exp

(
−
∫ τ

0
λ(u|Hu)du

)
.

M. Höhle Modelling of infectious diseases 40/ 221



Mathematical models Stochastic continuous time SIR model

Likelihood inference (4)

A complication of the presented equations is that the CIF has to be
integrated over time. However, for the simple SIR model the CIF is a
piecewise constant function and hence integration is tractable.

A GLM approximation exists to cast inference into the framework of
available GLM software → exercise class

Under certain regularity conditions the classical asymptotic normality
of the likelihood also applies in the point-process setup
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Modelling and monitoring public health surveillance data

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance
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Modelling and monitoring public health surveillance data

Introduction

This short course is about the statistical analysis of routinely collected
surveillance data seen as

I multivariate time series of counts
I realizations of spatio-temporal point processes

Course aim is to explain concepts behind retrospective modelling and
prospective monitoring in infectious disease epidemiology.

The statistical methods of this talk are implemented in the R-package
surveillance available from the Comprehensive R Archive Network
(CRAN) (Höhle, 2007).
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Modelling and monitoring public health surveillance data

Aims of statistical surveillance

Public health surveillance

Ongoing systematic collection, analysis, interpretation and dissemination
of health data for the purpose of preventing and controlling disease, injury,
and other health problems (Thacker, 2000).

Course view:

Real-time online monitoring within a setting of statistical process
control.

Detect aberrations for public health events in a statistical setting with
a little less heuristics involved than sometimes applied at the moment.

Provide formal tool as a supplement to gut instinct.
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Modelling and monitoring public health surveillance data

Examples of disease surveillance applications

In human epidemiology

Monitoring of congenital malformations (Chen, 1978)

Surveillance of notifiable diseases (Robert Koch Institute, 2009;
Widdowson et al., 2003)

Monitoring surgical outcomes (Steiner et al., 2000)

In veterinary epidemiology

Salmonella in livestock reports, Veterinary Laboratories Agency,
UK (Kosmider et al., 2006)

Rabies Surveillance (WHO Collaboration Centre for Rabies
Surveillance and Research, 2007)

Monitoring of abortions in dairy cattle (Carpenter et al., 2007)
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Modelling and monitoring public health surveillance data

Example of surveillance data

Weekly number of adult male hepatitis A cases in the federal state of
Berlin during 2001-2006

During summer 2006 health authorities noticed an increased amount
of cases (Robert Koch Institute, 2006).

Hepatitis A in Berlin 2001−2006
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Modelling and monitoring public health surveillance data

Example – Rabies among foxes in Hesse 1985-2006 (1)

Monthly counts are provided by the WHO Collaboration Centre for Rabies
Surveillance and Research. Thanks to Christoph Staubach, Federal
Research Institute for Animal Health, Germany.
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The observed count time series is {yt}254
t=1 = {y1:1985, . . . , y2:2006}.
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Modelling and monitoring public health surveillance data

Example – Rabies among foxes in Hesse 1985-2006 (2)
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To illustrate seasonality:

1 divide monthly cases by the respective yearly average

2 compute monthly mean of this detrended time series
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Modelling and monitoring public health surveillance data

Surveillance of acute respiratory diseases (1)

Since autumn 2004 the Governmental Institute of Public Health of
Lower Saxony carries out a surveillance of acute respiratory
diseases (Beyrer et al., 2006)

The surveillance consists of two modules
1 Voluntary reporting module for daycare facilities
2 Module containing the investigation of throat swabs from selected

medical practices (pediatrists and general practitioners)

Focus on module 2, where each throat swab is tested for five viral
agents: influenza virus, respiratory syncytial virus (RSV), adeno virus,
picorna virus and metapneumo virus
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Modelling and monitoring public health surveillance data

Surveillance of acute respiratory diseases (2)

For each agent one has a binomial time series

yt ∼ Bin(nt , πt).

Example: Positive picorna virus tests during surveillance.
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Modelling and monitoring public health surveillance data

Surveillance of acute respiratory diseases (2)

For each agent one has a binomial time series

yt ∼ Bin(nt , πt).

Example: Positive picorna virus tests during surveillance.
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Modelling and monitoring public health surveillance data

Example – The EuroMOMO project (1)

European monitoring of excess mortality for public health action
(EuroMOMO)

Aim: develop and strengthen real-time monitoring of mortality across
Europe in order to enhance the management of serious public health
risks such as pandemic influenza, heat waves and cold snaps

Main outcome of mortality monitoring: excess mortality

In this course: Surveillance aspect illustrated by Danish mortality data
provided by Statens Serum Institut, Denmark
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Modelling and monitoring public health surveillance data

Example – The EuroMOMO project (2)
Weekly number of deaths in six age groups (alternatively incidence per
100,000 persons in age group)
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Modelling and monitoring public health surveillance data

Example – The EuroMOMO project (2)
Weekly number of deaths in six age groups (alternatively incidence per
100,000 persons in age group)
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Modelling and monitoring public health surveillance data

The quality of surveillance data

Issues complicating statistical analysis of the time series

Lack of clear case definition

Under-reporting and reporting delays

Lack of denominator data

Seasonality

Low number of disease cases

Presence of past outbreaks

Heterogeneity caused by factors such as age, sex, vaccination status,
environmental factors
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surveillance

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance

4 Now-casting and back-projection

5 Univariate time series detectors

6 Multivariate surveillance

7 Space-time point process modelling
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surveillance

What is surveillance? (1)

An open source package for the visualization, modeling and monitoring
of routinely collected public health surveillance data

Prospective monitoring for univariate count data time series:
I farrington – Farrington et al. (1996)
I cusum – Rossi et al. (1999) and extensions
I rogerson – Rogerson and Yamada (2004)
I bayes – Höhle (2007)
I glrnb – Höhle and Paul (2008)

Prospective changepoint detection for categorical time series:
I pairedbinCUSUM – surgical performance (Steiner et al., 2000)
I categoricalCUSUM – binomial-, beta-binomial-, multinomial logit- and

Bradley-Terry modelling (Höhle, 2010)
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What is surveillance? (2)

Retrospective count data time series models:
I hhh – Held et al. (2005); Paul et al. (2008)
I hhh4 – Paul and Held (2011)
I twins – Held et al. (2006)

Spatio-Temporal point process modelling and monitoring:
I twinSIR – discrete space - continuous time modelling (Höhle, 2010)
I twins – continuous space - continuous time modelling (Meyer et al.,

2011)1

I stcd – continuous space - continuous time cluster detection (Assunção
and Correa, 2009)

1Work in progress, not fully available in the package yet.
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What is surveillance? (3)

Interpretating the epidemiological curve of an outbreak2:
I backprojNP – Non-parametric back-projection (Becker et al., 1991)
I nowcast – Now-casting to adjust for reporting delays during an

outbreak (an der Heiden et al., 2011)

2Work in progress, not fully available in the package yet.
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surveillance

What is surveillance? (4)

Motivation: Provide data structure and implementational framework
for methodological developments

Spin-off: Tool for epidemiologists and others working in applied
disease monitoring

Availability: CRAN, current development version from

http://surveillance.r-forge.r-project.org/

To install the development version under R version 2.13:
install.packages(”surveillance”,repos=”http://r-forge.r-project.org”)

Package is available under the GNU General Public License (GPL) v.
2.0.
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surveillance

Data structure: The sts class (1)

A surveillance time series {yit ; t = 1, . . . , n, i = 1, . . . ,m} is
represented using objects of class sts (surveillance time series)

The sts S4 class has the following form
setClass( "sts", representation(epoch = "numeric",

freq = "numeric",

start = "numeric",

observed = "matrix",

state = "matrix",

alarm = "matrix",

upperbound = "matrix",

neighbourhood= "matrix",

populationFrac= "matrix",

map = "SpatialPolygonsDataFrame",

control = "list",

epochAsDate="logical",

multinomialTS="logical"))

Old S3 class disProg objects can be converted to sts objects using
the function disProg2sts.
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surveillance

Data structure: The sts class (2)

observed A n ×m matrix of counts representing yit

start A vector of length two containing the origin of the time
series as c(year, week).

freq A numeric specifying the period of the time series, i.e. 52 for
weekly data, 12 for monthly data, etc.

alarm A n×m matrix of Booleans containing the result of applying
a surveillance algorithm to the time series

upperbound A n ×m matrix containing the number of cases which would
result in an alarm (specific interpretation is algorithm
dependent)

control List with control arguments used for the surveillance
algorithm
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surveillance

Data structure: The sts class (3)

populationFrac Population data, either population data or denominator
data

map SpatialPolygonsDataFrame from package sp containing
geographical locations

neighbourhood A m ×m matrix of Booleans indicating neighbourhood
relationships between regions

epochAsDate Boolean, if TRUE then the epoch vector is interpreted as a
vector of class Date, i.e. dates in ISO 8601 date standard

multinomialTS If TRUE the populationFrac slot is interpreted as
denominator data (binomial, multinomial)
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surveillance

Data I/O

To import data into R one can use read.table/read.csv, package
foreign (SAS, SPSS, Stata, Systat, dBase) or the RODBC database
interface (Acess, Excel, SQL databases).

An sts object is then created from the resulting matrix of counts.

R> ha.counts <- as.matrix(read.csv("../data/ha.csv"))

R> ha <- new("sts", epoch = 1:nrow(ha.counts), start = c(2001,

+ 1), freq = 52, observed = ha.counts, state = matrix(0,

+ nrow(ha.counts), ncol(ha.counts)))

All plotting, accessing, aggregating and application of surveillance
algorithms works on sts objects.
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Accessing sts objects (1)

Printing provides basic information about the time series:

R> print(ha)

-- An object of class sts --

freq: 52

start: 2001 1

dim(observed): 290 12

Head of observed:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

map:

[1] chwi frkr lich mahe mitt neuk pank rein scho span trko zehl

12 Levels: chwi frkr lich mahe mitt neuk pank rein scho span ... zehl

head of neighbourhood:

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

chwi NA NA NA NA NA NA NA NA NA NA NA NA
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Accessing sts objects (2)

Matrix like accessing such as ha[1:52,] or ha[,"mitt"] results in
sts objects containing the respective sub time series.

Functions such as dim, nrow and ncol are also defined:
R> dim(ha)

[1] 290 12

The time series can be aggregated temporally and spatially:
R> dim(aggregate(ha, by = "unit"))

[1] 290 1

R> dim(aggregate(ha, by = "time"))

[1] 1 12

Currently, the slots of sts objects are accessed directly:
R> head(ha@observed, n = 1)

chwi frkr lich mahe mitt neuk pank rein span zehl scho trko

[1,] 0 0 0 0 0 0 0 0 0 0 0 0

M. Höhle Modelling of infectious diseases 64/ 221



surveillance

Accessing sts objects (3)

Aggregation can also be of subsets.

Example: Aggregate weekly data into 4 week blocks (corresponding
to 13 observations per year)
R> ha4 <- aggregate(ha[, c("pank", "mitt", "frkr", "scho",

+ "chwi", "neuk")], nfreq = 13)

R> dim(ha4)

[1] 73 6
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Visualizing sts objects (1)

The plot function provides an interface to several visual
representations controlled by the type argument.

R> plot(ha4, type = observed ~ time)
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Visualizing sts objects (2)

R> plot(ha4, type = observed ~ time | unit)
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Visualizing sts objects (3)
Using the maptools package shapefiles provides map visualizations

R> plot(ha4, type = observed ~ 1 | unit)
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surveillance

Visualizing sts objects (4)

Using type = observed~1|time*unit one would have created an
animation of pictures for each time index

Plotting functionality is customizable as in R-graphics
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Back-projection

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance

4 Now-casting and back-projection
Now-Casting
Back-projection

Non-parametric back-projection
Parametric back-projection

5 Univariate time series detectors

6 Multivariate surveillance

7 Space-time point process modelling
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Back-projection

Example: EHEC/HUS Outbreak in Germany 2011 (1)
Large outbreak of haemolytic uraemic syndrome, Germany, May-June
2011 with 854 cases.
Retrospective epicurve illustrating the onset of diarrhea of the
patients (where available, 809 cases)
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Back-projection

Example: EHEC/HUS Outbreak in Germany 2011 (2)

However, during the outbreak the situation is not as clear. Incubation
period, time before reporting and other reporting delays complicate
decision making.

Illlustration: Day of hospitalization of HUS cases (available for 635
cases) and the day the HUS case arrives at the RKI.

[Animated epidemic curve]

I Gray boxes – Actual epidemic curve of the hospitalization dates.
I Red crosshair – denotes “now”, i.e. the current day.
I Black boxes – shows all observations which were available at the RKI

at the present day.

Conclusion: Automatic online outbreak detection is not of use here.
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Back-projection Now-Casting

Outline

4 Now-casting and back-projection
Now-Casting
Back-projection

Non-parametric back-projection
Parametric back-projection
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Back-projection Now-Casting

What’s the situation now?

Opposite to the more sophisticated job of forecasting, we would be
happy to know at specific point in time what the situation is now, i.e.
in an ideal setup of no reporting delay → now-casting.

Now-Casting

Extrapolate currently observed counts by taking the reporting delay from
the past into account. Add uncertainty indication to this extrapolation.

Relies on an assumption that the reporting delay is relatively stable
over time.
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Back-projection Now-Casting

Now casting (1)3

Basic idea of now-casting: The yt cases on day t do not all arrive on
day t, they are delayed according to some delay distribution having
CDF FD .

The number of reports on time t available at time s ≥ t is thus only a
fraction of the total reports:

yt,s = FD(s − t) · yt

Hence an estimate for yt =
∑∞

s=t yt,s at time s is

ŷ s
t =

yt,s

FD(s − t)
.

3Joint work with Matthias an der Heiden, RKI
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Back-projection Now-Casting

Now casting (2)

Compute confidence interval for ŷt by taking uncertainty in the
estimation of FD(s − t) into account, i.e. by pointwise confidence
intervals or a simultaneous confidence band.

Re-estimate delay distribution for each time point based on all
currently available observations.

[Now casting – Animated]

For time points close to now, i.e s − t small, the extrapolation is quite
unreliable, as a consequence we limit now-casts to s − t ≥ 3.
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Back-projection Back-projection

Outline

4 Now-casting and back-projection
Now-Casting
Back-projection

Non-parametric back-projection
Parametric back-projection
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Back-projection Back-projection

Motivation for back-projection

There is a time delay between time of infection and the onset of the
disease. This time delay is often denoted incubation time.

Usually, only onset of disease can be observed. Examples:
I Time to AIDS onset after HIV infection
I Onset of diarrhea after consumption of sprouts (EHEC/HUS)

Let D be a discrete random variable describing the delay in number of
time units. Assuming this delay is constant over time let
f (d), d = 0, 1, 2, . . ., be the PMF of D.

Back-projection

Interest is often in the time of exposure of individuals, but data is only
available about their time of disease onset.
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Back-projection Back-projection

Incubation time as a random variable
Assume that the PMF for D is generated by interval censoring a
continuous random variable D∗ with positive support and CDF FD∗ .
It can be computationally convenient to assume that D has finite
support 1, . . . , dmax. Altogether,

fD(d) =
FD∗(d)− FD∗(d − 1)

FD∗(dmax)
, d = 1, 2, . . . , dmax.

Example: D∗ log-normal with logµ = 2, log σ = 0.6 and dmax = 50.
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Back-projection Back-projection

Example 1: Point source outbreak at time t0 (2)

Assume a point source is active on day t0 = 25 infecting a total of
n = 55 individuals.

The following time series for disease onsets is observed:
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To identify the possible source, interest is in inferring infection times
from the onset times.

M. Höhle Modelling of infectious diseases 80/ 221



Back-projection Back-projection

Example 2: Point source during interval [t0, t0 + l − 1]

Assume a point source is active from day t0 until time t0 + l − 1
infecting a total of n individuals, where individuals are equally likely to
be infected within [t0, t0 + l − 1].

Example t0 = 25, l = 10 and n = 200.

0 20 40 60 80 100

0
5

10
15

Time (days)

C
as

es
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Back-projection Back-projection

Simple back-projection methods (1)

Method 1: Determine the exposure interval by substracting the
shortest incubation time from the first case and the longest
incubation from the last case of the epidemic curve

R-code for outbreak Examples 1 & 2
R> substract.minmax <- function(y, d.pmf, eps = 0.001) {

+ exposure.left <- head(which(y > eps), n = 1) - ((0:d.max)[head(which(d.pmf >

+ eps), n = 1)])

+ exposure.right <- tail(which(y > eps), n = 1) - ((0:d.max)[tail(which(d.pmf >

+ eps), n = 1)])

+ structure(c(exposure.left, exposure.right - exposure.left), names = c("t0",

+ "l"))

+ }

R> substract.minmax(y.ts, d.pmf)

t0 l

26 1

R> substract.minmax(y.l.ts, d.pmf)

t0 l

26 16

M. Höhle Modelling of infectious diseases 82/ 221



Back-projection Back-projection

Simple back-projection methods (2)

Method 2: Substract the median incubation time from each onset.
R> substract.median <- function(y, d.pmf) {

+ d.median <- (0:length(d.pmf) - 1)[which(cumsum(d.pmf) > 0.5)][1]

+ structure(c(tail(y, n = -d.median), rep(0, d.median)), names = names(y))

+ }

R> substract.median(y.ts, d.pmf)
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This method is not recommendable since it ignores the order of
events in the epidemic curve.
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Back-projection Back-projection

Non-parametric back-projection by Becker et al. (1991)

Becker et al. (1991) proposed a non-parametric back-projection
method for discrete time interval data.

Their motivating application was a back-projection of AIDS cases to
HIV incidence (before the use of antiretroviral therapy).

The method differs from the the individual based continuous time
parametric back-calculation of Brookmeyer and Gail (1988).

However, it equally presumes a fixed and known incubation time
distribution.
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Back-projection Back-projection

Model and notation (1)

Nt,d – Number of individuals exposed in interval t = 1, . . . ,T having an
incubation of time d (i.e. observed at time t + d)

N1,2

N5,0N4,0

N4,1

...

...

...

...

...

N3,2

N3,1

N3,0

N2,3

N2,2

N2,1

N2,0

N1,4

N5N4N3N2

N1,0

N1,1

N1,3

N1

Yt – The observed number of incident cases

Yt =
t∑

i=1

Ni ,t−i =
t−1∑
i=0

Nt−i ,i , t = 1, . . . ,T .
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Model and notation (2)

Nt – Number of individuals infected in interval t, i.e.

Nt =
∞∑

d=0

Nt,d .

Assume Nt,d ∼ Po(f (d)λt), i.e. Nt ∼ Po(λt).

As a consequence Yt ∼ Po(µt), where

µt =
t∑

i=1

E (Ni ,t−i ) =
t∑

i=1

f (t − i)λi .
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Back-projection Back-projection

EM Algorithm (1)

Let y = (y1, . . . , yT )′ be the incomplete data and let
x = (N1, . . . ,NT )′ be the complete data with Nt = (Nt,0, . . . ,Nt,∞)′

Interest is in estimating θ = (λ1, . . . , λT )′

Q-function for the EM algorithm:

Q(θ) = Q(θ|θ(k)) = E (l(θ, x)|y,θ(k)),

where l(θ, x) is the loglikelihood of the complete data

l(θ, x) =
T∑

t=1

t−1∑
i=0

[Nt−i ,i log(λt−i fi )− λt−i fi ] .
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Back-projection Back-projection

EM Algorithm (2)

Then,

E (l(θ, x)|y,θ(k)) =
T∑

t=1

t−1∑
i=0

yt

λ
(k)
t−i fi∑t−1

j=0 λ
(k)
t−j fj

log(λt−i fi )− λt−i fi


Hence, for t ∈ {1, . . . ,T} the update is

λ
(k+1)
t =

λ
(k)
t

F (T − t)

T−t∑
d=0

yt+d fd∑t+d
j=1 λ

(k)
j ft+d−j

,

where F (T − t) =
∑T−t

d=0 fd is the CDF of the incubation time.

M. Höhle Modelling of infectious diseases 88/ 221



Back-projection Back-projection

EM Algorithm (3)

Iterations proceed until absolute or relative convergence for the
parameter values, e.g.

||λ(k+1)
1:T − λ(k)

1:T ||
||λ(k)

1:T ||
< ε (1)

In some cases, where the observations near T are known to be
incomplete, one can not expect the λt ’s near T to be estimated with
great precision.

In these cases one may use T ′ ≤ T in (1) instead of T .
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Back-projection Back-projection

EMS Algorithm (1)

To stabilize the estimation a smoothing step is introduced after each
EM step, i.e. let

φ
(k+1)
t =

λ
(k)
t

F (T − t)

T−t∑
d=0

yt+d fd∑t+d
j=1 λ

(k)
j ft+d−j

,

and then let

λ
(k+1)
t =

k∑
i=0

wi · φ
(k+1)
t+i−k/2.

In other words, λ
(k+1)
t is weighted average of the new parameter

values the EM step produces.

Symmetric binomial weights are chosen

wi =

(k
i

)
2k
, i = 0, 1, . . . , k.
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Back-projection Back-projection

Implementation in surveillance (1)

Code:
R> #Create vector with incubation time PMF values on (0,...,d_max)

R> incu.pmf <- c(0, (plnorm(1:d.max,logmu,logsd) - plnorm(0:(d.max-1),logmu,logsd))/plnorm(d.max,logmu,logsd))

R> #Create sts object

R> require("surveillance")

R> sts <- new("sts",epoch=1:length(y.ts),observed=matrix(y.ts,ncol=1))

R> #Backproject using the method by Becker et al. (1991)

R> bp.control <- list(k=0,eps=1e-3,iter.max=100,verbose=TRUE)

R> sts.bp.k0 <- backprojNP(sts, incu.pmf.vec=incu.pmf, control=bp.control)

Plotting code (result is saved in upperbound slot):
R> plot(sts.bp.k0, xaxis.years = FALSE)
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Back-projection Back-projection

Back-projection for outbreak Example 1

Effect of the smoothing parameter k:
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Back-projection Back-projection

Back-projection for outbreak Example 1

Effect of the smoothing parameter k:
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Back-projection Back-projection

Back-projection for outbreak Example 1

Effect of the smoothing parameter k:
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Back-projection Back-projection

Back-projection for outbreak Example 2
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Back-projection Back-projection

Back-projection for outbreak Example 2
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Back-projection Back-projection

Back-projection for outbreak Example 2
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Back-projection Back-projection

Uncertainty

The non-parametric back-projection does not provide any measures of
uncertainty for λ̂.

One possibility to propagate uncertainty from the estimation of the
incubation PMF is to use bootstrap:

I Generate datset i by sampling with replacement the individuals used to

construct the PMF. Then estimate f̂
(i)

D .
I Apply the EMS algorithm in order to back-project the onset times

using f̂
(i)

D . This yields λ̂(i).
I Construct an appropriate measure of uncertainty for λ̂ using the m

bootstrap samples λ̂(1), . . . , λ̂(m), e.g. quantile based point-wise
confidence intervals.
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Back-projection Back-projection

Back-projection for the 2011 EHEC/HUS outbreak (1)

Determination of the incubation time PMF from 91 cases with a well
known exposure time (foreign cases, restaurant cluster, etc.)
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Source: Robert Koch Institute (2011)

The figure shows point-wise 95% confidence intervals obtained by
bootstraping the PMF estimation.
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Back-projection for the 2011 EHEC/HUS outbreak (2)

This estimated incubation PMF is then used in the Becker et al.
(1991) procedure to back-project the epidemic curve formed by the
809 HUS cases with available disease onset time.
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Back-projection Back-projection

Discussion of the non-parametric back-projection method

My experiences with the method is that it is sensitivite to an
appropriate choice of the convergence criterion threshold ε.

Especially for k = 0 one should ensure that enough iterations are
made.

The EMS method is subject to instability in the latter stages of the
epidemic. Marschner and Watson (1994) suggest a small
improvement in the recursion to stabilize the method.

During an outbreak one should choose T such that the incidence
cases observed at time yT are reliable (i.e. sufficiently complete), i.e.
T should not be too close to “now”.
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Back-projection Back-projection

Parametric back-projection

Alternatives to the non-parametric back-projection use a parametric
or semi-parametric model to model the expected number of incidence
cases, i.e. λ(t).

Examples from the literature: Brookmeyer and Gail (1988), Bacchetti
et al. (1993)

An alternative to the non-parametric method is to formulate a
parametric model for the hazard function in a discrete time survival
model.
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Back-projection Back-projection

Discrete time survival model (1)

Let TE be a discrete random variable describing the duration from
origin to exposure by the disease of an individual

Discrete time hazard function

λ(tE |x) = P(TE = tE |TE ≥ tE , x), tE = 1, 2, . . .

Here, λ(·) is parametrized by covariates x and parameters θ.

The probability of an event at time tE is then

P(TE = tE ) = λ(tE )

tE−1∏
s=1

{
1− λ(s)

}
.
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Discrete time survival model (2)

However, the exposure time tE of an individual is not observed, only
its onset time tO .

Onset and exposure are related as follows: TO = TE + D, where D is
the incubation time.

Discrete time convolution of two discrete random variables yields that

P(TO = tO) =
dmax∑
d=0

P(TE = tO − d)P(D = d).

Hence, the likelihood of an individual with onset at time t i
O is

Li =
dmax∑
d=0

{
λ(t i

O − d)

tO−d−1∏
s=1

(1− λ(s))

}
fD(d).
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Back-projection Back-projection

Discrete time survival model (3)

The log-likelihood of all n individuals is then

log(L) =
n∑

i=1

log(Li ).

Since we have aggregated data, the likelihood of the n =
∑T

t=1 yt

individuals can be given in grouped form

log(L) =
T∑

t=1

yt log(Lt),

where Lt is the likelihood of an individual with onset at time t.
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Back-projection Back-projection

Parametric model for outbreak Example 1
Let θ = t0 with the hazard model being

λ(t) = 1{t0}(t), t = 1, 2, . . .

where 1A(t) is the 0/1 indicator function which is one if t ∈ A.
In this simple case P(TE = tE ) = I (tE = t0).
Computing the log-likelihood on a grid of possible t0 values one
obtains an MLE of t̂0 = 25.
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Parametric model for outbreak Example 2

Let θ = (t0, l)
′ and λ(t) = 1

l−t+t0
1[t0,t0+l−1](t) and hence

P(Te = te) =
1

l
· 1[t0,t0+l−1](tE )

Computing the log-likelihood on a matrix grid of possible (t0, l) values
one obtains an MLE of t̂0 = 26 and l̂ = 8.
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Discussion

Method does not allow for an immediate quantification of uncertainty,
since the likelihood is maximized for a discrete parameter set.

One way to provide uncertainty is to cast estimation into a Bayesian
framework and thus obtain a discrete posterior distribution for
θ = (t0, l)

′.

More complicated form of the hazard function include the use of
individual (and possible time-varying) covariates, e.g. to denote
position, factors influencing the transmission, etc.
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Univariate detectors

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance

4 Now-casting and back-projection

5 Univariate time series detectors
Farrington algorithm
Negative Binomial CUSUM
Binomial CUSUM
Evaluating performance
Likelihood ratio detectors

6 Multivariate surveillance

7 Space-time point process modelling
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Univariate detectors

Statistical Framework for Aberration Detection

Univariate time series {yt , t = 1, 2, . . .} to monitor

At the unknown time τ , an important change in the process occurs.
For each time t we differentiate between two-states:

xt =

{
0 if t < τ (in-control),
1 otherwise (out-of-control).

At time s ≥ 1, the available information is ys = {yt ; t ≤ s}.
Detection is based on a statistic r(·) with resulting alarm time

TA = min{s ≥ 1 : r(ys) > g},

where g is a known threshold.
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Univariate detectors Farrington algorithm

Outline

5 Univariate time series detectors
Farrington algorithm
Negative Binomial CUSUM
Binomial CUSUM
Evaluating performance
Likelihood ratio detectors
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Univariate detectors Farrington algorithm

Farrington algorithm (1) – basic model

Predict value yt0 at time t0 = (tm
0 , t

y
0 ) using a set of reference values

from window of size 2w + 1 up to b years back.
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Fit overdispersed Poisson generalized linear model (GLM) to the
b(2w + 1) reference values where E(yt) = µt , Var(yt) = φ · µt with
logµt = α + βt and φ > 0.
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Univariate detectors Farrington algorithm

Farrington algorithm (2) – outbreak detection

Predict and compare:

An approximate (1− α)% prediction interval for yt0 based on the
GLM has upper limit U = µ̂t0 + z1−α

2
·
√

Var(yt0 − µ̂t0)

If observed yt0 is greater than U, then flag t0 as outbreak

Remarks:

Linear trend is only included if significant at 5% level, b ≥ 3 and no
over-extrapolation occurs.

Automatic correction for past outbreaks by computing Anscombe
residuals for reference values and re-fit GLM assigning lower weights
to values with large residuals.

Low count protection – the algorithm raises an alarm only if more
than 5 cases in past 4 weeks.
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Farrington algorithm in surveillance (1)

Function farrington takes an sts and a control object as
arguments

control is a list with the following components:

range Specifies the index of all timepoints in sts to monitor.
b Number of years to go back in time
w Window size

reweight Boolean stating whether to perform reweight step using
Anscombe residuals

trend If TRUE a trend is included in first fit and kept in case
the conditions are met. Otherwise no trend.

alpha An approximate two-sided (1− α)% prediction interval
is calculated
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Univariate detectors Farrington algorithm

Farrington algorithm in surveillance (2)

Results for w = 4, b = 5 and α = 0.01 starting at W40-2007:

Surveillance using farrington(4,0,5)
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Univariate detectors Farrington algorithm

Farrington algorithm in surveillance (4)
Argument powertrans in control indicates which power
transformation to use:

"2/3" skewness correction in low count scenario
"1/2" variance stabilizing square-root transformation
"none" no transformation
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Univariate detectors Farrington algorithm

Correcting for past outbreaks (1)

Problems arise when base-line counts contain outbreaks. A
reweighting procedure is used to downweight such observation.

Compute standardized Anscombe residuals for Poisson distribution:

st =
rt

φ̂
√

1− htt

, where rt =
3(y

2
3

t − µ̂
2
3
t )

2µ̂
1
6
t

Define weights ωt as

ωt =

{
γ 1

s2
t

if st > 1

γ otherwise
,

where γ ensures
∑k

i=1 ωt = n.

M. Höhle Modelling of infectious diseases 113/ 221



Univariate detectors Farrington algorithm

Correcting for past outbreaks (2)

Refit the GLM using the ωt weights, i.e.

Var(yt) =
φµt

ωt

Effect of weights is to downweight large positive outliers in the data:
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Univariate detectors Negative Binomial CUSUM

Outline

5 Univariate time series detectors
Farrington algorithm
Negative Binomial CUSUM
Binomial CUSUM
Evaluating performance
Likelihood ratio detectors
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Univariate detectors Negative Binomial CUSUM

Theory: Negative Binomial CUSUM (1)

Likelihood ratio between the out-of-control and in-control models at
time s given that τ = t:

L(s, t) =
f (ys |τ = t)

f (ys |τ > s)
=

s∏
i=t

f (yi ;θ1)

f (yi ;θ0)
,

where f (·;θ) is the negative binomial PMF with parameter vector θ.

Cumulative Sum (CUSUM) procedure advantageous for detecting
sustained shifts:

r(ys) = max{1 ≤ t ≤ s : log L(s, t)}.
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Univariate detectors Negative Binomial CUSUM

Theory: Negative Binomial CUSUM (2)

The computation of r(ys) in recursive form:

r0 = 0,

rs = max

(
0, rs−1 + log

{
f (ys ;θ1)

f (ys ;θ0)

})
, s ≥ 1.

When there is evidence against in-control, the LLR contributions are
added up.

No credit in the direction of the in-control is given because rs cannot
get below zero.
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Univariate detectors Negative Binomial CUSUM

Theory: Negative Binomial CUSUM (3)

Negative-binomial response with fixed dispersion parameter α and
in-control mean modeled using a GLM with log-link

yt ∼ NegBin(µ0,t , α),

log(µ0,t) = log(popt) + β0 + β1 · t + ct ,

where ct is a cyclic function with period 52 or 53 depending on the
number of ISO weeks in the year of t and popt denotes the
population size in the respective age group at time t.

As a consequence, E(yt) = µ0,t and Var(yt) = µ0,t + α · µ2
0,t

Out-of-control model for given κ > 1:

µ1,t = κ · µ0,t .
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Univariate detectors Negative Binomial CUSUM

Application: Negative Binomial CUSUM (1)

Monitoring example: Age group 75-84 starting from week 40 in 2007
(i.e. 1st October 2007) using past 5 years as reference:

R> m <- glm.nb( `observed.[75,85)` ~ 1 + epoch + sin(2*pi*epochInPeriod) +

+ cos(2*pi*epochInPeriod) + offset(log(`population.[75,85)`)),

+ data=momo.df[phase1,])

R> mu0 <- predict(m, newdata=momo.df[phase2,],type="response")

Aim: to optimally detect a 20% increase in the mean, i.e. κ = 1.2.
Use g = 4.75 – consequences?

R> kappa <- 1.2

R> s.nb <- glrnb(momo[, "[75,85)"], control = list(range = phase2,

+ alpha = 1/m$theta, mu0 = mu0, c.ARL = 4.75, theta = log(kappa),

+ ret = "cases"))
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Univariate detectors Negative Binomial CUSUM

Application: Negative Binomial CUSUM (2)

For week 2 in 2008 an alarm is generated:
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Also shown is the number needed before alarm (NNBA), i.e. given
r(ys−1) find the minimum ys such that r(ys) > g .
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Application: Negative Binomial CUSUM (2)

For week 2 in 2008 an alarm is generated:
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Also shown is the number needed before alarm (NNBA), i.e. given
r(ys−1) find the minimum ys such that r(ys) > g .
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Univariate detectors Binomial CUSUM

Outline

5 Univariate time series detectors
Farrington algorithm
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Univariate detectors Binomial CUSUM

Binomial CUSUM (1)

Reweighted CUSUM originally developed by Rogerson and Yamada
(2004) for Poisson data.

Adopted to the binomial situation where yt ∼ Bin(nt , π0), t = 1, 2, . . .
denote the observations

Optimal detection from an in-control proportion π0 to an
out-of-control π1 by sequentially computing

Ct = max(0,Ct−1 + yt − ntk), t = 1, 2, . . . ,

with C0 = 0 and k = log
(π1(1− π0)

π0(1− π1)

)
− log

(1− π1

1− π0

)
.

An alarm is sounded the first time where Ct > h, and h is a known
threshold determining the properties of the detector.

Given h, one can compute the average time until the first false alarm
(ARL0) using e.g. the algorithm of Hawkins (1992).
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Binomial CUSUM (2)
Detection in the picorna time series for a change from π0 = 0.23 to
π1 = 0.60 corresponding to OR(π1, π0) = 5.
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CUSUM begins monitoring in week 41/2007 and is prospective, i.e.
only information up to the time point is used.
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Univariate detectors Binomial CUSUM

Time varying proportion Binomial CUSUM (1)
Time varying proportion in a logistic regression context

logit(π0,t) = β0 + β1 · t + β2 cos

(
2π

52
· t
)

+ β3 sin

(
2π

52
· t
)

Estimate β from past and predict π0,t for future time points.

P
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III

0.
0

0.
4

0.
8

Predicted π0,t

π1,t when R=5

Develop optimal detector for a change from odds
π0,t

1−π0,t
to odds

R · π0,t

1−π0,t
similar to Steiner et al. (2000).
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Univariate detectors Binomial CUSUM

Time varying proportion Binomial CUSUM (2)
New: Reweight CUSUM contributions in order to maintain a fixed
average time until first false alarm ARL0:

Ct = max

{
0,Ct−1 +

h

ht
(yt − ntkt)

}
,

where ht is computed as the threshold giving the desired ARL0 in a
setup with π0,t and π1,t .

time
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Univariate detectors Binomial CUSUM

Time varying proportion Binomial CUSUM (3)

R> phase1 <- 1:(52 * 3)

R> phase2 <- 1:nrow(oPic) %without% phase1

R> m.logit <- glm(cbind(observed, population - observed) ~

+ 1 + I(epoch - mean(epoch)) + I(sin(epoch * 2 * pi/freq)) +

+ I(cos(epoch * 2 * pi/freq)), family = binomial,

+ data = as.data.frame(oPic)[phase1, ])

R> theta0 <- matrix(predict(m.logit, newdata = data.frame(epoch = phase2,

+ freq = 52), type = "response"), ncol = 1)

R> R <- 5

R> theta1 <- R * theta0/(1 - theta0 + R * theta0)

R> control <- list(range = phase2, distribution = "binomial",

+ ARL0 = 10 * 52, digits = 1, s = R, theta0t = theta0,

+ limit = 0)

R> s.binomCUSUM <- rogerson(oPic, control = control)
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Univariate detectors Performance

Outline

5 Univariate time series detectors
Farrington algorithm
Negative Binomial CUSUM
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Evaluating performance
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M. Höhle Modelling of infectious diseases 127/ 221



Univariate detectors Performance

Evaluating the performance of a surveillance algorithm

Choice of threshold in surveillance algorithms should be based on
performance measure:

Location parameters of the run length distribution, e.g. the ARLs
E(TA|τ = 0) or E(TA|τ =∞)

Conditional expected delay E (TA − τ |τ,TA ≥ τ)

Probability of false alarm within first m time points, i.e.
P(TA ≤ m|τ =∞)

Sensitivity, Specificity, ROC-Curves

Computation of measures rarely available as closed formulas. Instead
Monte-Carlo sampling is used.
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Univariate detectors Performance

Run-length of CUSUM detectors

Among all procedures with the same in-control ARL, the CUSUM has
the smallest expected time until it signals a change in the case, where
the process shifts to the out-of-control state (Moustakides, 1986).

In practice no single out-of-control state exists. Thus we select a
state where we want detection to be optimal and count on a robust
performance in case of another shift.

For further details see e.g. Hawkins and Olwell (1998) or Frisén (2003)
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Univariate detectors Performance

Run-length of NegBin CUSUM (1)

Interest is in the PMF of TA. Compute this either by Monte Carlo
simulation or by using a Markov chain approximation.

Generalization of Bissell (1984) to time varying count data CUSUMs:
dynamics of rt described by a Markov chain:

State 0 rt = 0
State i rt ∈

(
(i − 1) · g

M , i ·
g
M

]
, i = 1, 2, . . . ,M

State M + 1 rt > g

Calculation of the (M + 2)× (M + 2) transition matrix Pt with
elements

pt,i ,j = P(rt ∈ State j |rt−1 ∈ State i), i , j = 0, 1, . . . ,M + 1

by approximations suggested in Hawkins and Olwell (1998)
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Univariate detectors Performance

Run-length of NegBin CUSUM (2)

State M + 1 is absorbing.

The cumulative probability of an alarm at any step up to time n,
n ≥ 1, is:

P(TA ≤ n) =

[
n∏

t=1

Pt

]
0,M+1

The PMF of TA can thus be determined by subtraction

Now: Choose g such that P(TA ≤ 65|τ =∞) is below some
acceptable value, e.g. 10%.

R> pMarkovChain <- sapply(g.grid, function(g) {

+ TA <- LRCUSUM.runlength(mu = t(mu0), mu0 = t(mu0),

+ mu1 = kappa * t(mu0), h = g, dfun = dY, n = rep(600,

+ length(mu0)), alpha = 1/m$theta)

+ return(tail(TA$cdf, n = 1))

+ })
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Univariate detectors Performance

Run-length of NegBin CUSUM (3)

P(TA ≤ 65|τ =∞) as a function of g – computed by both Monte
Carlo simulation and the Markov chain approximation (M = 5).
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g

P
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A
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=
∞

)

0.1

Monte Carlo
Markov chain

The Markov chain approximation is 6.8 times faster than Monte Carlo
based on 1000 samples.
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Univariate detectors Performance

Comparison with the Farrington algorithm

Fitted negative binomial model with mean µ0,t and dispersion αt ,
matching the quasi-Poisson model, as true model.

Based on 1000 realizations of I (TA ≤ 65|τ =∞) for the Farrington
et al. (1996) algorithm with 2

3 -power transform, b = 5, w = 4 and
α = 0.001, we obtain

P(TA ≤ 65|τ =∞) ≈ 0.19.

A rough estimate of this number would have been

1−
(

1− α

2

)65
= 0.03.

Note: Using farrington without reweighting and always including a
trend, we obtain the Monte Carlo estimate 0.04.
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Univariate detectors Likelihood ratio detectors
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Univariate detectors Likelihood ratio detectors

Generalized likelihood ratio detector (1)

A problem of the LR scheme is that detection is only optimal for
pre-specified θ1.

Generalization where θ1 is estimated for each instance:

Generalized likelihood ratio (GLR) based stopping rule

TA = inf

{
s ≥ 1 : max

1≤k≤s
sup
θ1∈Θ1

[
s∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]
≥ cγ

}

No recursive updating as in LR-CUSUM possible: worst case number
of operations to determine if TA ≤ m is O(m3)

Lai and Shan (1999) show for the Gaussian case how it is possible to
reduce this complexity by recursive least squares and clever treatment
of the sums and sups
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Univariate detectors Likelihood ratio detectors

Generalized likelihood ratio detector (2)

The GLR detector rephrased:

ls,k = sup
θ1∈Θ1

[
s∑

t=k

log

{
fθ1(yt |zt)

fθ0(yt |zt)

}]

=

[
sup
θ1∈Θ1

s∑
t=k

log fθ1(yt |zt)

]
−

[
s∑

t=k

log fθ0(yt |zt)

]

=
s∑

t=k

log

{
fθ̂s,k

(yt |zt)

fθ0(yt |zt)

}
,

where θ̂s,k = arg sup
θ1∈Θ1

s∑
t=k

log fθ1(yt |zt). Now GLR(s) = max
1≤k≤s

ls,k
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Univariate detectors Likelihood ratio detectors

GLR detector (3) – Poisson and negative Binomial

For the Poisson case with logµ1,t = logµ0,t + κ, efficient
computations are possible since an efficient computation of κ̂s,k and
ls,k is available.

For the NegBin case with logµ1,t = logµ0,t + κ the MLE κ̂s,k has to
be found by iterative methods

Speedup the GLR detector by using a window-limited approach as
proposed by Willsky and Jones (1976). Maximization only for a
moving window of k ∈ {s −M, . . . , s}, where M ≥ 1

For details about the GLR detector see Höhle and Paul (2008)
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Univariate detectors Likelihood ratio detectors

Applying the GLR detector to salmonella hadar (1)

A seasonal negative binomial GLM is fitted to the training period.
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The fitted model is used to predict µ0,t of the test period.
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Univariate detectors Likelihood ratio detectors

Applying the GLR detector to salmonella hadar (2)

Predicting µ0,t using mgcv:

R> train <- 1:(4 * 52)

R> test <- (max(train) + 1):nrow(shadar)

R> m.hadar <- gam(observed ~ 1 + epoch + s(epoch%%52, bs = "cc",

+ fx = FALSE), family = negbin(theta = c(0.1, 1/0.2 *

+ 2)), data = as.data.frame(shadar[train, ]))

R> alpha.hat <- 1/m.hadar$family$getTheta()

R> mu0.hat <- predict(m.hadar, newdata = data.frame(epoch = test),

+ type = "response")

Running the detector:

R> cntrl = list(range = test, mu0 = mu0.hat, alpha = alpha.hat,

+ c.ARL = 7, Mtilde = 1, change = "intercept")

R> shadar.surv <- glrnb(shadar, control = cntrl)
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Univariate detectors Likelihood ratio detectors

Applying the GLR detector to salmonella hadar (3)

Analysis of shadar using glrnb: intercept
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Univariate detectors Likelihood ratio detectors

Average run length and probability of false alarm
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Multivariate surveillance
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Multivariate surveillance

Towards multivariate surveillance (1)

A simple way to perform surveillance for a number of time series is to
monitor each independently
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Multivariate surveillance

Towards multivariate surveillance (2)

Results for current month (say August 2006) are easily accessed for
further report generation

R> control <- list(b = 3, w = 2, range = 53:73, alpha = 0.01,

+ limit54 = c(0, 1))

R> ha4.surv <- farrington(ha4, control = control)

R> sapply(c("observed", "upperbound", "alarm"), function(str) {

+ slot(ha4.surv, str)[nrow(ha4.surv), ]

+ })

observed upperbound alarm

pank 0 2.42 0

mitt 0 2.97 0

frkr 0 2.74 0

scho 1 2.42 0

chwi 0 2.23 0

neuk 2 1.40 1
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Multivariate surveillance

Towards multivariate surveillance (3)

An alarm plot gives an overview of alarms for the different time series

Shaded regions indicate alarms for the current month

Surveillance using farrington(2,0,3)
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Multivariate surveillance Case Study: Rabies in Hesse
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Multivariate surveillance Case Study: Rabies in Hesse

Rabies surveillance in Hesse

Alarm plot created by applying the Farrington algorithm to each of 1
federal state, 3 administrative regions and 26 districts time series

Surveillance using farrington(2,0,4)
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Multivariate surveillance Case Study: Rabies in Hesse

Examination of the increased number of cases (1)

An inspection of the cases in year 2000 showed that problems
centered on the area around Offenbach and Frankfurt.

Source of the figure: C. Staubach, FLI
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Multivariate surveillance Case Study: Rabies in Hesse

Examination of the increased number of cases (2)

A map with the coordinates of the baits with vaccine dropped from
plane shows the problem:

Source of the figure: T. Müller, FLI

M. Höhle Modelling of infectious diseases 149/ 221



Multivariate surveillance Case Study: Rabies in Hesse

Examination of the increased number of cases (3)
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Multivariate surveillance The HHH model and its spatial extensions

Outline

6 Multivariate surveillance
Case Study: Rabies in Hesse
The HHH model and its spatial extensions
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Multivariate surveillance The HHH model and its spatial extensions

Model-based surveillance4

So far the philosophy has been

Use of a simple statistical model to describe the incidence, e.g. using
a Poisson GLM

No modelling of epidemic behaviour

Comparison of observed cases with expected cases for the current
time point

Attempt to detect outbreaks instead of predicting them

Implicit assumption that no outbreak has happened in the past
(except the ad-hoc adjustment in Farrington et al. (1996))

4Slides 159–169 and 171–196 are slightly revised versions of work kindly provided
by L. Held and M. Paul, respectively
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Multivariate surveillance The HHH model and its spatial extensions

The HHH model (1)

Approach in Held et al. (2005) and (Paul et al., 2008): Development
of a realistic stochastic model for the statistical analysis of
surveillance data of infectious disease counts

Compromise between mechanistic and empirical modelling

Model is based on a generalized branching process with immigration

Note: Branching process is a useful approximation of SIR-models in
the absence of information on susceptibles

Explicit decomposition of the incidence in endemic and epidemic
component

Past counts act additively on disease incidence→ model is not a GLM
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Multivariate surveillance The HHH model and its spatial extensions

The HHH model (2)

For t = 1, 2, . . . we have yt ∼ Po(µt), where

µt = νt + λyt−1

log(νt) = α +
S∑

s=1

(γs sin(ωst) + δs cos(ωst))

Autoregressive coefficient 0 < λ < 1 determines stationarity of yt , can
be interpreted as epidemic proportion

log νt is modelled parametrically as in log-linear Poisson regression;
includes terms for seasonality

Adjustments for overdispersion straightforward: Replace Po(µt) by
NegBin(µt , ψ)-Likelihood

Model can be fitted by Maximum-Likelihood using function algo.hhh

in surveillance
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Multivariate surveillance The HHH model and its spatial extensions

Multivariate HHH modelling

Suppose now multiple time series i = 1, . . . , n are available over the
same time horizon t = 1, . . . ,T

Notation: yi ,t is the number of disease cases observed in the the i-th
time series at time t

Examples:
I Incidence in different age groups
I Incidence of related diseases
I Incidence in different geographical regions

Idea: Include now also the number of counts from other time series as
autoregressive covariates → multi-type branching process
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Multivariate surveillance The HHH model and its spatial extensions

Bivariate modelling

Joint analysis of two time series i = 1, 2

yi ,t ∼ NegBin(µi ,t , ψ)

µi ,t = νt + λyi ,t−1 + φyj ,t−1 where j 6= i

Note: ψ, νt , λ and φ may also depend on i
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Multivariate surveillance The HHH model and its spatial extensions

Example: Influenza and meningococcal disease (1)

Interdependencies between disease cases caused by different
pathogens might be of particular interest to further understand the
dynamics of such diseases

For example, several studies describe an association between influenza
and meningococcal disease (Cartwright et al., 1991; Hubert et al.,
1992; Makras et al., 2001; Jensen et al., 2004)

Analysis of routinely collected surveillance data from Germany,
2001-2006, from SurvStat@RKI (Robert Koch Institute, 2009)
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Multivariate surveillance The HHH model and its spatial extensions

Example: Influenza and meningococcal disease (2) – Data
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Multivariate surveillance The HHH model and its spatial extensions

Univariate analysis of influenza infections

Results from analysing the influenza time series with HHH models
using the Poisson, Negative Binomial and an increasing number of
seasonal components

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.99 (0.01) - -4050.9 2 8105.9
0 0.98 (0.05) 2.41 (0.27) -1080.2 3 2166.5
1 0.86 (0.05) 2.74 (0.31) -1064.1 5 2138.2
2 0.76 (0.05) 3.12 (0.37) -1053.3 7 2120.6
3 0.74 (0.05) 3.39 (0.41) -1044.1 9 2106.3
4 0.74 (0.05) 3.44 (0.42) -1042.2 11 2106.3
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Multivariate surveillance The HHH model and its spatial extensions

Univariate analysis of meningococcal infections

Results from analysing the meningococcal time series with HHH
models using the Poisson, Negative Binomial and a increasing number
of seasonal components

S λ̂ML (se) ψ̂ML (se) log L(y, θ) |θ| AIC

0 0.50 (0.04) - -919.2 2 1842.4
0 0.48 (0.05) 11.80 (2.09) -880.5 3 1767.0
1 0.16 (0.06) 20.34 (4.83) -845.6 5 1701.2
2 0.16 (0.06) 20.41 (4.86) -845.5 7 1705.0
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Multivariate surveillance The HHH model and its spatial extensions

Multivariate analyses

Model S λ̂ML (se) φ̂ML (se)
flu men flu men flu men

1 3 1 0.74 (0.05) 0.16 (0.06) -
2 3 1 0.74 (0.05) 0.16 (0.06) 0.000 (0.000) -
3 3 1 0.74 (0.05) 0.10 (0.06) - 0.005 (0.001)
4 3 1 0.74 (0.05) 0.10 (0.06) 0.000 (0.000) 0.005 (0.001)

Model ψ̂ML (se) log L(y, θ) |θ| AIC
flu men

1 3.39 (0.41) 20.34 (4.83) -1889.7 14 3807.5
2 3.39 (0.41) 20.34 (4.83) -1889.7 15 3809.5
3 3.39 (0.41) 25.32 (6.98) -1881.0 15 3791.9
4 3.40 (0.41) 25.32 (6.98) -1881.0 16 3793.9
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Multivariate surveillance The HHH model and its spatial extensions

Fitted time series
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Figure: Results from a multivariate analysis influenza and meningococcal
infections in Germany, 01/2001− 52/2006 using HHH
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HHH in surveillance

R> # weekly counts of influenza and meningococcal infections

R> # in Germany, 2001-2006

R> data("influMen")

R> # specify model with two autoregressive parameters lambda_i, overdispersion

R> # parameters psi_i, an autoregressive parameter phi for meningococcal infections

R> # (i.e. nu_flu,t = lambda_flu * y_flu,t-1

R> # and nu_men,t = lambda_men * y_men,t-1 + phi_men*y_flu,t-1 )

R> # and S=(3,1) Fourier frequencies

R> model <- list(lambda=c(TRUE,TRUE), neighbours=c(FALSE,TRUE),

+ linear=FALSE,nseason=c(3,1),negbin="multiple")

R> #Fit the model

R> res.hhh <- algo.hhh(influMen, control=model)

Algorithm claims to have converged

R> AIC(res.hhh)

[1] 3791.938
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Model formulation
Suppose now multiple time series are available:

yrt number of cases in unit r = 1, . . . ,R at time t = 1, . . . ,T

yrt |yt−1 ∼ NegBin(µrt , ψ) (ψ > 0)

µrt = νrt + λyr ,t−1

+ φ
∑
q 6=r

wqr yq,t−1

(νrt , λ

, φ

> 0)

The unknown quantities are given e.g. by

� log(νrt) = log(ert) + α0 + α1 sin
(

2π
52 t
)

+ α2 cos
(

2π
52 t
)

ert : offset, e.g. population numbers

� log(λ) = β0

� neighbor-driven component: log(φ) = γ0

wqr : known weights, e.g. 1(q ∼ r), travel intensities

M. Höhle Modelling of infectious diseases 164/ 221



Multivariate surveillance The HHH model and its spatial extensions

Model formulation
Suppose now multiple time series are available:

yrt number of cases in unit r = 1, . . . ,R at time t = 1, . . . ,T

yrt |yt−1 ∼ NegBin(µrt , ψ) (ψ > 0)

µrt = νrt + λyr ,t−1

+ φ
∑
q 6=r

wqr yq,t−1

(νrt , λ

, φ

> 0)

The unknown quantities are given e.g. by

� log(νrt) = log(ert) + α0 + α1 sin
(

2π
52 t
)

+ α2 cos
(

2π
52 t
)

ert : offset, e.g. population numbers

� log(λ) = β0

� neighbor-driven component: log(φ) = γ0

wqr : known weights, e.g. 1(q ∼ r), travel intensities
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Addressing unit-specific heterogeneity

Each of the three unknown quantities ν, λ, φ, may also depend
on unit r by using

unit-specific fixed effects:
log(φr ) = γr

 this allows us to explore interdependencies between different
pathogens (e.g. influenza and meningococcal disease)

linking parameters with known explanatory variables:
log(λrt) = β0 + xrtβ1

 for instance xrt = vaccination coverage in unit r at time t.

unit-specific random effects:

log(νr ) = α0 + ar , ar
iid∼ N(0, σ2

ν), r = 1, . . . ,R

M. Höhle Modelling of infectious diseases 165/ 221



Multivariate surveillance The HHH model and its spatial extensions

Addressing unit-specific heterogeneity

Each of the three unknown quantities ν, λ, φ, may also depend
on unit r by using

unit-specific fixed effects:
log(φr ) = γr

 this allows us to explore interdependencies between different
pathogens (e.g. influenza and meningococcal disease)

linking parameters with known explanatory variables:
log(λrt) = β0 + xrtβ1

 for instance xrt = vaccination coverage in unit r at time t.

unit-specific random effects:

log(νr ) = α0 + ar , ar
iid∼ N(0, σ2

ν), r = 1, . . . ,R
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Random effects specification

Consider the model

µrt = νrt + φr

∑
q 6=r

wqr yq,t−1

log(νrt) = α0 + ar +
(
season

)
+ · · ·

log(φr ) = γ0 + cr

where the random effects a = (a1, . . . , aR)> and c = (c1, . . . , cR)>

are assumed to be(
a

c

)
∼ N

((
0

0

)
,

(
σ2
ν

ρσνσφ
ρσνσφ

σ2
φ

)
⊗ IR

)

Alternatively, a conditional autoregressive (CAR) model (Besag et al.,
1991) may be adopted for a, say.
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M. Höhle Modelling of infectious diseases 166/ 221



Multivariate surveillance The HHH model and its spatial extensions

Estimation

Model does not belong to the class of GL(M)Ms

Fixed effects model:
maximum likelihood estimates are obtained via a (globally
convergent) Newton Raphson type algorithm.

Random effects model:
estimation involves a multidimensional integral
without closed form solution.
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Estimation – random effects model

We adopt a penalized likelihood approach (Breslow and Clayton (1993); Kneib

and Fahrmeir (2007)) with alternating steps:

1 Estimate regression parameters for given variance components.

2 Estimate variance components for given regression parameters based
on an approximate marginal likelihood
(using a first order Laplace approximation).

Note: CAR effects require reparameterization

All methods are incorporated in surveillance as function hhh4.
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Model choice

Classical model choice criteria such as AIC can be problematic in the
presence of random effects.

Models are validated based on probabilistic one-step-ahead
predictions.

The often used mean squared prediction error does not incorporate
prediction uncertainty.

We use strictly proper scoring rules
(Gneiting and Raftery (2007); Czado et al. (2009))

I evaluate a model based on the predictive distribution and
the later observed true value

I simultaneously address sharpness and calibration

I are negatively oriented (the smaller the better)
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Intermezzo: Scoring rules (1)

A scoring rule S(P, y) measures the predictive quality of a stated
predictive distribution P by comparing it with the actual observed
value y

Denote the expectation of S(P, ·) under distribution Q by S(P,Q). A
scoring rule is called proper if S(P,Q) is minimal if y is indeed a
realization from P. If the minimum is unique the scoring rule is called
strictly proper.

In practice scores are reported as averages over suitable sets of
forecasts

S =
1

n

n∑
i=1

S(P(i), y (i)),

where P(i) and y (i) refer to the i ’th predictive distribution and i ’th
observation, respectively
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Intermezzo: Scoring rules (2)

The most popular strictly proper scoring rule for count data is the
logarithmic score

logS(P, y) = − log(fP(Y = y)),

where fP(Y = y) is the PMF of the predictive distribution P.

To compare two models A and B compute n individual scores for both
models and use a Monte Carlo test to assess if difference

∆A,B = SA − SB

is significant.
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Case study: Influenza in Southern Germany

We considered several negative binomial models, which differ
depending on whether and how the autoregression is specified.

The endemic components always includes
I population fractions as offset
I linear trend and seasonal terms
I iid random intercepts

Model choice using the logarithmic score
I one-step-ahead predictions for the last two years
I average scores are based on these predictions
I differences in mean scores may be tested

e.g. via a Monte Carlo permutation test
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Results for model with constant λ and random φ

µrt = νrt + λyr ,t−1 + φr

∑
q 6=r

wqr yq,t−1 with

log(φr ) = γ0 + cr and log(νrt) = α0 + ar + · · ·

R> #Load influenza data in Baden-Wuerttemberg and Bavaria

R> data("flu-BYBW")

R> # specify components of the model and fit it using hhh4

R> phi <- ~ -1 + ri(type ="iid", corr = "all")

R> nu <- addSeason2formula(~ -1+ri(type = "iid",corr = "all")+I((t-208)/100),S=3)

R> model <- list(end = list(f = nu, offset = population(sts.flu)),

+ ar = list(f = ~ 1),

+ ne = list(f = phi, weights = wji),

+ family = "NegBin1")

R> result <- hhh4(sts.flu, model)

Parameter estimates:

α̂0 (se) λ̂ (se) φ̂ (se) σ̂2
ν σ̂2

φ ρ̂νφ

0.22 (0.10) 0.41 (0.02) 0.22 (0.02) 0.51 0.96 0.56
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One-step-ahead predictive validation for 2007–2008
> pred <- oneStepAhead(result, nrow(sts.flu) - 2*52)

> scores(pred)

autoregressive: λ neighbor-driven: φ logS

p-value

constant random .563

random random .564
random constant .565
constant constant .565

random — .569
constant — .569

— random .588
— constant .591
— — .599

Monte Carlo p-values based on 9999 permutations

For comparison: logS = 0.564 for the best model with CAR instead of iid random effects in the
endemic component νrt .
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M. Höhle Modelling of infectious diseases 176/ 221



Multivariate surveillance The HHH model and its spatial extensions

Summary

A flexible modelling framework was developed to identify outbreaks
and spatio-temporal patterns in infectious disease surveillance data.

Different types of variation and correlation can be incorporated within
a single model.

Random effects formulation enables a realistic analysis of a large
number of parallel time series.

Methods are particularly well suited for model validation based on
one-step-ahead predictions and strictly proper scoring rules.

For further details see Paul and Held (2011).
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Point process modelling

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance

4 Now-casting and back-projection

5 Univariate time series detectors

6 Multivariate surveillance

7 Space-time point process modelling
Maximum Likelihood Inference
Data Analysis
Prospective space-time monitoring
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Point process modelling

Motivation and Aims (1)

Public health surveillance of infectious diseases is an essential
instrument in the attempt to control and prevent their spread

Vast amounts of data resulting from routine surveillance demands the
development of automated algorithms for the detection of
abnormalities

The spatial and temporal resolution of routine collected infectious
disease data is becoming better and better

Interest in developing models and aberration detection methods
taking this spatio-temporal aspect better into account
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Point process modelling

Motivation and Aims (2)

Aim 1

Establish a regression framework for point referenced infectious disease
surveillance data, where the transmission dynamics and its dependency on
covariates can be quantified within a spatio-temporal stochastic process
context

Aim 2

Use this regression framework as building block for model based
prospective space-time aberration detection, e.g. to detect disease clusters
while adjusting for trend, seasonality and other covariates
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Point process modelling

Example: Invasive meningococcal disease (IMD)
IMD is a life-threatening infectious disease triggered by the bacterium
Neisseria meningitidis (aka meningococcus)
Two most common finetypes in Germany in 2002–2008: 336 cases of
B:P1.7-2,4:F1-5, 300 cases of C:P1.5,2:F3-3
Case variables: date, residence postcode, age, gender

B:P1.7-2,4:F1-5

0

2

4

6

8

10

12

14

16

Time (month)

N
um

be
r 

of
 c

as
es

2002 2003 2004 2005 2006 2007 2008 2009

C:P1.5,2:F3-3

0

2

4

6

8

10

12

14

16

Time (month)

N
um

be
r 

of
 c

as
es

2002 2003 2004 2005 2006 2007 2008 2009
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Point process modelling

Spatial distribution
B:P1.7-2,4:F1-5
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Point process modelling

Spatio-temporal animation

B:P1.7-2,4:F1-5 C:P1.5,2:F3-3
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Point process modelling

Conditional intensity function (CIF)

A regular spatio-temporal point process N on R+ ×R2 can be uniquely
characterised by its left-continuous CIF λ∗(t, s).

Definition

λ∗(t, s) = lim
∆t→0, |ds|→0

P

(
N([t, t + ∆t)× ds) = 1

∣∣Ht−

)
∆t |ds|

Instantaneous event rate at (t, s) given all past events

Key to modelling, likelihood analysis and simulation of evolutionary
point processes

In application, N is only defined on a subset (0,T ]×W ⊂ R+ ×R2

(observation period and region)
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Point process modelling

Sources of inspiration (1)

Temporal self-exciting process (Hawkes, 1971)

λ∗(t) = ψ +

∫
(−∞,t)

g(t − u) dN(u)

= ψ +
∑

j :tj<t

g(t − tj )

Constant rate ψ of immigration independent of Ht−

Birth rate g(t) for offspring events, e.g. exponential decay
g(t) = α0 e−α1 t

Interpretation: branching process with immigration, cluster process
(immigrants & offspring)
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Point process modelling

Sources of inspiration (2)

Spatio-temporal ETAS model (Ogata, 1998)

λ∗(t, s) = ψ(s) +
∑

j :tj<t

κ(mj ) g(t − tj ) f (s− sj |mj )︸ ︷︷ ︸
“triggering function”

ψ(s) Inhomogeneous background seismicity rate

κ(mj ) Magnitude-dependent impact factor, e.g. κ(mj ) = eγmj

g(t) Aftershock rate, e.g. hyperbolic decay g(t) = K (t + c)−p

f (s|m) Spatial kernel, e.g. elliptic bivariate normal density
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Point process modelling

Sources of inspiration (3)

Additive-multiplicative SIR compartmental model (Höhle, 2009)

λ∗i (t) = Yi (t) ·
{

hi (t) + e∗i (t)
}

(i = 1, . . . , n)

Fixed, finite population with locations s1, . . . , sn

At-risk indicator Yi (t)

Superposition of endemic (h) and epidemic (e) rates:
I Multiple outbreaks initiated by “imported” cases

hi (t) = exp
(

h0(t) + zi (t)′β
)

I Infectious (“self-exciting”) character of the process based on the set
I ∗(t) of current infectives, e.g.

e∗i (t) =
∑

j∈I∗(t)

f (‖si − sj‖)
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Point process modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)
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Point process modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)

Multiplicative endemic component

h(t, s) = exp
(

oξ(s) + β′zτ(t),ξ(s)

)
Piecewise constant function on a spatio-temporal grid
{B1, . . . ,BD} × {A1, . . . ,AM} with time interval index τ(t), region
index ξ(s)

Region-specific offset oξ(s), e.g. the log-population density

Endemic linear predictor β′zτ(t),ξ(s) includes discretised time trend
and exogenous effects, e.g. the influenza cases
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Point process modelling

Additive-multiplicative continuous space-time

intensity model proposed

λ∗(t, s) = h(t, s) + e∗(t, s)

Additive epidemic (self-exciting) component

e∗(t, s) =
∑

j∈I∗(t,s;ε,δ)

eηj gα(t − tj ) fσ(s− sj )

Individual infectivity weighting through linear predictor ηj = γ ′mj

based on the vector of unpredictable marks

Positive parametric interaction functions, e.g. fσ(s) = exp
(
−‖s‖

2

2σ2

)
and gα(t) = e−αt

Set of active infectives depends on fixed maximum temporal and
spatial interaction ranges ε and δ

M. Höhle Modelling of infectious diseases 188/ 221



Point process modelling

Marked extension with event type

Motivation: joint modelling of both finetypes of IMD

Additional dimension K = {1, . . . ,K} for event type κ ∈ K

Marked CIF

λ∗(t, s, κ) = exp
(
β0,κ + oξ(s) + β′zτ(t),ξ(s)

)
+

∑
j∈I∗(t,s;ε,δ)

qκj ,κ eηj gα(t − tj |κj ) fσ(s− sj |κj )

Type-specific endemic intercept

Type-specific transmission, qk,l ∈ {0, 1}, k, l ∈ K
Type-specific effect modification ηj = γ ′mj , κj is part of mj

Type-specific interaction functions, e.g. variances σ2
κ
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Point process modelling
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Point process modelling
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Point process modelling
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Point process modelling

Basic reproduction number

An important quantity in epidemic modelling is the mean number of
offspring each case generates

Since offspring are generated in time according to an inhomogeneous
Poisson process we define

Basic reproduction number

µi = eηi ·
[∫ ε

0
gα(t) dt

]
·

[∫
b(0,δ)

fσ(s) ds

]
, i = 1, . . . ,N.

Type specific reproduction numbers are obtained by averaging the
µi ’s for each type.
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Point process modelling Inference

Outline

7 Space-time point process modelling
Maximum Likelihood Inference
Data Analysis
Prospective space-time monitoring
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Point process modelling Inference

Log-likelihood of proposed model (1)

Observed spatio-temporal marked point pattern:

x =
{

(ti , si ,mi ) : i = 1, . . . ,N
}

No modelling of the unpredictable marks being part of mi , e.g. age
and gender

Endemic covariate information on a spatio-temporal grid

G =
{
zτ,ξ : τ ∈ {1, . . . ,D}, ξ ∈ {1, . . . ,M}

}
Unknown parameters:

θ =
(
β′0,β

′,γ ′,σ′,α′
)′
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Point process modelling Inference

Log-likelihood of proposed model (2)

l(θ) =

[
N∑

i=1

log λ∗θ(ti , si , κi )

]
−
∫ T

0

∫
W

∑
κ∈K

λ∗θ(t, s, κ)dt ds

Easy integration of piecewise constant endemic rate hθ(t, s, κ)

Integration of epidemic component e∗θ(t, s, κ) involves∫ min{T−tj ;ε}

0
gα(t|κj ) dt and

∫[
W∩b(sj ;δ)

]
−sj

fσ(s|κj )ds

For the spatial integration we use the two-dimensional midpoint rule
with adaptive bandwidth choice depending on the value of σ as best
trade off between accuracy and speed

M. Höhle Modelling of infectious diseases 193/ 221



Point process modelling Inference

Further details

The score function is determined analytically but requires numerical
integration for

∫
∂
∂σl

fσ(s|κ)ds

Wald confidence intervals can be computed using the asymptotic
variance matrix Î−1(θ̂ML) where we use an expected Fisher
information matrix estimate (Rathbun, 1996)

To inspect goodness-of-fit residuals based on the cumulative CIF
suggested by Rathbun (1996) can be used

Simulation from the model is possible using an adaption of Ogata’s
modified thinning algorithm (Meyer et al., 2011)
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Point process modelling Data Analysis

Outline

7 Space-time point process modelling
Maximum Likelihood Inference
Data Analysis
Prospective space-time monitoring
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Point process modelling Data Analysis

Data representation: epidataCS class

IMD data representation in surveillance:
R> imdepi <- as.epidataCS(events, stgrid, W = germany, qmatrix = diag(2))

R> print(imdepi,n=5)

History of an epidemic

Observation period: 0 -- 2562

Observation window (bounding box): [4034.126, 4670.351] x [2686.701, 3543.229]

Spatio-temporal grid (not shown): 366 time blocks, 413 tiles

Types of events: 'B' 'C'

Overall number of events: 636

coordinates ID time tile type eps.t eps.s age sex BLOCK

103 (4112.19, 3202.79) 1 0.99 05554 B 30 200 17 male 1

402 (4122.51, 3076.97) 2 1.00 05382 C 30 200 3 male 1

312 (4412.47, 2915.94) 3 6.00 09574 B 30 200 34 female 1

314 (4202.64, 2879.7) 4 8.00 08212 B 30 200 15 female 2

629 (4128.33, 3223.31) 5 23.00 05554 C 30 200 15 male 4

start popdensity influenza0 influenza1 influenza2 influenza3

103 0 260.8612 0 0 0 0

402 0 519.3570 0 0 0 0

312 0 209.4464 0 0 0 0

314 7 1665.6117 0 0 0 0

629 21 260.8612 0 0 0 0

[....]
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Point process modelling Data Analysis

IMD model selection

Joint analysis of the two finetypes with model selection by AIC

Linear effect of weekly number of influenza cases registered in the
district of a point (lag 0 – lag 3)

Linear time trend and 0–2 harmonics for time-of-year effects

Epidemic predictor with Age (categorized as 0-2, 3-18 and ≥19
years), gender, finetype and age-finetype interaction

ε = 30 days, δ = 200 km

Spatial interaction function f : Gaussian or constant

Resulting best AIC model:

λ∗θ(t, s, κ) = ρξ(s) · exp
(
β0 + βtrend

btc
365

+ βsin sin
(
btc 2π

365

)
+ βcos cos

(
btc 2π

365

))
+

∑
j∈I∗(t,s,κ;ε,δ)

qκj ,κ eγ0+γ3-181[3,18](agej )+γ≥191[19,∞)(agej )+γC1{C}(κj ) fσ(s− sj ).
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Point process modelling Data Analysis

Selected joint model (1)

R> fit <- twinstim(endemic = ~1 + offset(log(popdensity)) + I(start/365) +

sin(start * 2 * pi/365) + cos(start * 2 * pi/365),

epidemic = ~1 + agegrp + type

siaf = siaf_1, data = imdepi, subset = allEpiCovNonNA,

optim.args = optim.args, method = "nlminb",

control = list(fnscale = -10000)), nCub = 36,

typeSpecificEndemicIntercept = FALSE, partial=FALSE)

R> toLatex(summary(fit))

Estimate Std. Error z value P(|Z | > |z|)
h.(Intercept) −20.36516 0.08721 −233.527 < 2 · 10−16

h.I(start/365) −0.04927 0.02229 −2.210 0.0271
h.sin(start*2*1*pi/365) 0.26184 0.06493 4.032 5.52 · 10−05

h.cos(start*2*1*pi/365) 0.26682 0.06437 4.145 3.40 · 10−05

e.(Intercept) −12.57459 0.31275 −40.206 < 2 · 10−16

e.agegrp[3,19) 0.64632 0.31953 2.023 0.043102
e.agegrp[19,Inf) −0.18676 0.43210 −0.432 0.665584

e.typeC −0.84956 0.25742 −3.300 0.000966
e.siaf 2.82866 0.08191

AIC: 18968
Log-likelihood: −9475
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Point process modelling Data Analysis

Selected joint model

Basic reproduction numbers: µ̂B ≈ 0.25 (95%-CI: 0.19-0.33) vs. µ̂C ≈ 0.11
(95%-CI: 0.07-0.18)

LQ-test for H0 : γC = 0 vs. H1 : γC 6= 0 has p-value 0.013
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Point process modelling Data Analysis

Selected joint model (3) – residual analysis
To inspect goodness-of-fit Rathbun (1996) uses

Yi = Λ̂∗(ti )− Λ̂∗(ti−1), i = 2, . . . ,N,

where Λ̂∗(t) is the cumulative intensity function
If the estimated CIF describes the true CIF well, then

Ui = 1− exp(−Yi )
iid∼ U(0, 1)

ε = 0.01 tie breaking
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Point process modelling Prospective space-time monitoring

Outline

7 Space-time point process modelling
Maximum Likelihood Inference
Data Analysis
Prospective space-time monitoring

M. Höhle Modelling of infectious diseases 201/ 221



Point process modelling Prospective space-time monitoring

Prospective space-time monitoring (1)

Idea: Use twinstim as model framework for aberration detection
within a statistical process control context

Let θ̂0 be the MLE for the twinstim model m0 based on all events in
a pre-monitoring period [0,T0]

Given the endemic–epidemic nature of the model previous outbreaks
are thus taken into account

After time T0 new events are actively monitored as they arrive
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Prospective space-time monitoring (2)

Denote the knots in the time grid of G following T0 by t1, t2, . . . and
for each k ≥ 1 compute

ΛC
k = lm0(θ̂C

1 )− lm0(θ̂0),

where the loglikelihoods are computed over all events in [0, tk ]

In the above, θ̂C
1 denotes θ̂0, but with endemic intercept

β̂0,κ + φ · 1C (t, s)

where φ > 0 is a predefined constant and C the cluster

C = {g ∈ G : centroid(g) ∈ [tc , tk ]× circle(sc , δc)}
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Prospective space-time monitoring (3)

Other models for the change of the CIF within the cluster are possible,
but the suggested intercept change is computationally advantageous

Log likelihood ratio of endemic intercept change

ΛC
k =

N∑
i=1

1[0,tk ](ti )
{

log(λ∗θ1
(ti , si , κi ))− log(λ∗θ0

(ti , si , κi ))
}

−
D∑
τ=1

M∑
ξ=1

∑
κ∈K

1[0,tk ](τ)|Bτ ||Aξ|h(τ, ξ, κ)
[

exp(φ1C (τ, ξ))− 1
]
,

where | · | denotes area and length, respectively, and

h(τ, ξ, κ) = exp(oξ + β0,κ + β′zτ,ξ)
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Prospective space-time monitoring (4)

Typically, one would look through a set of clusters C with different
centroids and radii all having time-length [tj , tk ]

Λj ,k = max
C∈C

{
lm0(θ̂C

1 )− lm0(θ̂0)
}

Aberration detection can now be based on, e.g. the Shiryaev-Roberts
(SR) method used in Assunçáo and Correa (2009)

Tγ = min
k
{SRk > γ} , SRk =

k∑
j=1

exp(Λj ,k)

An important result is that the SR method has in-control run-length
greater or equal to γ
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Simulation example (1)

Simulated epidemic from best AIC model with δC = 50 km cluster
around Ansbach region starting on 01 Jan 2007 having φ = log(5)

Cluster detection using δc ∈ {25km, 50km, 75km} and tj in two-week
intervals after 01 Jan 2007
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Simulation example (2)

Resulting Shiryaev-Roberts statistic

0
2

4
6

8
10

time

lo
g(

S
R

k)

2007 2008 2009W21−2007

Using γ = 52 · 3 results in an alarm at t20 (W21-2007) with cluster
location defined as the cluster producing max20

j=1 exp(Λj ,20), i.e. here
C=(Ansbach, 50km, W09-2007)
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Simulation example (3)
Illustration of the cluster location and available cases at alarm time
(W21-2007) together with the corresponding univariate time series
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Cluster detection for IMD data
Using same parametrization for original IMD data sounds alarm at
W10-2007 with cluster C=(Esslingen, 75km, W05-2007)
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Discussion and Outlook (1)

twinstim is a comprehensive framework for the modelling, inference
and simulation of general self-exciting spatio-temporal point patterns

An implementation is to be made available in the R package
surveillance on CRAN

Edge effects probably result in underestimated epidemic weight

Full observability of the relevant epidemic events was assumed

Meyer et al. (2011) contains further details on the twinstim

modelling
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Discussion and Outlook (2)

This talk showed preliminary results on how to use twinstim for
prospective space-time cluster-detection while adjusting for covariates

Clustering as change in endemic intercept ensures speedy
computations, but clusters are limited to a union of cells from the
space-time grid G

Actual run-length behaviour of method needs to be investigated by a
simulation study

Comparison with existing methods, e.g. Kulldorff (2001) or Diggle
et al. (2005), of interest
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Discussion and summary

Outline

1 Mathematical models for communicable diseases

2 Modelling and monitoring public health surveillance data

3 The R package surveillance

4 Now-casting and back-projection

5 Univariate time series detectors

6 Multivariate surveillance

7 Space-time point process modelling
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Discussion and Summary (1)

The focus of prospective surveillance is on outbreak detection

Choice of the detection algorithm depends heavily on the
epidemiological aims

Combination of SPC and classical GLMs yielded nice changepoint
detector for count time series

Retrospective surveillance tries to explain temporal and
spatio-temporal pattern in the data through statistical modelling

Emphasis was on the time series aspect of surveillance as an
alternative to spatial and spatio-temporal cluster detection methods,
e.g. scan statistics
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Discussion and Summary (2)

The surveillance package offers a free and open-source
implementation of the described algorithms

Application of methods not restricted to infectious diseases

Current work:
I Robustify code, improve documentation and prepare for R CMD check

running without warnings → get new version 1.3 on CRAN
I Provide more methods for spatio-temporal cluster detection (also

discrete time – discrete space)
I Increase knowledge about package and integrate relevant existing code

into the surveillance framework
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